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Abstract

Large language models (LLMs), despite
their breakthroughs on many challenging
benchmark tasks, lean to generate verbose
responses and lack the controllability of output
complexity, which is usually preferred by
human users in practice. In this paper, we study
how to precisely control multiple linguistic
complexities of LLM output by finetuning us-
ing off-the-shelf data. To this end, we propose
multi-control tuning (MCTune), which in-
cludes multiple linguistic complexity values of
ground-truth responses as controls in the input
for instruction tuning. We finetune LLaMA2-
7B on Alpaca-GPT4 and WizardLM datasets.
Evaluations on widely used benchmarks
demonstrate that our method does not only im-
prove LLMs’ multi-complexity controllability
substantially but also retains or even enhances
the quality of the responses as a side benefit.

1 Introduction

Large language models have achieved remarkable
success in generating free-from texts for different
downstream tasks or human instructions (Xu et al.,
2023a; Chowdhery et al., 2022; Touvron et al.,
2023b). However, existing LLMs still lack pre-
cise control over the linguistic complexity of their
outputs (Soatto et al., 2023; Chen et al., 2024b; Li
et al., 2024a), e.g., the total number of nouns, the
variation of verbs, etc. Linguistic controllability
is crucial to creating personalized outputs since
those complexity indices directly reflect human
reading complexity in multiple aspects. For exam-
ple, a short yes/no answer is required by some users
while a detailed explanation is preferred by others.
Moreover, recent studies (Singhal et al., 2023; Zhao
et al., 2024; Lambert et al., 2024) have discovered
a spurious correlation between the quality reward
used in LLM alignment and the output length (i.e.,
a specific linguistic complexity). Consequently,
LLMs favor generating verbose responses due to

the length bias, which may increase unnecessary
reading complexity. It is still an open problem to
mitigate the bias without hurting the output quality.

While existing LLM finetuning techniques such
as instruction-tuning (Xu et al., 2023a; Stiennon
et al., 2020; Li et al., 2024b) and reinforcement
learning from human feedback (RLHF) (Christiano
et al., 2017; Bai et al., 2022) have been demon-
strated to be effective in aligning the output with
human intent or preference, they only focus on
maximizing a single objective. Instead, achieving
the controllability of multiple complexity indices
requires a non-trivial multi-objective optimization
that has not been thoroughly studied on LLMs.
Rather than solely maximizing or minimizing the
complexities, it aims to reach different target com-
plexity values on the Pareto frontier. This requires
LLMs to adjust the trade-off among objectives and
capture their potential correlations or constraints in
the text generation process. In addition, due to the
huge space of possible combinations of complexity
indices, it could be expensive to collect training
data for multi-objective control.

In this paper, we take the first step towards multi-
objective control of the linguistic complexity of
LLM outputs. Instead of collecting new data, our
strategy allows the reuse of existing instruction-
tuning data. In particular, we annotate the ground-
truth responses in a dataset by their complexity
metrics evaluated using tools developed in com-
putational linguistics. The multiple complexity
indices and their values are appended as tags to the
input so finetuning an LLM on the linguistic-label
augmented data helps build a strong connection be-
tween the input tags and the linguistic complexity
of the output, hence enforcing the LLM to adhere
to the complexity requirements during sequential
decoding. Surprisingly, we observe that randomly
sampling a small subset of tags for each training
example suffice to obtain controllability over all
the complexities of test examples, thereby reducing
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the required amount of training data.
We examine our approach by finetuning

LLaMA2-7B (Touvron et al., 2023a) using a
linguistic-complexity labeled Alpaca-GPT4 dataset
(Peng et al., 2023) (i.e., the prompts are from the
original Alpaca dataset while the responses are
composed by GPT-4) and a WizardLM dataset (Xu
et al., 2023b). We do not only observe an expected
substantial improvement in linguistic controllabil-
ity but also a side benefit of enhanced response
quality, indicating that finetuning under multiple
linguistic constraints can improve the LLM for gen-
eral purposes. Compared to unconstrained RLHF
and IFT methods, which suffer from the length
bias (Chen et al., 2024a), our approach does not
introduce the bias but can improve both the control-
lability and quality simultaneously.

2 Related Work

Linguistic Features and Complexity. The ex-
ploration of linguistic features and complexity in
language models encompasses a diverse range of
research. Seminal studies have investigated the
syntactic abilities of LSTMs (Linzen et al., 2016).
Ficler and Goldberg (2017) has introduced methods
for manipulating the stylistics and syntactic output
of test generation models. Additionally, linguistic
style transfer (Shen et al., 2017) has also show-
cased the adaptability of language models to cap-
ture and replicate varied linguistic features. Build-
ing on the previous efforts to understand the multi-
faceted nature of linguistics complexity, our work
concentrates on producing responses endowed with
specific linguistic characteristics, which is less ex-
plored in the previous work.

Controllability of LLMs. The topic of personal-
ized language modeling has attracted significant at-
tention across various research papers. Techniques
such as user embedding have become common for
customizing language models to individual needs
(Welch et al., 2020; Rocca and Yarkoni, 2022).
More recently, Mireshghallah et al. (2022); Oba
et al. (2023) propose prompt based personalized
fine-tuning for specific users, and producing per-
sonalized responses. Our research shifts the fo-
cus from personalization for specific users to the
broader goal of controlling large language models
(LLMs) to produce outputs with linguistic diversity
and complexity, addressing a gap not explored by
the aforementioned works.

Another prevalent technique for guiding the out-

put of large language models involves Tagging
(Korbak et al., 2023; Prabhumoye et al., 2023; Lu
et al., 2022). This method incorporates appending
human-readable text during the training of LLMs.
Contrary to previous studies that concentrated on
managing aspects like toxicity (Korbak et al., 2023;
Prabhumoye et al., 2023; Li et al., 2024a) and con-
trolling repetition (Lu et al., 2022), our approach
employs tagging techniques to control linguistic
features across multiple attributes. Additionally,
we utilize multiple tags to enable simultaneous con-
sideration of various attributes, a difference from
earlier work that primarily uses of a single tag.

Finetuning and Alignment of LLMs. With the
emergence of large-scale language models, such as
those in the GPT series, aligning language models
has become prevalent. Studies like those by (Zhou
et al., 2023; Xu et al., 2023b; Li et al., 2023, 2024c;
Chen and Mueller, 2024) have concentrated on the
process of data curation for instruction fine-tuning
to enhance models’ instructions following capabili-
ties. Unlike these data-centric approaches, we keep
the original instruction dataset (Chen and Mueller,
2023) but augment instructions with various tags
to introduce a richer array of linguistic features,
thereby elevating the instruction-following capabil-
ities of the models.

3 Finetuning LLMs for Linguistic
Controllability

In this section, we delineate our approach to multi-
control tuning. Section 3.1 outlines the linguistic
features of interest and describes how we extract
them from a given text segment. In Section 3.2, we
explain how the extracted features are incorporated
into the multi-control tuning process.

3.1 Handcrafted Linguistic Features

We are specifically interested in controlling the
handcrafted linguistic properties of the model’s
generation. This type of feature has been used
throughout the NLP field (Bogdanova et al., 2017;
Anshika Choudhary, 2021; Lee et al., 2021) and is
loosely defined in Lee and Lee (2023) as “a single
numerical value produced by a uniquely identifi-
able method on any natural language.” An ex-
ample of a linguistic feature not considered hand-
crafted is text embeddings produced by deep neural
networks, which usually take the form of a vector.
We extract such features from a text segment using
the LFTK package proposed in Lee and Lee (2023).
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ID Name Description
1 t_word number of words
2 n_noun number of nouns
3 n_verb number of verbs
4 n_adj number of adjectives
5 t_uword number of unique words
6 n_unoun number of unique nouns
7 n_uverb number of unique verbs
8 n_uadj number of unique adjectives
9 ttr type-token ratio
10 noun_var noun variation
11 verb_var verb variation
12 adj_var adjective variation
13 fkre Flesch-Kincaid reading ease
14 rt_average average reading time

Table 1: The list of linguistic features for controllability
tuning. The second column shows the name of each
feature with the corresponding descriptions in the third
column. We include a detailed explanation of how these
features are computed in Appendix A.

It encompasses a diverse set of 220 features that are
grouped into different linguistic families. Within
the scope of this paper, we sample a reasonably-
sized set of 14 features for multi-control tuning,
which are presented in Table 1. These features are
selected to cover most of the feature families while
being simple to understand and verify by human
users.

Formally, given a text segment x =
[x1, x2, ..., xl], with xi being the i-th token of
x, we denote the feature extractor as a function
f : X → Rd that maps x to a d-dimensional vector
f(x) = [f1(x), ..., fd(x)], where fj(x) represents
the j-th linguistic feature of interest and X rep-
resents the space of all texts. In this paper, the
function f refers to the LFTK feature extractor.

3.2 Multi-Objective Control Tuning

Consider the standard instruction tuning setting
where an LLM, denoted as pθ(x) =

∏l
i=1 pθ(xi |

x<i), is trained on a dataset of N instruction-output
pairs, Dtrain = {(xi,yi)}Ni=1. The training objec-
tive is to generate yi given xi; thus, the loss is

L = −
N∑

i=1

|yi|∑

k=1

log pθ(yi,k | xi,yi,<k)

We address multi-control tuning by framing it as
a conditional instruction tuning problem, where
we utilize the target response yi from Dtrain to

generate a linguistic control vector f(yi) and ap-
pend it to xi. The model is then trained to gen-
erate yi condition on both xi and f(yi). How-
ever, to enhance data diversity and better simulate
real-world scenarios, where a user may wish to
control only a few features, we do not utilize all
features for every data example. For each pair
(xi,yi) ∈ Dtrain, we randomly sample an integer
ni ∼ Uniform {1, . . . ,m} , m ≤ d. The set of ni

feature indices, denoted by Ci, is then randomly
sampled from the pool of all feature indices, i.e.,
Ci ∼ Uniform ({A ⊆ {1, . . . , d} : |A| = ni}).
The linguistic control vector used for the i-th ex-
ample is denoted as fCi(yi), where fCi(yi) =[
fCi,1(yi), . . . , fCi,ni

(yi)
]
. The resulting training

loss becomes

L = −
N∑

i=1

|yi|∑

k=1

log pθ(yi,k | xi, fCi(yi),yi,<k)

The benefits of our training strategy are twofold:
(1) it improves the controllability and instruction-
following capability simultaneously, thus avoid-
ing the catastrophic forgetting problem that may
degrade the model’s generation quality. In fact,
we will later show in Section 5.6.2 that LLMs
trained with our approach achieve even stronger
instruction-following ability compared to those
trained with vanilla instruction tuning; (2) it al-
lows us to utilize off-the-shelf datasets without the
need to collect new ones.

3.3 Prompt Template

In practice, we format both the instruction x and
the output y into a predefined template before
they are input into the LLMs. This paper adopts
the template outlined in (Taori et al., 2023),
wherein x is decomposed into an instruction and
an input component. Regarding linguistic controls,
we format them into a sequence of the form
[name_1: value_1] ... [name_n: value_n],
aiming for conciseness by utilizing the features’
abbreviated names listed in Table 1. To assist the
LLM in better understanding these abbreviations,
we provide a comprehensive list of feature
descriptions within the system prompt, which has
been confirmed to enhance the effectiveness of
our approach in preliminary experiments. This
sequence of controls is subsequently attached to
the input component. Figure 1 illustrates a detailed
example of how an input prompt is constructed.
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Below is an instruction that describes a task, paired with an input that provides further context. At the end of the
input, there will be a list of tags specifying the desired properties of the response. The following tags are available:
[t_word] for the total number of words; [n_noun] for the total number of nouns;
[n_verb] for the total number of verbs; [n_adj] for the total number of adjectives;
[t_uword] for the total number of unique words; [n_unoun] for the total number of unique nouns;
[n_uverb] for the total number of unique verbs; [n_uadj] for the total number of unique adjectives;
[simp_ttr] for the simple type-token ratio; [simp_noun_var] for simple noun variation;
[simp_verb_var] for simple verb variation; [simp_adj_var] for simple adjective variation;
[fkre] for the Flesch-Kincaid Reading Ease; [rt_average] for the average reading time.
Write a response that appropriately completes the request and satisfies the tags.
### Instruction:
Arrange the words in the given sentence to form a grammatically correct sentence.
### Input:
quickly the brown fox jumped [t_word: 6] [n_noun: 1] [fkre: 102.05]
### Response:
The brown fox jumped quickly.

Figure 1: An example of how data is formatted before being fed into LLMs in this paper. The first paragraph
presents a system prompt containing a complete list of feature descriptions. Our preliminary results indicate that
including descriptions enhances the effectiveness of our approach.

4 Evaluation of Linguistic Controllability

During evaluation on a reserved test dataset Dtest,
we aim to measure how the model performs as the
linguistic control vector f changes. To conduct
such an evaluation, we develop a sampling strategy
to sample different control vectors for an instruc-
tion xi. Specifically, we need a sampling strategy
that: (1) is specific to an instruction xi, i.e., the
sampled control vectors should not stray too far
from the reasonable range for a specific xi. For
example, an instruction to "Generate a short story"
should not have a large value for t_word; (2) en-
sures the sampled control vectors are always valid,
meaning that no linguistic controls conflict with
each other (e.g., t_uword should always be less
than or equal to t_word), and no control is out-of-
bound (e.g., fkre should always be less than or
equal to 121.22).

To achieve the first goal, we utilize yi’s linguis-
tic feature vector as a reference point and sample
new control vectors f ′ from the Gaussian distribu-
tion centered at f(yi), i.e., f ′ ∼ N (f(yi), Iσ

2).
However, since each feature fi(y) has a different
range, a small σ for some features may be large for
others. To avoid this inconsistency, we standardize
all features to unit variance before sampling. More
formally, the new control vector f ′ is computed by

f ′ = z−1(z(f(yi)) + σϵ), ϵ ∼ N (0, I)

where z : Rd → Rd standardizes each feature to
unit variance, and z−1 is the inverse operation.

While sampling a valid control vector can be
a challenging problem, verifying its validity is

straightforward. This can be done using a simple
rule-based method, which we outline in Appendix
B. We utilize this observation to achieve the second
goal by performing rejection-based sampling, i.e.,
keep resampling a new control vector f ′ until we
find a valid one. We will show in Section 5.7.3
that σ can serve as a hyperparameter to control the
evaluation difficulty.

Lastly, for each example in Dtest, we randomly
sample a number n, a set of n feature indices C,
and K new control vectors f ′

C for controllability
and generation quality evaluation.

5 Experiments

5.1 Implementation Details
By default, we set K = 5 and σ = 0.1 unless
specified otherwise. We set the maximum number
of linguistic controls per example to m = 5 and
will show in Section 5.7.2 that limiting m to 5 does
not affect the model’s controllability, even when
more than 5 controls are used in the evaluation.
For all datasets, we fine-tune LLaMA2-7B using
the AdamW optimizer with a linear learning rate
schedule. We set the learning rate to 2× 10−5, the
batch size to 128, and the number of warmup steps
to 100. All models are trained on 8 RTX A6000
GPUs for 5 epochs.

5.2 Datasets.
Data Preprocessing. Because LFTK cannot ex-
tract linguistic features with perfect accuracy, it
sometimes generates invalid control vectors f(yi)
(e.g., producing an fkre greater than 121.22). This

4339



situation complicates the process of sampling new
control vectors, as f(yi) may deviate significantly
from the feasible region, drastically reducing the
probability of sampling a valid one. Therefore, we
exclude data examples with invalid f(yi).

Alpaca-GPT4. We utilize the Alpaca-GPT4
dataset (Peng et al., 2023) for instruction tuning
and evaluation. This dataset shares the same set
of instructions as the Alpaca dataset (Taori et al.,
2023), but it employs OpenAI’s GPT-4 to generate
high-quality responses. Our preliminary experi-
ments demonstrate that training with this dataset
yields better results in terms of both controllability
and generation quality compared to training with
the original Alpaca dataset. After preprocessing,
the dataset is divided into a training set of 45,000
examples and a test set of 2,000 examples.

WizardLM. In addition to Alpaca-GPT4, we
also evaluate our method on the WizardLM dataset
(Xu et al., 2023b). The original dataset contains
70,000 examples of instruction-output pairs that
were automatically generated by ChatGPT. We sub-
sampled 50,000 examples from the original dataset.
Similar to Alpaca-GPT4, after preprocessing, we
split the data into a training set of 40,000 examples
and a test set of 2,000 examples.

5.3 Models.

We use LLaMA2-7B (Touvron et al., 2023b) as the
base model for multi-control tuning in all experi-
ments.

5.4 Baselines

To evaluate the impact of our method on controlla-
bility and generation quality, we conduct compar-
isons with the same LLaMA2-7B base model but
trained with regular instruction fine-tuning. We
also include OpenAI’s GPT-3.5 Turbo (gpt-3.5-
turbo-0125) as a baseline to compare our model
against state-of-the-art proprietary LLMs in terms
of controllability. For each baseline, we control the
linguistic complexity of their responses using the
prompt template shown in Figure 1 in a zero-shot
manner.

5.5 Evaluation Metrics

Controllability Error. Given an instruction x,
a linguistic control vector fC , and a generated re-
sponse ŷ ∼ pθ(y | x, fC), we measure controlla-
bility error by computing the L1 error between the

specified control vector fC and the response’s lin-
guistic feature vector fC(ŷ). We denote this error
as e = |fC(ŷ)− fC | ∈ R|C|.

Quality Score. To evaluate generation quality,
we follow Zheng et al. (2023) in using a powerful
LLM (e.g., ChatGPT-4 Turbo) as a judge to assign
quality scores ranging from 1 to 10.

5.6 Main Results and Analysis
5.6.1 Linguistic Controllability Evaluation
This section presents the evaluation of linguistic
controllability between our method and various
baselines. We consider three evaluation settings:
Easy (σ = 0.1), Medium (σ = 0.2), and Hard (σ =
0.3). Our goal is to measure the controllability
error of each baseline on each linguistic control
and then visualize all of them on the same radar
plot for comparison. Formally, for each linguistic
control i, and each baseline j, we maintain a list
ei,j =

[
e1i,j , . . . , e

|ei,j |
i,j

]
of L1 errors made by j,

where the length of this list depends on the number
of text examples that contain i. The matrix of all
L1 errors for feature i is denoted as

Ei =




e1i,1 . . . e
|ei,1|
i,1

...
. . .

...
e1i,J . . . e

|ei,J |
i,J


 (1)

It is challenging to directly visualize Ei for all i
on the same radar plot because each linguistic con-
trol i has a different range of values. Therefore,
we normalize each element in Ei using min-max
normalization, with the minimum being minEi

and the maximum being the 95th percentile of
Ei, or P95(Ei). For each baseline j, its average
normalized L1 error on control i is calculated as∑

k norm(eki,j)/|ei,j |, where norm(·) denotes the
normalization described above.

As shown in Figure 2, our method consistently
outperforms the other baselines across all settings.
Surprisingly, a state-of-the-art model like ChatGPT
underperforms in controllability compared to the
instruction-finetuned LLaMA2-7B. Upon manual
inspection, we observed that ChatGPT tends to
produce more verbose responses regardless of the
linguistic controls applied, which may explain the
observed poor performance. Another possible rea-
son for this discrepancy is that LLaMA2-7B is
finetuned on data sharing the same distribution as
the test set, giving it an advantage over ChatGPT.
Note that for noun_var, verb_var, and adj_var,
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Figure 2: Comparison of controllability error (the average normalized L1 error) of ChatGPT
(gpt-3.5-turbo-0125), IFT (finetuning without controls), and MCTune (ours) on AlpacaGPT-4 and WizardLM
datasets and three test settings of target linguistic complexity with increasing σ (difficulty). To visualize each
linguistic feature’s average error on the same radar plot, we apply min-max normalization to normalize them to a
similar scale. To reduce the effect of outliers, the minimum L1 error of the i-th feature is the minimum among all
baselines, and the maximum L1 error refers to the 95th percentile of errors among all baselines.

the differences between each baseline’s errors are
not significant. We hypothesize that, in contrast to
other linguistic complexities, the descriptions of
these features are somewhat more ambiguous, and
we also did not provide a clear description in the
system prompt, which may not be helpful for the
model to understand and follow these features.

5.6.2 Generation Quality Evaluation

A natural concern when fine-tuning for controllabil-
ity is how it affects the model’s generation quality.
In this section, we answer this question by com-
paring our method with standard instruction fine-
tuning on MT-Bench (Zheng et al., 2023), a widely
used benchmark for evaluating LLMs on multi-turn
open-ended questions. Specifically, we use GPT-4
Turbo (gpt-4-0125-preview) as a judge and com-
pare the two methods in both single-answer and
pairwise settings. In the single-answer setting, the
judge assigns a single numeric score from 1 to 10
for each model’s answer. In the pairwise setting,
the judge receives two answers from both baselines
and returns either a win, a loss, or a tie. The result
for the single-answer setting is shown in Figure
4. As shown in the figure, our method does not
degrade the model’s general language ability but

even improves it in most categories. Note that the
performance of both baselines on Coding and Math
questions is poor because the AlpacaGPT-4 dataset
does not have a strong specialty in questions of
this category. When evaluating under the pairwise
setting, MCTune achieves a 51.25% win rate over
instruction fine-tuning. These results suggest that
training for controllability is beneficial for improv-
ing LLMs’ natural language performance.

5.7 Analyses

5.7.1 Relationship Between Linguistic
Controllability and Generation Quality

This experiment focuses on studying the relation-
ship between generation quality and the control-
lability error of LLM responses. To start off, we
randomly select a set of 5 linguistic controls C
and fix it throughout the experiment for simplic-
ity. Given an LLM pθ and the Alpaca-GPT4 test
dataset Dtest = {(xi,yi)}Ni=1, we select 50 exam-
ples from Dtest then sample 50 responses ŷi from
pθ(yi | xi, fC(yi)). Each ŷi is then evaluated by
GPT-4 Turbo on how well it satisfies xi and a con-
trollability error of ŷi is computed by taking the
average of the normalized L1 errors across all con-
trols in C. We also consider three different settings

4341



0.0 0.2 0.4 0.6 0.8 1.0
Controllability Error

0

2

4

6

8

10
Qu

al
ity

 S
co

re
= 0.1

0.0 0.2 0.4 0.6 0.8 1.0
Controllability Error

= 0.3

0.0 0.2 0.4 0.6 0.8 1.0
Controllability Error

= 0.5

IFT
MCTune

Figure 3: Trade-off between linguistic controllability and generation quality in three increasingly difficult test
settings. Each dot represents a model’s response ŷ to a specific query [x, fC ]. The response is given a quality score
from 1 to 10 by a judge LLM (GPT-4 Turbo) based on how well ŷ addresses x. A controllability error is measured
for ŷ, which is computed by taking the average of normalized L1 errors across all linguistic controls in fC . Blue and
orange dots respectively represent responses from models trained by IFT and MCTune using Alpaca-GPT4 dataset.
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Figure 4: Comparison between MCTune and IFT-
trained models on MT-Bench. We finetune LLaMA2-
7B on Alpaca-GPT4 dataset and GPT-4 Turbo is the
judge in the test. The average score per axis ranges
from 1 to 10 and are given by the judge.

where σ = 0.1, σ = 0.3, and σ = 0.5 to see how
the pattern shifts as σ changes. The results are
shown in Figure 3. We can see that, compared to
IFT, our method achieves better quality and con-
trollability simultaneously. As σ increases, the
controllability error increases, which is expected
and consistent with the results in Section 6. We
then start to notice a slight degradation in quality at
σ = 0.5, where there are no responses with a score
of 10, and more responses with low scores begin to
appear. This observation suggests that there might
be a positive correlation between controllability
and generation quality.

5.7.2 Analysis of Model Controllability with
Varying Linguistic Controls
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Figure 5: Linguistic controllability error on the test set
as the number of linguistic controls n per sample in
MCTune’s training increases. The solid curves repre-
sent the linguistic controllability error averaged over all
linguistic complexities (lower is better) with the shaded
areas represent the 95%-confidence interval. The dotted
vertical line indicates the maximum number of controls
(5) used during MCTune’s training.

In this experiment, we are interested in study-
ing how the model’s controllability is affected as
the number of linguistic controls increases. We
conduct this experiment using the Alpaca-GPT4
dataset, from which we randomly sample 100 ex-
amples from the test set. For each example, we
sample five new control vectors f ′ of length n,
compute the average normalized L1 error per con-
trol, and then average these over all controls to
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obtain a single numeric score. We repeat this pro-
cess for n = 1 to n = 14. The results are shown
in Figure 5. Surprisingly, controllability is worse
when n is small. This is true for both MCTune
and the IFT baseline, suggesting that this is not an
inherent limitation of our approach. Notice that, as
the number of linguistic controls increases beyond
five, the maximum number of controls used during
training, the controllability error of IFT fluctuates,
while MCTune remains approximately stable. This
demonstrates that our model, trained with MCTune,
is able to generalize to a larger number of controls
than it has seen in training.

5.7.3 Analyzing the Impact of σ on Linguistic
Controllability Evaluation

t_word
n_noun

n_verb

n_adj

t_uword

n_unoun

n_uverb
n_uadj

ttr

noun_var

verb_var

adj_var

fkre

rt_average

0.1

0.2

0.3

0.4

= 0.1
= 0.2
= 0.3

Figure 6: Analysis of how the average normalized L1

error varies when changing the test difficulty level via
σ. We use the same model and only vary σ.

This section examines the effect of σ on control-
lability evaluation. Given a model fine-tuned with
MCTune and a test dataset, we follow the process
described in Section 4 to sample new linguistic
control vectors for evaluating controllability. We
consider three settings: σ = 0.1, σ = 0.2, and
σ = 0.3. The results are depicted in Figure 6. As
illustrated by the results, as σ increases, the average
normalized L1 error uniformly increases across all
linguistic controls. This indicates that σ can serve
as a hyperparameter to adjust the difficulty of the
evaluation, which is intuitive since a larger σ en-
ables the sampling of control vectors that are more
distant from the reference control vector f(y).

5.8 Case Studies

This section presents examples of how different
values of controls affect the model’s responses.
As shown in Figure 7, increasing the t_word con-

### Instruction: Given an economic concept, define it in simple terms.
### Input: Inflation [t_word: 109] [n_verb: 15] [n_uverb: 14]
### Response: Inflation is when the prices of goods and services rise
over time. Imagine a dollar bill losing value over time, where a single dollar
can't buy as much as it used to. That's inflation. It's important to note that
inflation is not the same as increasing prices on purpose, which is called
deflation. Inflation is generally considered a positive thing because it
means the economy is growing and people have more money to spend.
However, high inflation can also lead to rising prices for essentials like food
and housing, which can be a challenge for people on a fixed income.

Response's complexities:
t_word=113, n_verb=16, n_uverb=15.

### Instruction: Given an economic concept, define it in simple terms.
### Input: Inflation [t_word: 54] [n_verb: 9] [n_uverb: 8]
### Response: Inflation is when the prices of goods and services increase
over time. This means that a dollar will buy less in the store as the year
goes by. While some inflation is expected to happen naturally due to
growth and increased demand, high inflation rates can harm the economy
and cause uncertainty.

Response's complexities:
t_word=56, n_verb=9, n_uverb=8.

Figure 7: Examples of MCTune model responding
to the same instruction under different linguistic
controls. The linguistic complexities of the responses
are extracted using LFTK with exact values shown at
the bottom of each example.

trol leads to a longer response and larger values
of n_verb and n_uverb increase the variation in
verb choice. Although it is challenging to strictly
control the complexities of the response, the lin-
guistic controls can serve as soft constraints on the
model’s generation.

6 Discussion and Conclusions

In this paper, we advance the precise control of
linguistic complexities in LLMs through multi-
objective control tuning. Our method is straight-
forward and can be seamlessly integrated with ex-
isting instruction-tuning datasets without the need
to gather new ones. Our training objective concur-
rently optimizes the LLM’s ability to follow instruc-
tions and its controllability. Through our experi-
ments, we find that incorporating this dual-focus
strategy significantly improves the LLM’s gener-
ative quality, surpassing the results of instruction
fine-tuning alone. This finding suggests that con-
trollability and instruction-following ability may
have a complementary effect on each other. Ad-
ditionally, we observe that while state-of-the-art
LLMs achieve impressive natural language perfor-
mance, they are not easy to control. This empha-
sizes the need for studying methods that improve
controllability in LLMs.
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7 Limitations

While our method significantly improves control-
lability compared to regular instruction fine-tuning,
we observe that there is still room for improvement.
The model trained with MCTune is able to loosely
follow the linguistic controls but struggles to pro-
duce responses with the exact complexities. An
interesting next step would be to improve control-
lability in a strict setting. Another limitation we
observe is the fact that LFTK sometimes extracts in-
correct linguistic complexities for a given text. This
leads to noisy controls that may confuse and reduce
the controllability of the model during training.
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A Computing Linguistic Features

In this section, we describe in greater detail how
linguistic features are computed. We use LFTK
as a feature extractor, which is based on spaCy.
Given a string, spaCy tokenizes it into a sequence
of tokens along with their annotations (e.g., part-
of-speech). The number of words t_word is the
number of tokens. The n_noun, n_verb, and n_adj
are computed based on the POS provided by spaCy.
The t_uword, n_unoun, n_uverb, and n_uadj are
computed accordingly. The type-token ratio, noun
variation, verb variation, and adjective variation are
t_uword
t_word , n_unoun

n_noun , n_uverb
n_verb , and n_uadj

n_adj , respectively.
Let t_sent be the number of sentences and t_syll
is the number of syllables, the formula to compute
Flesch-Kincaid reading ease is

206.835− 1.015

(
t_word

t_sent

)
− 84.6

(
t_syll

t_word

)

Lastly, the average reading time rt_average is
t_word
240 .

B Verifying Validity of Control Vectors

Given a linguistic control vector, it is straightfor-
ward to check its validity by iterating through a list
of pre-defined rules.

• t_word > 0

• t_word ≥ n_noun+ n_verb+ n_adj

• t_word ≥ t_uword

• n_noun ≥ 0

• n_noun ≥ n_unoun

• n_verb ≥ 0

• n_verb ≥ n_uverb

• n_adj ≥ 0

• n_adj ≥ n_uadj

• t_uword > 0

• t_uword ≥ n_unoun+ n_uverb+ n_uadj

• n_unoun ≥ 0

• n_uverb ≥ 0

• n_uadj ≥ 0

• fkre ≤ 121.22

If any of the rules above is violated, we conclude
that the control vector is invalid.
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Method t_word n_noun n_verb n_adj t_uword n_unoun n_uverb n_uadj ttr noun_var verb_var adj_var fkre rt_average

IFT (Zero-shot) 0.31 0.33 0.34 0.32 0.38 0.35 0.33 0.35 0.30 0.30 0.31 0.32 0.34 0.31
IFT (Few-shot) 0.33 0.32 0.33 0.26 0.39 0.41 0.31 0.28 0.38 0.30 0.33 0.32 0.39 0.31
GPT-3.5 (Zero-shot) 0.37 0.50 0.36 0.44 0.55 0.34 0.33 0.54 0.26 0.33 0.48 0.29 0.39 0.47
GPT-3.5 (Few-shot) 0.48 0.53 0.65 0.37 0.67 0.60 0.39 0.44 0.40 0.29 0.35 0.28 0.40 0.48
GPT-4 (Zero-shot) 0.64 0.52 0.34 0.51 0.63 0.73 0.46 0.39 0.21 0.32 0.38 0.28 0.49 0.51
GPT-4 (Few-shot) 0.40 0.40 0.47 0.31 0.46 0.51 0.35 0.36 0.36 0.28 0.30 0.27 0.40 0.32
RLHF (REINFORCE) 0.25 0.24 0.27 0.40 0.27 0.25 0.25 0.27 0.29 0.29 0.38 0.30 0.83 0.36
MCTune 0.18 0.22 0.25 0.25 0.21 0.23 0.22 0.25 0.27 0.26 0.29 0.26 0.31 0.20

Table 2: Additional comparison of controllability error with GPT-4, few-shot and RL-based baselines.

Method t_word n_noun n_verb n_adj t_uword n_unoun n_uverb n_uadj ttr noun_var verb_var adj_var fkre rt_average

IFT 0.37 0.37 0.33 0.35 0.41 0.38 0.33 0.35 0.44 0.40 0.43 0.47 0.40 0.36
MCTune 0.34 0.32 0.32 0.29 0.37 0.35 0.32 0.34 0.47 0.41 0.42 0.44 0.33 0.31

Table 3: Comparison of controllability error when training Mistral-7B-v0.1 with IFT and MCTune (ours).

C Additional Experiments With More
Baselines

In this section, we conduct experiments with other
baselines that include:

GPT-4. Similar to other baselines, we query GPT-
4 (gpt-4-0125-preview) using the prompt tem-
plate in Figure 1 in a zero-shot manner. Since
GPT-4 is very expensive, we only evaluate it on
500 test examples.

Few-shot baselines. To introduce stronger base-
lines, we consider the few-shot setting where a few
exemplars are included in the prompt to boost the
performance of the underlying model. We carefully
select 5 exemplars from the training set that can
cover all the linguistic complexities.

RL-based methods. We compare with a vari-
ant of RLHF proposed in Ahmadian et al. (2024),
where instead of training the LLM policy with PPO,
they use REINFORCE. To adapt this method to
our task, we use the negative controllability er-
ror as the rewards. Since they can be computed
deterministically, we do not need to use neural
networks for reward modeling. More specifically,
given (x,y, fC) ∼ D and a response ŷ, the reward
is

RfC (ŷ,y) = − 1

|C|

|C|∑

i=1

|fCi(ŷ)− fCi(y)|
Mi −mi

where Mi and mi are the maximum and minimum
values of the i-th linguistic complexity in the train-
ing set. The REINFORCE training objective is:

E(x,y,fC)∼D [(RfC (ŷ,y)− b)∇θ log pθ(ŷ|x)]
where ŷ ∼ pθ(·|x, fC(y)) and b is the average
of all achieved rewards in previous steps. For the

Fine-grained RLHF, we are actively adapting their
codebase to our task and will report the results
shortly. As shown in Table 2, MCTune exhibits
the lowest controllability errors on most linguistic
complexities.

D Additional Experiments With Other
LLM Architectures

In this section, we evaluate our method on Mistral-
7B-v0.1 (Jiang et al., 2023) to see how it general-
izes to LLM architectures other than LLaMA. As
shown in Table 3, MCTune keeps improving the
controllability of Mistral on most attributes.
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