
Findings of the Association for Computational Linguistics: ACL 2024, pages 4316–4335
August 11-16, 2024 ©2024 Association for Computational Linguistics

RulE: Knowledge Graph Reasoning with Rule Embedding

Xiaojuan Tang,1,3 Song-Chun Zhu,1,2,3 Yitao Liang,*1,3 Muhan Zhang∗1,3

1Institute for Artificial Intelligence, Peking University 2Tsinghua University
3National Key Laboratory of General Artificial Intelligence, BIGAI

1 xiaojuan@stu.pku.edu.cn 1 {muhan,yitaol,s.c.zhu}@pku.edu.cn
3{tangxiaojuan,sczhu,liangyitao,mhzhang}@bigai.ai

Abstract

Knowledge graph reasoning is an important
problem for knowledge graphs. In this paper,
we propose a novel and principled framework
called RulE (stands for Rule Embedding) to
effectively leverage logical rules to enhance
KG reasoning. Unlike knowledge graph em-
bedding methods, RulE learns rule embeddings
from existing triplets and first-order rules by
jointly representing entities, relations and log-
ical rules in a unified embedding space. Based
on the learned rule embeddings, a confidence
score can be calculated for each rule, reflect-
ing its consistency with the observed triplets.
This allows us to perform logical rule infer-
ence in a soft way, thus alleviating the brit-
tleness of logic. On the other hand, RulE
injects prior logical rule information into the
embedding space, enriching and regularizing
the entity/relation embeddings. This makes
KGE alone perform better too. RulE is con-
ceptually simple and empirically effective. We
conduct extensive experiments to verify each
component of RulE. Results on multiple bench-
marks reveal that our model outperforms the
majority of existing embedding-based and rule-
based approaches. The code is released at
https://github.com/XiaojuanTang/RulE

1 Introduction

Knowledge graphs (KGs) usually store millions
of real-world facts and are used in a variety of ap-
plications (Wang et al., 2018; Bordes et al., 2014;
Xiong et al., 2017). Examples of knowledge graphs
include Freebase (Bollacker et al., 2008), Word-
Net (Miller, 1995) and YAGO (Suchanek et al.,
2007). They represent entities as nodes and re-
lations among entities as edges. Each edge en-
codes a fact in the form of a triplet (head entity,
relation, tail entity). However, KGs are usually
highly incomplete, making their downstream tasks
more challenging. Knowledge graph reasoning,

*Corresponding authors

which predicts missing facts by reasoning on exist-
ing facts, has thus become a popular research area
in artificial intelligence.

There are two prominent lines of work in this
area: knowledge graph embedding (KGE) and rule-
based KG reasoning. Knowledge graph embed-
ding (KGE) methods such as TransE (Bordes et al.,
2013), RotatE (Sun et al., 2019) and BoxE (Ab-
boud et al., 2020) embed entities and relations
into a latent space and compute the score for each
triplet to quantify its plausibility. KGE is effi-
cient and robust to noise. However, it only uses
zeroth-order (propositional) logic to encode exist-
ing facts (e.g., “Alice is Bob’s wife.”) without
explicitly leveraging first-order (predicate) logic.
First-order logic uses the universal quantifier to rep-
resent generally applicable logical rules. For in-
stance, “∀x, y : x is y’s wife → y is x’s husband".
Those rules are not specific to particular entities
(e.g., Alice and Bob) but are generally applicable to
all entities. The other line of work, rule-based KG
reasoning, in contrast, explicitly applies logic rules
to infer new facts (Galárraga et al., 2013, 2015;
Yi et al., 2018; Sadeghian et al., 2019; Qu et al.,
2020). Unlike KGE, logical rules can achieve inter-
pretable reasoning and generalize to new entities.
However, the brittleness of logical rules greatly
harms prediction performance. Consider the log-
ical rule (x,works in, y) → (x, lives in, y) as an
example. It is mostly correct. Yet, if somebody
works in New York but actually lives in New Jer-
sey, the rule can still only infer the wrong fact in
an absolute way.

Considering that the aforementioned two lines of
work can complement each other, addressing each
other’s weaknesses with their own merits, it be-
comes imperative to study how to integrate logical
rules with KGE methods in a principled manner.
If we view this integration in a broader context,
embedding-based reasoning can be seen as a neural
method, while rule-based reasoning can be seen

4316

https://github.com/XiaojuanTang/RulE

Tu
rin

g

UK

Entity Relation Rule

Rule1: BornIn ∧ CityOf ⇒ Nationality

CityO
f

Rule
1

RulE

Tu
rin

g

UK

Nationality

(Turing, Nationality, UK)

BornIn

(a) Traditional KGE (b) Our RulE
Figure 1: (a) Traditional KGE methods embed entities
and relations as low-dimensional vectors only using
existing triplets by defining operations between entities
and relations (e.g., translation); (b) Our RulE associates
each rule with an embedding and additionally defines
mathematical operations between relations and logical
rules (e.g., multi-step translation) to leverage first-order
logical rules.

as a symbolic method. Neural-symbolic learning
has also been a focus of artificial intelligence re-
search in recent years (Parisotto et al., 2017; Yi
et al., 2018; Manhaeve et al., 2018; Xu et al., 2018;
Hitzler, 2022).

In the KG domain, such efforts exist too. Some
works combine logical rules and KGE by using
rules to infer new facts as additional training data
for KGE (Guo et al., 2016, 2018) or directly con-
vert some rules into regularization terms for spe-
cific KGE models (Ding et al., 2018; Guo et al.,
2020). However, they both leverage logical rules
merely to enhance KGE training without actually
using logical rules to perform reasoning. In this
way, they might lose the important information
contained in explicit rules, leading to empirically
worse performance than state-of-the-art methods.

To address the aforementioned limitations, we
propose a simple and principled framework called
RulE, which aims to learn rule embeddings by
jointly representing entities, relations and logical
rules in a unified space. As illustrated in Figure 1,
given a KG and logical rules, RulE assigns an em-
bedding to each entity, relation and rule, and de-
fines respective mathematical operators between
entities and relations (traditional KGE part) as well
as between relations and rules (RulE part). It is
important to note that we cannot define operators
between entities and rules because rules are not
specific to particular entities. By jointly optimizing
entity, relation and rule embeddings in the same
space, RulE allows injecting prior logical rule in-
formation to enrich and regularize the embedding

space. Our experiments reveal that this joint em-
bedding can boost KGE methods themselves. Addi-
tionally, based on the relation and rule embeddings,
RulE is able to give a confidence score to each
rule, similar to how KGE gives each triplet a con-
fidence score. This confidence score reflects how
consistent a rule is with the existing facts, and en-
ables performing logical rule inference in a soft
way by softly controlling the contribution of each
rule, which alleviates the brittleness of logic.

We evaluate RulE on benchmark link predic-
tion tasks and show superior performance. Exper-
imental results reveal that our model outperforms
the majority of existing embedding-based and rule-
based methods. We also conduct extensive ablation
studies to demonstrate the effectiveness of each
component of RulE. All the empirical results verify
that RulE is a simple and effective framework for
neural-symbolic KG reasoning.

2 Preliminaries

A KG consists of a set of triplets K =
{(h, r, t) | h, t ∈ E , r ∈ R} ⊆ E ×R× E , where E
denotes the set of entities and R the set of relations.
For a testing triplet (h, r, t), we define a query as
q = (h, r, ?). The knowledge graph reasoning (link
prediction) task is to infer the missing entity t based
on the existing facts and rules.

2.1 Embedding-based reasoning
Knowledge graph embedding (KGE) represents en-
tities and relations as embeddings in a continuous
space. It calculates a score for each triplet based
on these embeddings via a scoring function. The
embeddings are trained so that facts observed in
the KG have higher scores than those not observed.
The learning goal here is to maximize the scores of
positive facts (existing triplets) and minimize those
of sampled negative samples.

RotatE (Sun et al., 2019) is a representative
KGE method with competitive performance on
common benchmark datasets. It maps entities in
a complex space and defines relations as element-
wise rotations in each two-dimensional complex
plane. Each entity and each relation is associated
with a complex vector, i.e., h, r, t ∈ Ck, where the
modulus of each element in r is fixed to 1 (multi-
plying a complex number with a unitary complex
number is equivalent to a 2D rotation). If a triplet
(h, r, t) holds, it is expected that t ≈ h ◦ r in the
complex space, where ◦ denotes the Hadamard
(element-wise) product. Formally, the distance

4317

function of RotatE is defined as:
d(h, r, t) =∥ h ◦ r − t ∥ . (1)

2.2 Rule-based reasoning
Logical rules are usually expressed as first-
order logic formulae, e.g., ∀x, y, z : (x, r1, y) ∧
(y, r2, z) → (x, r3, z), or r1(x, y) ∧ r2(y, z) →
r3(x, z) for brevity. The left-hand side of the impli-
cation “→” is called rule body or premise, and the
right-hand side is rule head or conclusion. Logical
rules are often restricted to be closed, which form
chains. For a chain rule, successive relations share
intermediate entities (e.g., y), and the rule head’s
and rule body’s head/tail entity are the same. Chain
rules include common logical rules in KG such as
symmetry, inversion, composition, hierarchy, and
intersection rules. These rules play an important
role in KG reasoning. The length of a rule is the
number of atoms (relations) that exist in its rule
body. A grounding of a rule is obtained by sub-
stituting all variables x, y, z with specific entities.
If all triplets in the body of a grounding rule exist
in the KG, we get a support of this rule. Those
rules that have nonzero support are called activated
rules. When inferring a query (h, r, ?), rule-based
reasoning enumerates relation paths between head
h and each candidate tail, and uses activated rules
to infer the answer. See Appendix 9 for illustrative
examples.

3 Method
This section introduces our proposed model RulE.
RulE is a principled framework to combine KG
embedding with logical rules by learning rule em-
beddings. As illustrated in Figure 2, the training
process of RulE consists of three key components.
Consider a KG containing triplets and a set of logi-
cal rules automatically extracted or predefined by
experts. They are: 1) Joint entity/relation/rule
embedding. We model the relationship between
entities and relations as well as the relationship
between relations and logical rules to jointly train
entity, relation and rule embeddings in a continuous
space, as demonstrated in Figure 1. 2) Soft rule
reasoning. With the rule and relation embeddings,
we calculate a confidence score for each rule which
is used as the weight of activated rules to output
a grounding rule score. 3) Finally, we integrate
the KGE score calculated from the entity and rela-
tion embeddings trained in the first stage and the
grounding rule score obtained in the second stage
to reason unknown triplets.

3.1 Joint entity/relation/rule embedding

Given a triplet (h, r, t) ∈ K and a rule R ∈ L,
we use h, r, t,R ∈ Ck to represent their embed-
dings, respectively, where k is the dimension of
the complex space (following RotatE). Similar to
KGE, which encodes the plausibility of each triplet
with a scoring function, RulE additionally defines
a scoring function for logical rules. Based on the
two scoring functions, it jointly learns entity, re-
lation and rule embeddings in the same space by
maximizing the plausibility of existing triplets K
(zeroth-order logic) and logical rules L (first-order
logic). The following describes in detail how to
model the triplets and logical rules together.

Modeling the relationship between entities
and relations To model triplets, we take Ro-
tatE (Sun et al., 2019) due to its simplicity and
competitive performance. Its loss function with
negative sampling is defined as:

Lt(h, r, t) = − log σ(γt − d(h, r, t))−
∑

(h′,r,t′)∈N

1

|N| log σ(d(h, r, t)− γt),
(2)

where γt is a fixed triplet margin, d(h, r, t) is the
distance function defined in Equation (1), and N
is the set of negative samples constructed by re-
placing either the head entity or the tail entity with
a random entity using a self-adversarial negative
sampling approach. Note that RulE is not restricted
to particular KGE models. The RotatE can be re-
placed with other models, such as TransE (Bordes
et al., 2013) and ComplEx (Trouillon et al., 2016),
too.

Modeling the relationship between relations
and logical rules A universal first-order logical
rule is some rule that universally holds for all en-
tities. Therefore, we cannot relate such a rule to
specific entities. Instead, it is a higher-level con-
cept related only to the relations it is composed
of. Our modeling strategy is as follows. For a
logical rule R : r1 ∧ r2 ∧ . . . ∧ rl → rl+1, we ex-
pect that rl+1 ≈ (r1 ◦ r2 ◦ . . . ◦ rl) ◦R. Because
the modulus of each element in r is restricted to
1, the multiple rotations in the complex plane are
equivalent to the summation of the corresponding
angles. We define g(r) to return the angle vector
of relation r (taking the angle for each element of
r). Note that the definition of Hadamard product in
Equation 1 is equivalent to the term g(r) as defined
in Equation 3. More interpretations are provided

4318

e!, 𝑟!, 𝑒"
𝑒", 𝑟", 𝑒#
𝑒!, 𝑟$, 𝑒%
𝑒%, 𝑟%, 𝑒#
…

(𝑅!: 𝑟!∧ 𝑟" ⇒ 𝑟#)
(𝑅": 𝑟$ ∧ r% ∧ 𝑟&⇒ 𝑟')
(𝑅#: 𝑟' ∧ r(⇒ 𝑟#)

…

Triplets and logic rules

Initialized embeddings 𝑓triple 𝑒!, 𝑟! ≈ 𝑒"
𝑓triple 𝑒", 𝑟" ≈ 𝑒&
𝑓triple 𝑒!, 𝑟' ≈ 𝑒(

…

Triplet loss

𝑓rule 𝑟!, 𝑟", 𝑅! ≈ 𝑟#
𝑓rule 𝑟$, 𝑟%, 𝑟&, 𝑅" ≈ 𝑟'
𝑓rule 𝑟', 𝑟(, 𝑅# ≈ 𝑟#

…

Rule loss

Joint
Entity/Relation/Rule
Embedding

Jointly training

Optimized embeddings

Soft multi-hot encoding

𝑤! 𝑤#

KGE score

Final score

Soft Rule Reasoning

Grounding rule score

MLP𝑟$

𝑟%
𝑟&

𝑟!

Rule grounding

𝑟' 𝑟(

𝑟"

𝑟#
𝑒&𝑒!

…

𝑒)

𝑒!

𝑟!

𝑟*

𝑅!

𝑅+

…

…

…

(𝑒!, 𝑟&, ?)

𝑒)

𝑒!

𝑟!

𝑟*

𝑅!

𝑅+

…

…

…

Rule confidence

Figure 2: Architecture of RulE. It consists of three components. 1) We first model the relationship between entities
and relations as well as the relationship between relations and logical rules to learn joint entity, relation and rule
embedding in the same continuous space. With the learned rule embeddings (R) and relation embeddings (r),
RulE can output a weight (w) as the confidence score of each rule. 2) In the soft rule reasoning stage, we construct
a soft multi-hot encoding v based on rule confidences. Specifically, for triplet (e1, r3, e6), only R1 and R3 can
infer the fact with the grounding paths e1 → r1 → r2 → e6 and e1 → r7 → r8 → e6 (highlighted with purple and
blue). Thus, the value of v1 is w1, v3 is w3 and others (unactivated rules) are 0. Then the constructed soft multi-hot
encoding passes an MLP to output the grounding rule score. 3) Finally, RulE integrates the KGE score calculated
from the entity and relation embeddings trained in the first stage and the grounding rule score obtained in the second
stage to reason unknown triplets.

in Appendix 15. Then, the distance function is
formulated as follows:
dr(r1, . . . , rl+1,R) = ∥

l∑

i=1

g(ri)

+ g(R)− g(rl+1) ∥ .
(3)

We also employ negative sampling, the same as
when modeling triplets. At this time, it replaces a
relation (either in rule body or rule head) with a
random relation. The loss function for logical rules
is defined as:

Lr(r1, . . . , rl+1,R) = − log σ(γr − dr)

−
∑

(r′
1,...,r

′
l+1,R)∈M

1

|M| log σ(d
′
r − γr),

(4)

where γr is a fixed rule margin and M is the set of
negative rule samples.

Note that the above strategy is not the only pos-
sible way. For example, when considering the rela-
tion order of logical rules (e.g., sister’s mother is
different from mother’s sister), we design a variant
of RulE using position-aware sum, which shows
slightly improved performance on some datasets.
See Appendix 14. Nevertheless, we find that Equa-
tion (3) is simple and good enough, thus keep it as
the default choice.

Joint training Given a KG containing triplets
K and logical rules L, we jointly optimize the two

loss functions (2) and (4) to get the final entity,
relation and rule embeddings:

L =
∑

(h,r,t)∈K
Lt(h, r, t)

+ α
∑

(r1,...,rl,R)∈L
Lr(r1, . . . , rl+1,R),

(5)

where α is a hyperparameter to balance the two
losses. Note that the two losses act as each other’s
regularization terms. The rule loss (4) cannot
be optimized alone, otherwise there always exist
(r1, . . . , rl+1,R)s that can perfectly minimize the
loss, leading to meaningless embeddings. How-
ever, when jointly optimizing it with the triplet
loss, the embeddings will be regularized, and rules
more consistent with the triplets tend to have lower
losses (by being more easily optimized). On the
other hand, the rule loss also provides a regulariza-
tion to the triplet (KGE) loss by adding additional
constraints that relations should satisfy. This ad-
ditional information enhances the KGE training,
leading to entity/relation embeddings more consis-
tent with prior rules.

3.2 Soft rule reasoning
As shown in Figure 2, during soft rule reasoning,
we use the joint relation and rule embeddings to
compute the confidence score of each rule. Similar

4319

to how KGE gives a triplet score, the confidence
score of a logical rule Ri : ri1 ∧ ri2 ∧ ...∧ ril → ril+1

is calculated by:

wi = γr − d(ri1 , . . . , ril+1
,Ri), (6)

where d(ri1 , . . . , ril+1,Ri) is defined in Equa-
tion (3).

To predict a triplet, we perform rule grounding
by finding all paths connecting the head and tail
that can activate some rule. Often a triplet can have
several different rules activated, each with different
number of supports (activated paths). An example
is shown in Figure 2. The triplet (e1, r3, e6) can be
predicted by rule R1 and R3 with the grounding
paths e1 → r1 → r2 → e6 and e1 → r7 → r8 →
e6. In this case, a straightforward way is to use the
maximum (i.e., max(w1, w3)) or summation (i.e.,
w1+w3) of the confidences of those activated rules
as the grounding rule score of the triplet.

However, the above way will lose the
dependency among different rules. For ex-
ample, consider the following two rules:
parent_of(x, y) → mother_of(x, y) and
sister_of(x, z)∧aunt_of(z, y) → mother_of(x, y).
We know that they individually are both not reli-
able, because a parent can also be a father, and
an aunt’s sister can be another aunt. However,
when these two rules are activated together, one
can almost surely infer the “mother” relation. In
practice, those rules extracted automatically may
contain a lot of redundancy or noise. Compared
to the naive aggregation approach (such as
summation or maximum), we choose to use an
MLP to model the complex interdependencies
among rules.

Specifically, let us still consider the example
in Figure 2. We construct a soft multi-hot en-
coding v ∈ R|L| such that vi is the product of
the confidence of Ri and the number of ground-
ing paths activating Ri (# of supports). Formally,
vi = wi×|P(h, r, t,Ri)| for i ∈ {1, . . . ,L}, where
P(h, r, t,Ri) is the set of supports of the rule Ri

applying to the current triplet (h, r, t). For the can-
didate e6 in Figure 2, the value of v1 is w1 × 1
(grounding path e1 → r7 → r8 → e6 appears one
times), v3 is w3 × 1, and others (unactivated rules)
are 0.

With this soft multi-hot encoding v, we apply an

1Except for YAGO3-10, DistMult, ComplEx and TuckER
results are taken from Abboud et al. (2020).

MLP on v to calculate the grounding rule score:

sg(h, r, t) = MLP(v). (7)

Note that for a query (h, r, ?), we will iterate over
all candidates t, and the grounding paths for all
candidates can be efficiently computed by running
BFS. The complexity analysis is presented in Ap-
pendix 13. Once we have the grounding rule score
for all candidate answers, we further use a softmax
function to compute the probability of the true an-
swer. Finally, we train the MLP by maximizing the
log likelihood of the true answers in the training
triplets. Fine-grained implementation details are
included in Appendix 10.

3.3 Inference
Finally, during inference, we predict any miss-
ing fact with a weight-ed sum of the KGE score
(st = γt − d(h, r, t)) and the grounding rule score
(Equation (7)):

s(h, r, t) = st(h, r, t) + β · sg(h, r, t′), (8)

where β is a hyperparameter balancing the weights
of embedding-based and rule-based reasoning.

4 Experiments

In this section, we empirically evaluate RulE on
several benchmark KGs and show superior per-
formance to existing embedding-based, rule-based
methods and hybrid approaches that combine both.
Additionally, we also conduct extensive ablation
experiments to verify the effectiveness of each com-
ponent of RulE. Furthermore, we provide theoret-
ical analysis and case studies in Appendix 18 to
provide further insights and understanding.

4.1 Experiment settings
Datasets We choose six datasets for evalua-
tion: FB15k-237 (Toutanova and Chen, 2015),
WN18RR (Dettmers et al., 2018), YAGO3-
10 (Mahdisoltani et al., 2014), UMLS, Kinship, and
Family (Kok and Domingos, 2007). More details of
data split and logical rules used in the experiments
are in Appendix 16.

Baselines We compare with a comprehensive
suite of embedding and rule-based baselines. (1)

1For UMLS and Kinship, [*] means the numbers are taken
from Qu et al. (2020); [†] means we rerun the methods with the
same evaluation process. For Family, Neural-LP and DRUM
results are taken from Sadeghian et al. (2019) and others from
our rerun results.

4320

Table 1: Results of reasoning on FB15k-237, WN18RR and YAGO3-10. H@k is in %. [*] means the numbers are
taken from the original papers1. [†] means we rerun the methods with the same evaluation process. Best results are
in bold while the seconds are underlined.

FB15k-237 WN18RR YAGO3-10
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE† 0.329 23.0 36.9 52.8 0.222 1.2 39.9 53.0 0.501 40.6 - 67.4
DistMult∗ 0.241 15.5 26.3 41.9 0.43 39 44 49 0.34 24 38 54
ComplEx∗ 0.247 15.8 27.5 42.8 0.44 41 46 51 0.36 26 40 55

ConvE∗ 0.325 23.7 35.6 50.1 0.43 40 44 52 0.44 35 49 62
TuckER∗ 0.358 26.6 39.4 54.4 0.470 44.3 48.2 52.6 0.529 - - 67.0
RotatE† 0.337 23.9 37.4 53.2 0.476 43.1 49.2 56.2 0.497 40.3 55.2 67.5

PathRank∗ 0.087 7.4 9.2 11.2 0.189 17.1 20.0 22.5 - - - -
Neural-LP∗ 0.237 17.3 25.9 36.2 0.435 37.1 43.4 56.6 - - - -

DRUM∗ 0.343 25.5 37.8 51.6 0.486 42.5 51.3 58.6 - - - -
RNNLogic+ (w/o emb.)∗ 0.299 21.5 32.8 46.4 0.489 45.3 50.6 56.3 - - - -
RNNLogic+ (w/o emb.)† 0.330 24.3 36.3 50.2 0.502 46.1 52.2 58.5 0.484 41.0 53.8 61.5

NCRL 0.30 20.9 - 47.3 0.67 56.3 - 85.0 0.38 27.4 - 53.6

RNNLogic+ (with emb.)∗ 0.349 25.8 38.5 53.3 0.513 47.1 53.2 59.7 - - - -
RNNLogic+ (with emb.)† 0.356 26.2 39.3 54.6 0.516 46.9 53.7 60.4 0.499 41.4 55.1 65.8

Naive Combination † 0.350 26.2 38.7 52.8 0.512 46.9 53.1 59.7 0.484 41.0 53.7 61.4

RulE (emb with TransE.) 0.346 25.1 38.5 53.4 0.242 6.7 37.8 52.6 0.510 41.4 57.3 68.2
RulE (emb.) 0.338 24.1 37.6 53.3 0.484 44.3 49.9 56.3 0.530 44.2 58.2 69.0
RulE (rule.) 0.335 24.9 36.9 50.4 0.514 47.3 53.3 59.7 0.481 40.9 53.2 61.0

RulE (emb & rule.) 0.362 26.6 40.0 55.3 0.519 47.5 53.8 60.5 0.535 44.7 58.8 69.4

Embedding-based models: we include TransE (Bor-
des et al., 2013), DisMult (Yang et al., 2014), Com-
plEx (Trouillon et al., 2016), ConvE (Dettmers
et al., 2018), TuckER (Balažević et al., 2019) and
RotatE (Sun et al., 2019). (2) Rule-based models:
we compare with MLN (Richardson and Domin-
gos, 2006), PathRank (Lao and Cohen, 2010),
as well as popular rule learning methods Neural-
LP (Yang et al., 2017), DRUM (Sadeghian et al.,
2019), RNNLogic+ (w/o emb.) (Qu et al., 2020)
and NCRL (Cheng et al., 2023). (3) Joint KGE and
logical rules: we also compare with baselines that
ensemble embedding-based and rule-based method,
including RNNLogic+ (with emb.) (Qu et al., 2020)
and Naive Combination (Meilicke et al., 2021). See
more introduction to RNNLogic+ in Appendix 11.
(4) For our RulE, we present results of embedding-
based, rule-based and integrated reasoning. The
first variant only uses KGE scores obtained from
joint entity/relation/rule embedding to reason un-
known triplets, denoted by RulE (emb.). The sec-
ond variant only uses the grounding score calcu-
lated from soft rule reasoning, denoted by RulE
(rule.). The last one is the full model combining
both, denoted by RulE (emb & rule.). Further-
more, to sufficiently verify the effect of rule embed-
ding on different KGE models, we also experiment
with a variant of RulE (emb.) using TransE (Bor-
des et al., 2013) as the KGE model, denoted by
emb with TransE.. We conduct additional exper-
iments on more datasets to compare RulE with
the graph-based method NBFNet (Zhu et al., 2021)

(see Appendix 17.4). Considering the relation order
of logical rules, we also design another variant of
RulE using position-aware sum (see Appendix 14).

Evaluation protocols We follow the setting in
RNNLogic (Qu et al., 2020) and evaluate models by
Mean Reciprocal Rank (MRR) as well as Hits at N
(H@N). For above baselines, we carefully tune the
parameters and achieve better results than reported
in RNNLogic. To ensure a fair comparison, in the
KGE part of RulE, we use the same parameters as
those used in TransE and RotatE without further
tuning them and rerun RNNLogic+ with the same
logical rules as RulE (See Appendix 16.3).

Hyperparameter settings By default, we use
RotatE (Sun et al., 2019) as our KGE model. We
search for parameters according to validation set
performance. The ranges of the hyperparameters
in the grid search and final adopted values are pro-
vided in Appendix 16.4.

4.2 Results
The results are shown in Table Tables 1 and 2.
We observe that: (1) RulE outperforms both
embedding-based and rule-based methods on most
datasets, especially on UMLS and Kinship which
show significant improvements. This indicates that
combining KGE and rule-based methods with rule
embedding can take advantage of both and improve
the performance of KG reasoning. (2) Compared
with loosely composed methods (i.e., RNNLogic+
(with emb.) and Naive Combination), RulE (emb &
rule.) obtains better results on all datasets, demon-
strating that it is more beneficial for KG reasoning

4321

Table 2: Results of reasoning on UMLS, Kinship and Family. H@k is in %. [*] means the numbers are taken
from Qu et al. (2020); [†] means we rerun the methods with the same evaluation process2. Best results are in bold
while the seconds are underlined.

UMLS Kinship family
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE† 0.704 55.4 82.6 92.9 0.300 14.3 35.2 63.7 0.813 67.5 94.6 98.5
DistMult∗ 0.391 25.6 44.5 66.9 0.354 18.9 40.0 75.5 0.680 53.0 78.7 96.6
ComplEx∗ 0.411 27.3 46.8 70.0 0.418 24.2 49.9 81.2 0.930 88.3 97.6 99.1
TuckER∗ 0.732 62.5 81.2 90.9 0.603 46.2 69.8 86.3 - - - -
RotatE† 0.802 69.6 89.0 96.3 0.672 53.8 76.4 93.5 0.914 85.3 97.4 99.0

MLN∗ 0.688 58.7 75.5 86.9 0.351 18.9 40.8 70.7 - - - -
PathRank∗ 0.197 14.8 21.4 25.2 0.369 27.2 41.6 67.3 - - - -
Neural-LP∗ 0.483 33.2 56.3 77.5 0.302 16.7 33.9 59.6 0.91 86.0 96.0 99.0

DRUM∗ 0.548 35.8 69.9 85.4 0.334 18.3 37.8 67.5 0.950 91.0 98.0 99.0
RNNLogic+ (w/o emb.)† 0.800 70.4 87.8 94.3 0.655 50.4 76.0 94.7 0.974 96.3 98.5 98.6

NCRL 0.78 65.9 - 95.1 0.64 49.0 - 92.9 0.91 85.2 - 99.3

RNNLogic+ (with emb.)† 0.847 76.7 91.6 96.9 0.714 58.1 81.8 95.4 0.980 97.1 98.9 99.1
Naive Combination† 0.856 78.5 91.3 96.3 0.728 60.3 82.1 95.7 0.979 97.2 98.5 98.6

RulE (emb with TransE.) 0.748 61.9 85.2 93.3 0.347 20.7 39.8 62.3 0.820 68.9 94.6 98.6
RulE (emb.) 0.807 70.6 89.2 96.3 0.675 53.8 77.1 93.7 0.945 91.0 97.9 99.1
RulE (rule.) 0.827 74.9 88.9 95.5 0.673 52.8 77.5 95.0 0.975 96.7 98.5 98.6

RulE (emb & rule.) 0.867 79.7 92.5 97.2 0.736 61.5 82.4 95.7 0.984 97.8 99.0 99.1

Table 3: Results of reasoning on FB15k and WN18.
H@k is in %. [†] means we rerun the methods with the
same evaluation process.

FB15k WN18
MRR H@10 MRR H@10

TransE† 0.730 86.4 0.772 92.2
RulE (emb with TransE.) 0.734 86.9 0.775 95.0

ComplEx† 0.766 88.3 0.898 95.2
RulE (emb with ComplEx.) 0.788 89.6 0.928 94.4

to use rule embedding to bridge embedding-based
and rule-based approaches than naively combining
them. A detailed analysis is as follows.

Embedding logical rules helps KGE We first
compare RulE (emb.) with RotatE. Note that RulE
(emb.) and RulE (emb with TransE.) only add an
additional rule embedding loss to the KGE training
and still use KGE scores only for prediction. As
presented in Table 1 and 2, RulE (emb.) and RulE
(emb with TransE.) both achieve comparable or
higher performance than the corresponding KGE
models, especially for RulE (emb with TransE.),
which obtains 4.4% and 4.7% absolute MRR gain
than TransE on UMLS and Kinship. This indicates
that by jointly embedding entities/relations/rules
into a unified space, RulE can inject logical rule
information to enrich and regularize the embedding
space and improve the generalization of KGE. This
verifies the effectiveness of joint entity/relation/rule
embedding.

We also observe that the improvement of RulE
(emb with TransE.) is more significant than RulE
(emb.). The reason is probably that RotatE is ex-
pressive enough to capture many relational patterns
of KG, thus more complex logical rules may be
needed. In Table 3, we further use TransE and

ComplEx as the KGE model of RulE and test on
FB15k and WN18 datasets. They both obtain supe-
rior performance to the corresponding KGE models
(see Appendix 17.1).

Additionally, we find that RulE (emb with
TransE.) on UMLS and Kinship achieves more im-
provement than FB15k-237 and WN18RR. The
reason is probably that UMLS and Kinship con-
tain more rule-inferrable facts while WN18RR and
FB15k-237 consist of more general facts (like the
publication year of an album, which is hard to infer
via rules). This phenomenon is observed in previ-
ous works too (Qu et al., 2020). To verify it, we
perform a data analysis in Appendix 12.

Soft rule reasoning outperforms hard rule rea-
soning We compare RulE (rule.) with rule mining
methods. Note that we rerun RNNLogic+ with the
same rules as RulE for fair comparisons. From
Table 1 and 2, we can observe that RulE (rule.)
outperforms existing hard rule reasoning baselines
except for WN18RR on NCRL. This demonstrates
that soft multi-hot encoding over MLP is more pow-
erful than other ways of performing rule inference.

Comparison with other joint reasoning and
rule-enhanced KGE models We also compare
with RNNLogic+ (emb & rule.) and Naive Combi-
nation, which separately trains embedding-based
and rule-based methods and then only loosely en-
semble them. Although the final inference of RulE
(emb & rule.) is similar to the above methods
(weighted sum over KGE score and grounding rule
score), RulE uses rule embedding as a bridge to
strengthen KGE and rule reasoning process, by in-
jecting rule information to the KGE embedding
space and also extracting rule confidence for soft

4322

Table 4: Ablation study on soft rule reasoning part of RulE. H@k is in %.

FB15k-237 WN18RR UMLS Kinship Family
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

standard 0.335 50.4 0.514 59.7 0.827 95.5 0.673 95.0 0.975 98.6
sum (w/o MLP) 0.276 42.9 0.390 50.9 0.587 82.0 0.591 90.0 0.877 97.6
max (w/o MLP) 0.256 18.4 0.294 23.4 0.346 23.1 0.373 21.7 0.748 94.9
hard-encoding 0.330 50.2 0.496 45.4 0.791 94.6 0.643 94.0 0.973 96.2

rule reasoning. This demonstrates that the interac-
tion between embedding-based methods and rule-
based methods can further enhance each other and
the rule embedding serves as the medium. We fur-
ther study how the hyperparameter β balances both
of them. See more details in Appendix 17.2.

4.3 Ablation study
This section analyzes whether individual com-
ponents of the RulE design are useful via abla-
tion experiments. As the usefulness of joint en-
tity/relation/rule embedding has been verified ex-
tensively by previous experiments, here we focus
on validating the soft rule reasoning part. Specifi-
cally, we compare the following RulE versions: (1)
standard, which is the standard RulE (rule.) de-
scribed in Section 3.2; (2) hard-encoding, which
only uses hard 1/0 to select activated rules instead
of the rule confidence obtained from joint rela-
tion/rule embeddings. This is to verify that the con-
fidence scores of logical rules, which are learned
through jointly embedding KG and logical rules,
help rule-based reasoning; (3) sum (w/o MLP) and
max (w/o MLP), which replace the MLP layer with
sum and max respectively over the weights of all
activated rules as the grounding rule score. This
is to demonstrate the importance of capturing the
complex interdependencies among logical rules.

Ablation Results As presented in Table 4,
standard achieves better performance than hard-
encoding, which indicates that using soft multi-hot
encoding to perform logical rule inference in a soft
way is beneficial to the rule reasoning process. Be-
sides, the performances of sum (w/o MLP) and max
(w/o MLP) versions degrade sharply compared to
standard, showing that it is important to use an
MLP to capture the complex interdependencies
among rules.

5 Related work
Embedding-based methods Embedding-based
methods aim to learn embeddings for entities
and relations and estimate the plausibility of un-
observed triplets based on these learned embed-
dings (Bordes et al., 2013; Yang et al., 2014; Trouil-
lon et al., 2016; Sun et al., 2019; Balažević et al.,

2019; Vashishth et al., 2019; Zhang et al., 2020a;
Abboud et al., 2020; Ge et al., 2023).

Rule-based methods Learning logical rules
for knowledge graph reasoning has also been ex-
tensively studied, including Inductive Logic Pro-
gramming (Quinlan, 1990), Markov Logic Net-
works (Kok and Domingos, 2005; Beltagy and
Mooney, 2014), AMIE (Galárraga et al., 2013),
AMIE+ (Galárraga et al., 2015), Neural-LP (Yang
et al., 2017), DRUM (Sadeghian et al., 2019), RNN-
Logic (Qu et al., 2020) and other methods (Cheng
et al., 2023; Nandi et al., 2023). They almost solely
use the learned logical rules for reasoning, which
suffer from brittleness and are hardly competitive
with embedding-based reasoning in most bench-
marks.

Joint KGE and logical rules Some work tries
to incorporate logical rules into KGE models. They
usually use logical rules to infer new facts as ad-
ditional training data for KGE (Guo et al., 2016,
2018) or inject rules via regularization terms dur-
ing training (Wang et al., 2015; Ding et al., 2018).
However, they do not really perform reasoning with
logical rules.

GNN-based methods Recently, there are some
KG reasoning works based on graph neural net-
works (Schlichtkrull et al., 2018; Teru et al., 2020;
Zhang et al., 2020b; Zhu et al., 2021; Li et al.,
2023). They exploit neighboring information via
message-passing mechanisms. More details of re-
lated work and comparison with RNNLogic (Qu
et al., 2020) are provided in Appendix 8.

6 Conclusion
We propose a simple and principled framework
RulE to jointly represent entities, relations and log-
ical rules in a unified embedding space. The incor-
poration of rule embedding allows injecting rule
information to enrich and regularize the embedding
space, thus improving the generalization of KGE.
Besides, we also demonstrate that with the learned
rule embedding, RulE can perform rule inference in
a soft way and empirically verify that using an MLP
can effectively model the complex interdependen-
cies among rules, thus enhancing rule inference.

4323

7 Limitations

A limitation of RulE is that, similar to prior works
which apply logical rules for inference, RulE’s soft
rule reasoning part needs to enumerate all paths be-
tween entity pairs, making it difficult to scale. An-
other limitation is that currently we only consider
chain rules provided as prior knowledge. In the fu-
ture, we plan to explore more efficient and effective
rule reasoning algorithms and consider more com-
plex rules. Besides, currently, we focus on chain
rules provided as prior knowledge, i.e., Horn clause,
a disjunctive clause (a disjunction of literals) with
at most one positive. We acknowledge the impor-
tance of addressing negation operators, for exam-
ple, ∀x, y, z : ¬r1(x, y) ∧ r2(y, z) → r3(x, z). In
future explorations, we may consider leveraging
betaE (Ren and Leskovec, 2020), a probabilistic
embedding framework to handle negation operator
in complex multi-hop logical reasoning.

Acknowledgements

This work is partially supported by the National
Key R&D Program of China (2022ZD0160300),
the National Key R&D Program of China
(2021ZD0114702), the National Natural Science
Foundation of China (62276003).

References
Ralph Abboud, Ismail Ceylan, Thomas Lukasiewicz,

and Tommaso Salvatori. 2020. Boxe: A box em-
bedding model for knowledge base completion. Ad-
vances in Neural Information Processing Systems,
33:9649–9661.

Ivana Balažević, Carl Allen, and Timothy M
Hospedales. 2019. Tucker: Tensor factorization
for knowledge graph completion. arXiv preprint
arXiv:1901.09590.

Islam Beltagy and Raymond J Mooney. 2014. Effi-
cient markov logic inference for natural language
semantics. In Workshops at the Twenty-Eighth AAAI
Conference on Artificial Intelligence.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for structuring
human knowledge. In SIGMOD Conference.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014. Question answering with subgraph embed-
dings. arXiv preprint arXiv:1406.3676.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.

2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Matthias Brocheler, Lilyana Mihalkova, and Lise
Getoor. 2012. Probabilistic similarity logic. arXiv
preprint arXiv:1203.3469.

Liwei Cai and William Yang Wang. 2017. Kbgan: Ad-
versarial learning for knowledge graph embeddings.
arXiv preprint arXiv:1711.04071.

Kewei Cheng, Nesreen K Ahmed, and Yizhou
Sun. 2023. Neural compositional rule learning
for knowledge graph reasoning. arXiv preprint
arXiv:2303.03581.

William W Cohen, Fan Yang, and Kathryn Rivard
Mazaitis. 2017. Tensorlog: Deep learning meets
probabilistic dbs. arXiv preprint arXiv:1707.05390.

Gabriele Corso, Luca Cavalleri, Dominique Beaini,
Pietro Liò, and Petar Veličković. 2020. Principal
neighbourhood aggregation for graph nets. Advances
in Neural Information Processing Systems, 33:13260–
13271.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In Proceedings of the AAAI
conference on artificial intelligence, volume 32.

Boyang Ding, Quan Wang, Bin Wang, and Li Guo. 2018.
Improving knowledge graph embedding using simple
constraints. arXiv preprint arXiv:1805.02408.

Luis Galárraga, Christina Teflioudi, Katja Hose, and
Fabian M Suchanek. 2015. Fast rule mining in on-
tological knowledge bases with amie++. The VLDB
Journal, 24(6):707–730.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose,
and Fabian Suchanek. 2013. Amie: association rule
mining under incomplete evidence in ontological
knowledge bases. In Proceedings of the 22nd in-
ternational conference on World Wide Web, pages
413–422.

Xiou Ge, Yun Cheng Wang, Bin Wang, and C-C Jay
Kuo. 2023. Compounding geometric operations for
knowledge graph completion. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6947–6965.

Shu Guo, Lin Li, Zhen Hui, Lingshuai Meng, Bingnan
Ma, Wei Liu, Lihong Wang, Haibin Zhai, and Hong
Zhang. 2020. Knowledge graph embedding preserv-
ing soft logical regularity. In Proceedings of the
29th ACM International Conference on Information
& Knowledge Management, pages 425–434.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and
Li Guo. 2016. Jointly embedding knowledge graphs
and logical rules. In Proceedings of the 2016 con-
ference on empirical methods in natural language
processing, pages 192–202.

4324

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and
Li Guo. 2018. Knowledge graph embedding with
iterative guidance from soft rules. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 32.

Pascal Hitzler. 2022. Neuro-symbolic artificial intelli-
gence: The state of the art.

Patrick Hohenecker and Thomas Lukasiewicz. 2020.
Ontology reasoning with deep neural networks. Jour-
nal of Artificial Intelligence Research, 68:503–540.

Stanley Kok and Pedro Domingos. 2005. Learning the
structure of markov logic networks. In Proceedings
of the 22nd international conference on Machine
learning, pages 441–448.

Stanley Kok and Pedro Domingos. 2007. Statistical
predicate invention. In Proceedings of the 24th in-
ternational conference on Machine learning, pages
433–440.

Ni Lao and William W Cohen. 2010. Relational re-
trieval using a combination of path-constrained ran-
dom walks. Machine learning, 81(1):53–67.

Juanhui Li, Harry Shomer, Jiayuan Ding, Yiqi Wang,
Yao Ma, Neil Shah, Jiliang Tang, and Dawei Yin.
2023. Are message passing neural networks really
helpful for knowledge graph completion? In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 10696–10711.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian
Suchanek. 2014. Yago3: A knowledge base from
multilingual wikipedias. In 7th biennial conference
on innovative data systems research. CIDR Confer-
ence.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2018.
Deepproblog: Neural probabilistic logic program-
ming. Advances in Neural Information Processing
Systems, 31.

Christian Meilicke, Patrick Betz, and Heiner Stucken-
schmidt. 2021. Why a naive way to combine sym-
bolic and latent knowledge base completion works
surprisingly well. In 3rd Conference on Automated
Knowledge Base Construction.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Ananjan Nandi, Navdeep Kaur, Parag Singla, et al.
2023. Simple augmentations of logical rules for
neuro-symbolic knowledge graph completion. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 256–269.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh
Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. 2017. Neuro-symbolic program synthesis. In
ICLR.

Meng Qu, Junkun Chen, Louis-Pascal Xhonneux,
Yoshua Bengio, and Jian Tang. 2020. Rnnlogic:
Learning logic rules for reasoning on knowledge
graphs. arXiv preprint arXiv:2010.04029.

J. Ross Quinlan. 1990. Learning logical definitions
from relations. Machine learning, 5(3):239–266.

Hongyu Ren and Jure Leskovec. 2020. Beta embed-
dings for multi-hop logical reasoning in knowledge
graphs. Advances in Neural Information Processing
Systems, 33:19716–19726.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine learning,
62(1):107–136.

Ali Sadeghian, Mohammadreza Armandpour, Patrick
Ding, and Daisy Zhe Wang. 2019. Drum: End-to-
end differentiable rule mining on knowledge graphs.
Advances in Neural Information Processing Systems,
32.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593–607. Springer.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference
on World Wide Web, pages 697–706.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding by
relational rotation in complex space. arXiv preprint
arXiv:1902.10197.

Komal Teru, Etienne Denis, and Will Hamilton. 2020.
Inductive relation prediction by subgraph reasoning.
In International Conference on Machine Learning,
pages 9448–9457. PMLR.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd workshop on
continuous vector space models and their composi-
tionality, pages 57–66.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional conference on machine learning, pages 2071–
2080. PMLR.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and
Partha Talukdar. 2019. Composition-based multi-
relational graph convolutional networks. arXiv
preprint arXiv:1911.03082.

Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao
Zhao, Wenjie Li, Xing Xie, and Minyi Guo. 2018.
Ripplenet: Propagating user preferences on the
knowledge graph for recommender systems. In Pro-
ceedings of the 27th ACM international conference

4325

on information and knowledge management, pages
417–426.

Quan Wang, Bin Wang, and Li Guo. 2015. Knowl-
edge base completion using embeddings and rules.
In Twenty-fourth international joint conference on
artificial intelligence.

Chenyan Xiong, Russell Power, and Jamie Callan. 2017.
Explicit semantic ranking for academic search via
knowledge graph embedding. In Proceedings of the
26th international conference on world wide web,
pages 1271–1279.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and
Guy Broeck. 2018. A semantic loss function for deep
learning with symbolic knowledge. In International
conference on machine learning.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2014. Embedding entities and relations
for learning and inference in knowledge bases. arXiv
preprint arXiv:1412.6575.

Fan Yang, Zhilin Yang, and William W Cohen. 2017.
Differentiable learning of logical rules for knowledge
base reasoning. Advances in neural information pro-
cessing systems, 30.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba,
Pushmeet Kohli, and Josh Tenenbaum. 2018. Neural-
symbolic vqa: Disentangling reasoning from vision
and language understanding. Advances in neural
information processing systems, 31.

Yongqi Zhang, Quanming Yao, and Lei Chen. 2020a. In-
terstellar: searching recurrent architecture for knowl-
edge graph embedding. Advances in Neural Informa-
tion Processing Systems, 33:10030–10040.

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Rama-
murthy, Bo Li, Yuan Qi, and Le Song. 2020b. Effi-
cient probabilistic logic reasoning with graph neural
networks. arXiv preprint arXiv:2001.11850.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhon-
neux, and Jian Tang. 2021. Neural bellman-ford net-
works: A general graph neural network framework
for link prediction. Advances in Neural Information
Processing Systems, 34:29476–29490.

4326

8 Related work

Embedding-based methods Embedding-based
methods aim to learn embeddings for entities
and relations and estimate the plausibility of un-
observed triplets based on these learned embed-
dings (Bordes et al., 2013; Yang et al., 2014; Trouil-
lon et al., 2016; Cai and Wang, 2017; Sun et al.,
2019; Balažević et al., 2019; Vashishth et al., 2019;
Zhang et al., 2020a; Abboud et al., 2020; Ge et al.,
2023). Much prior work in this regard views a
relation as some operation or mapping function
between entities. Most notably, TransE (Bordes
et al., 2013) defines a relation as a translation op-
eration between some head entity and tail entity.
It is effective in modelling inverse and compo-
sition rules. DistMult (Yang et al., 2014) uses
a bilinear mapping function to model symmet-
ric patterns. RotatE (Sun et al., 2019) uses rota-
tion operation in complex space to capture sym-
metry/antisymmetry, inversion and composition
rules. CompoundE (Ge et al., 2023) leverages trans-
lation, rotation, and scaling operations to create
relation-dependent compound operations on head
and/or tail entities. BoxE (Abboud et al., 2020)
models relations as boxes and entities as points to
capture symmetry/anti-symmetry, inversion, hier-
archy and intersection patterns but not composi-
tion rules. These approaches learn representations
solely based on triplets (zeroth-order logic) con-
tained in the given KG. In contrast, our approach
is able to embody more complex first-order logical
rules in the embedding space by jointly model-
ing entities, relations and logical rules in a unified
framework.

Rule-based methods Learning logical rules for
knowledge graph reasoning has also been exten-
sively studied. As one of the early efforts, Quinlan
(1990) uses Inductive Logic Programming (ILP)
to derive logical rules (hypothesis) from all the
training samples in a KG. Markov Logic Networks
(MLNs) (Kok and Domingos, 2005; Brocheler
et al., 2012; Beltagy and Mooney, 2014) define
the joint distribution of given variables (observed
facts) and hidden variables (missing facts) such that
missing facts can be inferred in the probabilistic
graphical model. AMIE (Galárraga et al., 2013)
and AMIE+ (Galárraga et al., 2015) first enumerate
possible rules and then learn a scalar weight for
each rule to encode its quality. Neural-LP (Yang
et al., 2017) and DRUM (Sadeghian et al., 2019)
mine rules by simultaneously learning logic rules

and their weights based on TensorLog (Cohen et al.,
2017). RNNLogic (Qu et al., 2020) simultaneously
trains a rule generator and reasoning predictor to
generate high-quality logical rules. Nandi et al.
(2023) propose three augmentations aimed at en-
hancing the rule set’s coverage in RNNLogic-based
models. NCRL (Cheng et al., 2023) infers rule head
by recursively merging atomic compositions in rule
body. Except for RNNLogic, the above methods
solely use the learned logical rules for reasoning,
which suffer from brittleness and are hardly com-
petitive with embedding-based reasoning in most
benchmarks. Although RNNLogic considers the ef-
fect of KGE during inference, it pretrains KGE sep-
arately from logical rule learning without jointly
modeling KGE and logical rules in the same space.
Most existing works focus on mining rules from ob-
served triplets. In contrast, we focus on the setting
where rules are already given (either mined from
KG or provided as prior knowledge) and the task
is to leverage the rules for better inference. Thus,
in principle, our framework can be combined with
any rule mining model to improve their rule usage.

Joint KGE and logical rules Some recent work
tries to incorporate logical rules into KGE mod-
els to improve the generalization performance of
KGE reasoning. KALE (Guo et al., 2016) and
RUGE (Guo et al., 2018) use logical rules to in-
fer new facts as additional training data for KGE.
Several other works inject rules via regulariza-
tion terms during training, including Wang et al.
(2015) and Ding et al. (2018). These methods
leverage logical rules only to enhance KGE train-
ing and do not really perform reasoning with log-
ical rules. Although Meilicke et al. (2021) com-
bines symbolic and embedding-based methods, it
only loosely ensembles the rankings generated by
embedding-based and symbolic methods. In con-
trast, our method jointly learns entity/relation/rule
embeddings in a unified space, which is shown to
enhance KGE itself. With the learned rule embed-
ding, RulE can also perform logical rule inference
in a soft way, improving the rule-based reasoning
process. Moreover, the combination of both further
advance the performance.

GNN-based methods Recently, there are some
KG reasoning works based on graph neural net-
works (Schlichtkrull et al., 2018; Teru et al., 2020;
Zhang et al., 2020b; Zhu et al., 2021; Li et al.,
2023). They exploit neighboring information via
message-passing mechanisms, which are empiri-

4327

cally powerful and can be applied to the induc-
tive setting. However, they usually suffer from
high complexity. Furthermore, these methods can-
not leverage prior/domain knowledge presented as
logical rules, its interpretability is built on path-
explanation of the predictions.

9 Example of rule-based reasoning

The length of a rule is the number of atoms (rela-
tions) that exist in its rule body. One example of a
length-2 rule is:

born_in(x, y) ∧ city_of(y, z) → nationality(x, z),
(9)

of which born_in(·) ∧ city_of(·) is the rule body
and nationality(·) is the rule head. A grounding
of a rule is obtained by substituting all variables
x, y, z with specific entities. For example, if we
replace x, y, z with Bill Gates, Seattle, US respec-
tively, we get a grounding:

born_in(Bill Gates,Seattle) ∧ city_of(Seattle,US)

→ nationality(Bill Gates,US)
(10)

If all triplets in the body of a grounding rule
exist in the KG, we get a support of this rule.
Those rules that have nonzero support are called
activated rules. When inferring a query (h, r, ?),
rule-based reasoning enumerates relation paths be-
tween head h and each candidate tail, and uses
activated rules to infer the answer. For exam-
ple, if we want to infer nationality(Bill Gates, ?),
given the logical rule (9) as well as the
existing triplets born_in(Bill Gates,Seattle) and
city_of(Seattle,US), the answer US can be in-
ferred.

10 Fine-grained implementation details

This section introduces the fine-grained implemen-
tation details. Recall the soft reasoning process:
we use the joint relation and rule embeddings to
compute a scalar as the confidence score of each
rule, then construct a soft multi-hot encoding with
the confidence, and finally pass the MLP layer to
output the grounding rule score. In other words, we
obtain the grounding rule score by using a multi-
hot encoding vector to activate an MLP. However,
in practice, we can use a fine-grained way, i.e.,
use multiple multi-hot encoding vectors rather than
only one.

Specifically, recall that R, r ∈ Ck are the em-
beddings of logical rules and relations, respec-
tively. To prevent confusion, we use v[i] to de-
note the i-th elements of vector v. With the
optimized relation and rule embeddings, we can
compute the confidence vector of a logical rule
Ri : ri1 ∧ ri2 ∧ ... ∧ ril → ril+1

as:

ci =
γr
k

− (
l∑

j=1

rij +Ri − ril+1
)p, (11)

where p is a hyperparameter, usually the same as
the norm defined in Equation (3) , γr is the fixed
rule margin defined in Equation (4). Note that ci
is a k-dimensional vector, slightly different from
the definition in Section 3.2. Each element of ci
represents a way of encoding the confidence of rule
Ri. Given the confidence vector ci, we can further
construct k multi-hot encoding vectors. Each multi-
hot encoding vector activates the MLP to output
a grounding score. Further, the mean of all the
grounding scores is computed as the grounding
rule score sg of a triplet.

Let us consider the example (e1, r3, e6) in Fig-
ure 2. We construct k soft multi-hot encoding vec-
tors {vj ∈ R|L|, j = 1, . . . , k} such that vj [i] is
the product of of the confidence of Ri and the num-
ber of grounding paths activating Ri. Formally,
vj [i] = ci[j] × |P(h, r, t,Ri)| for i ∈ {1, . . . ,L},
where P(h, r, t,Ri) is the set of supports of the rule
Ri applying to the current triplet (h, r, t). For the
candidate e6 in Figure 2, the value of multi-hot en-
coding vector vj [1] is c1[j]× 1, vj [3] is c3[j]× 1,
and others are 0 (i.e., vj [k] = 0, k = 2, 4, . . . ,L).

With these soft multi-hot encoding vectors, we
apply an MLP to output the grounding rule score:

sg =
1

k

k∑

j=1

MLP(vj). (12)

Note that the MLP used by different soft multi-hot
encodings is the same. Once we have the grounding
rule score for all candidate answers, we further use
a softmax function to compute the probability of
the true answer. Finally, we optimize the MLP and
grounding-stage rule embedding by maximizing
the log likelihood of the true answers based on
these training triplets.

11 Introduction of RNNLogic+

RNNLogic (Qu et al., 2020) aims to learn logical
rules from knowledge graphs, which simultane-

4328

ously trains a rule generator as well as a reasoning
predictor. The former is used to generate rules
while the latter learns the confidence of generated
rules. Because RulE is designed to leverage the
rules for better inference, to compare with it, we
only focus on the reasoning predictor RNNLogic+,
which is a more powerful predictor than RNNLogic.
The details are described in this section.

Given a KG containing a set of triplets and logi-
cal rules, RNNlogic+ associates each logical rule
with a grounding-stage rule embedding R(g) (dif-
ferent from the joint rule embedding in RulE), for
a query (h, r, ?), it grounds logical rules into the
KG, finding different candidate answers. For each
candidate answer t′, RNNLogic+ aggregates all
the rule embeddings of those activated rules, each
weighted by the number of paths activating this
rule (# supports). Then an MLP is further used to
project the aggregated embedding to the grounding
rule score sr(h, r, t′):

sr = MLP
(
AGG({R(g)

i , |P(h,Ri, t′)|}Ri∈L)
)

(13)
where LN is the layer normalization operation,
AGG is the PNA aggregator (Corso et al., 2020),
L is the set of generated high-quality logical rules,
and P(h,Ri, t′) is the set of supports of the rule
Ri which starts from h and ends at t′. Once RNN-
Logic+ computes the score of each candidate an-
swer, it can use a softmax function to compute the
probability of the true answer. Finally, the predic-
tor can be optimized by maximizing the log likeli-
hood of the true answers based on training triplets.
In essence, when replacing the PNA aggregator
with sum aggregation, it is equivalent to using hard
multi-hot encoding to activate an MLP (i.e., only
using hard 1/0 to select activated rules). However,
RulE additionally employs the confidence scores
of rules as soft multi-hot encoding.

During inference, there are two variants of mod-
els:

• RNNLogic+ (w/o emb.): This variant only
uses the logical rules for knowledge graph rea-
soning. Specifically, we calculate the score
sr of each candidate answer defined in Equa-
tion (13).

• RNNLogic+ (with emb.): It uses RotatE (Sun
et al., 2019) to pretrain knowledge graph
embeddings models, which is different from
RulE in that RulE jointly models KGE and
logical rules in the same space to learn entity,

relation and logical rule embeddings. During
inference, it linearly combines the grounding
rule score and KGE score as the final predic-
tion score, i.e.,

s(h, r, t′) = sr(h, r, t′) + α ∗ KGE(h, r, t′),
(14)

where KGE(h, r, t′) is the KGE score calcu-
lated with entity and relation embeddings op-
timized by RotatE alone, and α is a positive
hyperparameter weighting the importance of
the knowledge graph embedding score.

12 Analysis of rule-inferrable indicator

This section analyzes the rule-inferrable of KGs.
Naturally, without considering the directions of
edges, any rule can be viewed as a cycle by includ-
ing both the relation path and the target relation
itself. To simplify the analysis, we assume that any
cycle can be a logical rule, regardless of concrete
relations and the correct semantic information. If a
relation appears in a rule, it must be an edge con-
sisting of the cycle; on the other hand, if an edge
can be a part of a cycle, it must be a participant
relation of the rule. Based on the above hypothe-
sis, we define the proportion of edges existing in
cycles to evaluate the rule-inferrable of KGs (i.e.,
the rule-inferrable indicator).

To verify our hypothesis, we conduct simula-
tion experiments with a Family Tree KG (Ho-
henecker and Lukasiewicz, 2020), an artificially
closed-world dataset generated with logical rules.
By randomly selecting N% of triplets to replace
with randomly sampled triplets, we evaluate their
rule-inferrable indicators. As shown in Table 5, as
the randomness increases, the proportion of edges
appearing in cycles decreases and are all lower than
in the standard Family Tree. These results indicate
that the proportion of edges appearing in the rings
can empirically measure the rule-inferrable of KGs.

Next, we analyze the rule-inferrable on all
datasets, i.e., FB15k-237, WN18RR, YAGO3-10,
UMLS, Kinship and Family. The results are in-
cluded in Table 6. We observe that: UMLS, Kin-
ship and Family reach 100% of 3-membered cycles
while YAGO3-10 and WN18RR have a relatively
low proportion, especially WN18RR, which is only
about 17%. Therefore, we can empirically con-
clude that compared to those KGs containing more
general facts (FB15k-237, WN18RR and YAGO3-
10), UMLS, Kinship and Family are more rule-
inferrable datasets. Furthermore, the performance

4329

Table 5: Simulation results of family-tree datasets.

2-membered cycle 3-membered cycle ≤ 3-membered cycle

standard Family Tree 0.941 0.996 1.000
random5% 0.850 0.958 0.960

random10% 0.766 0.931 0.934
random15% 0.684 0.912 0.915
random20% 0.611 0.898 0.901
random25% 0.542 0.895 0.898
random30% 0.479 0.887 0.891

improvement of the RulE (emb with TransE.) is
more significant, which is consistent with the ob-
servation in our experiments (See Table 2).

13 Complexity analysis

This section analyzes the complexity of RulE. We
use d to denote hidden dimension and E is the set
of relations (edges).

During training, for the joint entity/relation/rule
embedding stage, the amortized time of a single
triplet or a logical rule is O(d) due to linear oper-
ations. For the soft reasoning part, considering a
query (h, r, ?), RulE performs a BFS search from
h to find all candidates and compute their ground-
ing rule scores. We group triplets with the same
h, r together, where each group contains |V|. For
each group, we only need to use an MLP to get
predictions, which takes O(|E|d2) time. Thus, the
amortized time for a single triplet is O(|E|d

2

|V|).
During inference, we compute the final score

with a weighted sum of the KGE score and the
grounding rule score. Thus each triplets takes
O(|E|d

2

|V| + d) time.
The inference time of RulE and RNNLogic+ on

different datasets is presented in Table 7. We can
see that RulE has similar inference time to RNN-
Logic+.

14 A variant of RulE with position-aware
sum

In this section, considering the relation order of
rules, we design a variant of RulE using position-
aware sum and evaluate the variant based on TransE
and RotatE.

It is obvious that 2D rotations and translations
are commutative—they cannot model the non-
commutative property of composition rules, which
is crucial for correctly expressing the relation order
of a rule. Take sister_of(x, y)∧mother_of(y, z) →
aunt_of(x, z) as an example. If we permute the
relations in rule body, e.g., change (sister_of ∧
mother_of) to (mother_of ∧ sister_of), the rule is

no longer correct. However, the above model will
output the same score since (r1 ◦ r2) = (r2 ◦ r1)
and (r1 + r2) = (r2 + r1).

Therefore, to respect the relation order of log-
ical rules, we use position-aware sum to model
the relationship between logical rules and relations.
Recall that r ∈ Ck is the embedding of relation
and g(r) is to return the angle vector of relation
r. For each logical rule R : r1 ∧ r2 ∧ . . . ∧ rl →
rl+1, we associate it with a rule embedding R =
[R1,R2, ...,Rl],R ∈ Ckl, where l is the length of
the logical rule and [·, ·] is concatenation operation.
Based on the above definitions, we can formulate
the distance function as:

d(r1, r2, . . . , rl+1,R) =∥
l∑

j=1

(
g(rk) · g(Rk)

)

− g(rl+1) ∥,
(15)

where · is an element-wise product. Then we use
Equation (4) to further define the loss function of
logical rules.

Experimental results with TransE and RotatE
are displayed in Table 8. RulE (emb_o.) is the
new version that uses position-aware sum. From
the results, we can see that RulE (emb_o.) almost
obtains superior performance to the corresponding
KGE models, again empirically demonstrating that
jointly representing entity, relation and rule em-
beddings can improve the generalization of KGE.
Moreover, the performance of RulE (emb_o.) is
comparable with RulE (emb.) in FB15k-237 and
WN18RR. It also increases a lot in UMLS and Kin-
ship, especially Kinship, which outperforms RulE
(emb with TransE.) with a 2.9% improvement in
MRR. The reason is probably that relation order
plays an important role in modeling logical rules
for rule-inferrable datasets (e.g., UMLS and Kin-
ship).

4330

Table 6: The cycle proportion of edges on all datasets.

2-membered cycle 3-membered cycle ≤ 3-membered cycle

FB15k-237 0.344 0.856 0.877
WN18RR 0.389 0.177 0.452

YAGO3-10 0.569 0.179 0.698
UMLS 0.676 1.00 1.00
Kinship 0.998 1.00 1.00
Family 0.997 0.954 1.00

Table 7: Inference time (in minutes) of RulE and RNNLogic+ on all datasets.

Inference time FB15k-237 WN18RR YAGO3-10 UMLS Kinship Family

RulE 3.70 3.10 4.50 0.50 0.75 0.60
RNNLogic+ 4.10 3.25 4.88 0.70 0.90 1.13

15 Different representations of
entity-relation loss and relation-rule
loss

The entity-relation loss is defined in terms of the
Hadamard product, while the relation-rule loss is
defined in terms of g(r). Essentially, the two rep-
resentations are equivalent. We utilize distinct rep-
resentations for the sake of convenience and to
maintain consistency with the model’s implementa-
tion. Following the RotatE (Sun et al., 2019) paper,
the entity-relation loss (i.e., t ≈ h ◦ r) is defined in
terms of the Hadamard product, which is equivalent
to rotating the entity-vector with a relation-angle
in 2D complex space. For relation-rule loss, if a
logical rule R : r1 ∧ r2 ∧ ... ∧ rl → rl+1 holds,
we expect that rl+1 ≈ (r1 ◦ r2 ◦ ... ◦ rl) ◦ R . As
RotatE restricts the modulus of each r’s dimension
to be 1, the multiple rotations in the complex plane
are equivalent to the summation of the correspond-
ing angles (with the modulus unchanged), making
it convenient to use the summation of angles in
implementation. Therefore, we do not maintain
modulus for r and R (since they are all 1) in our
implementation, but only maintain their angular
vectors, denoted by g(r) and g(R). To keep consis-
tency with our implementation, it is beneficial to
define the function g(r) as the angle vector of rela-
tion r and directly formulate the distance function
in terms of angle vectors.

16 Experiment setup

16.1 Data statistics

The detailed statistics of six datasets for evaluation
are provided in Table 9. FB15k-237 (Toutanova
and Chen, 2015), WN18RR (Dettmers et al.,

2018) and YAGO3-10 are subsets of three large-
scale knowledge graphs, FreeBase (Bollacker
et al., 2008) and WordNet (Miller, 1995) and
YAGO3 (Mahdisoltani et al., 2014). UMLS,
Kinship and Family (Kok and Domingos, 2007)
are three benchmark datasets for statistical rela-
tional learning. For FB15k-237, WN18RR and
YAGO3-10, we use the standard split. For Kinship
and UMLS, we follow the data split from RNN-
Logic (Qu et al., 2020) (i.e., split the dataset into
train/validation/test with a ratio 3 : 2 : 5) and
report the results of some baselines taken from
RNNLogic. For Family, we follow the split used
by DRUM (Sadeghian et al., 2019). To ensure a
fair comparison, we use RNNLogic to mine logical
rules and rerun the reasoning predictor of RNN-
Logic+ with the same logical rules. Here, we con-
sider chain rules, covering common logical rules
in KG such as symmetry, composition, hierarchy
rules, etc. Because inverse relations are required
to apply rules, we preprocess the KGs to add in-
verse links. More introduction is included in Ap-
pendix 16.2.

16.2 Data process

Most rules mined by rule mining systems are not
chain rules. They usually need to be transformed
into chain rules by inversing some relations. Con-
sidering r1(x, y) ∧ r2(x, z) → r3(y, z) as an ex-
ample, with replacing r1(x, y) with r−1

1 (y, x), the
rule can be converted into chain rule r1(y, x)−1 ∧
r2(x, z) → r3(y, z). Based on the above, for data
processing, we need to add a inverse version triplet
(t, r−1, h) for each triplet (h, r, t), representing the
inverse relationship r−1 between entity t and entity
h.

4331

Table 8: Results of reasoning on FB15k-237, WN18RR, UMLS and Kinship. H@k is in %.

FB15k-237 WN18RR UMLS Kinship
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.329 23.0 36.9 52.8 0.222 1.2 39.9 53.0 0.704 55.4 82.6 92.9 0.300 14.3 35.2 63.7
RulE (emb with TransE.) 0.346 25.1 38.5 53.4 0.242 6.7 37.8 52.6 0.748 61.8 85.1 93.4 0.347 20.7 39.8 62.3

RulE (emb_o with TransE.) 0.336 24.2 37.2 52.2 0.220 3.3 37.2 50.9 0.765 66.9 82.9 92.4 0.376 22.7 42.4 70.0

RotatE 0.337 23.9 37.4 53.2 0.476 43.1 49.2 56.2 0.802 69.6 89.0 96.3 0.672 53.8 76.4 93.5
RulE (emb with RotatE.) 0.337 24.0 37.5 52.9 0.484 44.3 49.9 56.3 0.807 70.6 89.2 96.3 0.675 53.8 77.1 93.7

RulE (emb_o with RotatE.) 0.338 24.1 37.6 53.3 0.484 44.1 50.0 56.7 0.809 71.6 88.3 96.2 0.676 53.8 77.2 93.9

Table 9: Statistics of six datasets.

Dataset #Entities #Relations #Train #Validation #Test #Rules # length of rules

FB15k-237 14,541 237 272,115 17,535 20,466 131,883 ≤3
WN18RR 40,943 11 86,835 3,034 3,134 7,386 ≤5

YAGO3-10 123,182 37 1,079,040 5,000 5,000 7,351 ≤2
UMLS 135 46 1,959 1,306 3,264 18,400 ≤3
Kinship 104 25 3,206 2,137 5,343 10,000 ≤3
Family 3007 12 23,483 2,038 2,835 2,400 ≤3

(a) FB15k-237 (b) WN18RR

Figure 3: (a) and (b) show the MRR results of RulE
with varying β on FB15k-237 and WN18RR.

16.3 Evaluation protocol

During evaluation, for each test triplet (h, r, t), we
build two queries (h, r, ?) and (t, r−1, ?) with an-
swer t and h. For each query, we compute the
KGE score and grounding rule score (Equation 7)
for each candidate entity. As KGE scores and rule
scores are scattered over different value ranges, we
need to normalize the score before we compute the
aggregated score. We map the grounding rule score
to [min,max] such that min and max are the min-
imum and maximum of KGE scores, i.e., map to
the range of KGE scores. Then RulE weighted
sums over both scores (i.e., β∗sg+(1−β)∗stnorm).
Once we have the final score for all candidate an-
swers, consider the situation that many entities
might be assigned the same score. Following RNN-
Logic (Qu et al., 2020), we first random shuffles
of those entities which receive the same score and
then compute the expectation of evaluation metric
over them.

16.4 Hyperparameter optimization

We search for parameters according to validation
set performance. For above baselines, we carefully
tune the parameters and achieve better results than
reported in RNNLogic (Qu et al., 2020). To ensure
a fair comparison, in the KGE part of RulE, we use
the same parameters as those used in TransE and
RotatE without further tuning them. When com-
paring RulE (rule.) with RNNLogic+ (w/o emb.),
we use the same logical rules mined from RNN-
Logic (Qu et al., 2020). Note that the reported
results for TransE and RotatE are indeed based on
their best parameter settings, where we carefully
tuned their parameters such that our reported re-
sults for TransE and RotatE are even higher than
those reported in RNNLogic (Qu et al., 2020).
However, in the KGE part of RulE, we use the
same parameters as those used in TransE and Ro-
tatE without further tuning them. So the truth is,
we did not adopt TransE/RotatE settings tuned on
RulE for TransE/RotatE, but on the contrary, adopt
TransE/RotatE settings tuned on themselves for
RulE. This should bring disadvantages to RulE, yet
we still observe improved performance.

The hyperparameters are tuned by the grid
search, The range is set as follows: embedding
dimension k ∈ {500, 1000, 2000}, batch size
of triplets and rules b ∈ {256, 512, 1024}, the
weight balancing two losses (Lt and Lr) α ∈
{0.5, 1, 2, 3, 4, 5}, triplet margin and rule margin
γt, γr ∈ [0 : 30 : 1] and the weight balanc-
ing embedding-based and rule-based reasoning
β ∈ [0 : 0.05 : 1]. The optimal parameter con-

4332

Table 10: Hyperparameter configurations of RulE on different datasets.

Hyperparameter FB15k-237 WN18RR YAGO3-10 UMLS Kinship Family

Joint
embedding

k 1000 500 500 2000 2000 2000
bt 1024 512 1024 256 256 256
br 128 256 256 256 256 256
γt 9 6 24 6 6 6
γr 9 2 24 8 5 1
lr 0.00005 0.00005 0.005 0.0001 0.0001 0.0001
adv 1.0 0.5 1.0 0.25 0.25 1.0
λ 0 0.1 0 0 0.1 1.0
α 3 0.5 10 1 3.0 1.0

Soft rule
reasoning

lr 0.005 0.005 0.01 0.0001 0.0005 0.0001
gb 32 32 16 16 32 32
β 0.50 0.60 0.10 0.20 0.35 0.35

Table 11: Comparison NBFNet with RulE.

MRR FB15k-237 WN18RR UMLS Kinship family

NBFNet 0.415 0.551 0.922 0.635 0.990
RulE 0.362 0.519 0.867 0.736 0.984

figurations for different datasets for RulE (emb &
rule.) can be found in Table 10, including embed-
ding dimension k, batch size of triplets bt, batch
size of rules br, fix margin of triplets γt, fix margin
of triplets γr, learning rate lr, self-adversarial sam-
pling temperature adv, regularization coefficient
λ, the weight balancing the importance of rules in
joint loss function (Equation 5) α, batch size in
soft rule reasoning gb and the weight of inference
process (Equation 8) β. Note that we use RotatE
as the KGE model.

17 Experiment details

17.1 Embedding logical rules helps KGE

This section discusses the effectiveness of rule em-
bedding on KGE. As shown in Table 12, the two
variants using TransE and ComplEx as KGE mod-
els are denoted by RulE (emb with TransE.) and
RulE (emb with ComplEx.), respectively. They both
obtain superior performance to the corresponding
KGE models.

We also further compare with other rule-enhance
KGE models. In the experiment setup, RulE
(emb with TransE.) uses the same logical rules as
KALE (Guo et al., 2016); RulE (emb with Com-
plEx.) uses the same logical rules as ComplEx-
NNE-AER (Ding et al., 2018). The compari-
son shows that RulE (emb with TransE.) yields
more accurate results than KALE. For RulE (emb
with ComplEx.), although it does not outperform
ComplEx-NNE+AER (probably because it addi-
tional injects the regularization terms on entities

but RulE does not), compared to RUGE, RulE (emb
with ComplEx.) also obtains 2% improvement in
MRR on FB15k as well as comparable results on
WN18.

For a fair comparison, RulE (emb. TransE) ap-
plies the same logical rules as KALE; RulE (emb.
ComplEx) uses the same logical rules as ComplEx-
NNE-AER.

17.2 Sensitivity analysis of beta

To analyze how the hyperparameter β balances
the weights of embedding-based and rule-based
reasoning (defined in Equation (8)), we conduct ex-
periments for RulE under varying β. Figure 3a and
3b show the results on Fb15k-237 and WN18RR.

With the increase of β, the performance of RulE
first improves and then drops on both datasets. This
is because the information captured by logical rules
and knowledge graph embedding is complemen-
tary, thus combining embedding-based and rule-
based methods can enhance knowledge graph rea-
soning. Moreover, the trend of β for the perfor-
mance on the two datasets is different (FB15k-
237 tends to drop faster than WN18RR). We think
that in WN18RR, information captured by the rule-
based method may be more than embedding-based,
leading that the rule-based method is more predom-
inant in WN18RR (β = 0.6).

17.3 More results of ablation study

More results of ablation study are presented in Ta-
ble 13 and 14.

17.4 Comparison NBFNet with RulE

We follow the results of FB15k-237 and WN18RR
reported in NBFNet and conduct additional experi-
ments on UMLS, Kinship and family datasets. The
results (MRR) are shown in Table 11:

4333

Table 12: Results of reasoning on FB15k and WN18. H@k is in %. [*] means the numbers are taken from (Guo
et al., 2018) and (Ding et al., 2018). [†] means we rerun the methods with the same evaluation process.

FB15k WN18
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE† 0.730 64.6 79.2 86.4 0.772 70.5 80.8 92.2
KALE∗ 0.523 38.3 61.6 76.2 0.662 - 85.5 93.0

RulE (emb with TransE.) 0.734 65.0 79.9 86.9 0.775 67.2 86.2 95.0

ComplEx† 0.766 69.7 81.3 88.3 0.898 85.4 92.6 95.2
RUGE∗ 0.768 70.3 81.5 86.5 0.943 - - 94.4

ComplEx-NNE+AER∗ 0.803 76.1 83.1 87.4 0.943 94.0 94.5 94.8
RulE (emb with ComplEx.) 0.788 72.4 83.3 89.6 0.928 91.9 93.5 94.4

Table 13: Ablation results on FB15k-23 and WN18RR datasets. H@k is in %.

FB15k-237 WN18RR
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

standard 0.335 24.9 36.9 50.4 0.514 47.3 53.3 59.7
sum (w/o MLP) 0.276 19.8 30.2 42.9 0.390 32.7 41.9 50.9
max (w/o MLP) 0.256 18.4 27.7 39.7 0.294 23.4 31.5 41.4
hard-encoding 0.330 24.3 36.3 50.2 0.496 45.4 51.5 57.7

Table 14: Ablation results on UMLS, Kinship and Family datasets. H@k is in %.

UMLS Kinship Family
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

standard 0.827 74.9 88.9 95.5 0.673 52.8 77.5 95.0 0.975 96.7 98.5 98.6
sum (w/o MLP) 0.587 46.1 65.7 82.0 0.591 44.3 67.4 90.0 0.877 81.2 92.9 97.6
max (w/o MLP) 0.346 23.1 36.4 58.7 0.372 21.8 40.7 74.7 0.748 63.9 82.7 94.9
hard-encoding 0.791 69.5 86.7 94.6 0.643 49.1 74.5 94.0 0.973 96.2 98.4 98.6

NFBNet has better results than RulE on FB15k-
237, WN18RR and UMLS. However, RulE
achieves comparable or higher performance than
NBFNet on Kinship and family, especially on Kin-
ship, where RulE obtains about 10% absolute MRR
gain. This might be explained by that Kinship
and family contain more rule-inferrable facts while
WN18RR and FB15k-237 consist of more general
facts (a more detailed discussion is given in Ap-
pendix 12). This indicates that our method RulE is
more favorable for knowledge graphs where rules
play an important role, which is expected as it lever-
ages rules explicitly. Another advantage of RulE is
the ability to use prior/domain knowledge, while
GNN-based methods cannot leverage prior/domain
knowledge presented as logical rules. Moreover,
RulE is more interpretable on rule-level than GNN
methods, which is still valuable in certain domains.
Although NBFNet is also interpretable, RulE’s in-
terpretability is on rule level while that of NBFNet
is on path level. For example, when the KG sys-
tem desires high interpretability (such as those in
medical applications), each inferred knowledge
must be accompanied with which exact rules are
responsible for the inference, otherwise the doc-

tors are hard to trust it. In contrast, GNN meth-
ods (such as NBFNet) are only interpretable on
path-level instead of rule-level. Take "Alice is
Bob’s mother" as an example, GNN methods might
tell us the path "Alice is David’s mother" and
"David is Bob’s brother" is activated during the
inference, while our RulE can not only tell us that
this path is activated, but also the rule ∀x, y, z :
mother(x, y)∧ brother(y, z) → mother(x, z) is re-
sponsible behind the prediction.

In summary, although NBFNet demonstrates
state-of-the-art performance on many KGs, we
still believe a hybrid method that can explicitly
model and leverage logical rules is desired and
worth studying.

18 Theoretical analysis and case studies

As mentioned in the main body, the rule embed-
dings are not only used to regularize the embedding
learning. On the other hand, with the rule embed-
dings, RulE can compute the confidence score for
each logic rule, which enhances the original hard
rule-based reasoning process through soft rule con-
fidence. Additionally, combining the jointly trained
KGE and the confidence-enhanced rule-based rea-

4334

soning, we arrive at a final neural-symbolic model
achieving superior performance on many datasets.

Consider the rule r1(x, y)∧ r2(y, z) → r3(x, z)
as an example, where x, y, z represent specific
entities. Given three facts, we obtain y = x ◦ r1;
z = y ◦ r2; z = x ◦ r3. Combining these equations,
we deduce r1 ◦ r2 = r3. However, those mined
rules may not be confidently correct. Thus, we
assign a residual embedding as a rule embedding
to each logical rule, i.e., r1 ◦ r2 ◦ R = r3. By
adding additional constraints that relations should
satisfy, rule loss provides a regularization to the
triplet (KGE) loss, improving the generalization of
KGE. Meanwhile, with the relation and rule em-
beddings, RulE can further give a confidence score
to each rule, which reflects how consistent a rule is
with the existing facts and enables performing the
rule inference process in a soft way. This provides
an explanation of why RulE is better than naive
combination methods.

We further provide some case studies illustrating
the confidence scores of logical rules learned by
RulE on the family dataset.

(1) brother(x, y) ∧ brother(z, y) ∧ mother(t, z)
→ son(x, t) 0.932

(2) brother(y, x) ∧ brother(y, z) ∧ father(t, z)
→ son(x, t) 0.798

(3) mother(x, y) ∧ brother(z, y)
→ mother(x, z) 0.834

(4) wife(x, y)∧son(z, y) → mother(x, z) 0.589

Ideally, rules with higher success probability
should yield higher confidence scores. For instance,
rule (1) has a higher confidence score than rule (2)
because the x in rule (2) could also be the daughter
of t, while the x in rule (1) must be male because
x is y’s brother. Our RulE successfully learns them
out. Another example is rule (3) and rule (4). They
both infer x is z’s mother, but rule (4) is less confi-
dent because x can also be z’s stepmother.

4335

