Selectively Answering Visual Questions

Julian Martin Eisenschlos'?, Hernan Maina®?3, Guido Ivetta?3, Luciana Benotti**>
Google DeepMind!
Universidad Nacional de Cérdoba 2, CONICET, Argentina 3
{julian.eisenschlos,hernan.maina, guidoivettal}@mi.unc.edu.ar
{luciana.benotti}@unc.edu.ar

Abstract

Recently, large multi-modal models (LMMs)
have emerged with the capacity to perform vi-
sion tasks such as captioning and visual ques-
tion answering (VQA) with unprecedented ac-
curacy. Applications such as helping the blind
or visually impaired have a critical need for
precise answers. It is specially important for
models to be well calibrated and be able to
quantify their uncertainty in order to selectively
decide when to answer and when to abstain or
ask for clarifications. We perform the first in-
depth analysis of calibration methods and met-
rics for VQA with in-context learning LMMs.
Studying VQA on two answerability bench-
marks, we show that the likelihood score of vi-
sually grounded models is better calibrated than
in their text-only counterparts for in-context
learning, where sampling based methods are
generally superior, but no clear winner arises.
We propose AvG BLEU, a calibration score
combining the benefits of both sampling and
likelihood methods across modalities.

1 Introduction

Reliable Visual Question Answering (VQA) sys-
tems should provide a confidence estimate of their
own predictions. This introspective skill allows
users to decide when to trust or double check its
outputs, or lets the system itself selectively decide
when to gather more information in order to pro-
vide accurate responses.

While this problem has been studied extensively
for classification models (Guo et al., 2017) and
more recently also for text generation (Cole et al.,
2023a), VQA systems have been under-explored.
The combination of multiple input modalities can
introduce different sources of uncertainty due to
incorrectly framed or focused images. This is spe-
cially true when images are taken by people with
no or limited vision, as is the case for the VizWiz-
VQA dataset (Gurari et al., 2018). Furthermore the
questions in VizWiz-VQA are spoken and there-
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Figure 1: Sampled outputs from an LMM on a VizWiz-
VQA example (Gurari et al., 2018) are used to mea-
sure model calibration. In this paper we contrast the
LMM calibration results against LLMs that only sees
the image caption. Sampling based methods struggle
to measure uncertainty, motivating our proposed AVG
BLEU as a confidence estimate.

fore more conversational and contextual, which can
introduce additional denotational uncertainty due
to ambiguity when the question is under-specified
because of shared common ground (Cole et al.,
2023a). The multiple crowd-worker annotations
in the dataset allow us also to identify confusing
or unanswerable questions. It also allows us to
see cases when even the unique answer to an un-
ambiguous question can have multiple equivalent
surface forms, or be expressed with different levels
of specificity, for example in the month and year,
or the full date for an expiration date.

Our goal is to study which methods from the
literature can help calibrate state-of-the-art VQA
systems, and build a selective VQA setup that can
trust its confidence estimates when answering. We
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Q: What is this? Q: Can you please tell me what
the oven temperature is set to?

Q: When is the
expiration date?

Figure 2: Unanswerable questions in VizWiz-VQA.
Many are not answerable due to low quality images.
Sometimes the intent of the question poser, and there-
fore the correct answer, cannot be inferred.

see this as a necessary step towards systems that
can be used in real life scenarios. Figure 1 in-
troduces three of the methods used in Cole et al.
(2023a) as well as our proposed AVG BLEU (in-
spired in Wan et al. (2023)) on an example from
the VizWiz dataset (Gurari et al., 2018).

Our contributions can be summarized as follows:
(a) Through the use of several metrics, we study
how the calibration methods from text QA perform
when applied in two VQA answerability bench-
marks and find that likelihood based scoring is bet-
ter for LMMs than LLMs, without a clear winner.
(b) We propose a new sampling based method that
tackles limitations and improves all metrics signif-
icantly. Concretely, it improves coverage at 80%
accuracy by 5 points for the best LMM and cover-
age at 70% accuracy by 8 points for the best LLM.

2 Related Work

Our paper studies VQA systems with unanswerable
question through the VizWiz-VQA (Gurari et al.,
2018) and UNK-VQA (Guo et al., 2023) datasets.
We show some examples in Figure 2. Through
the introduction of unanswerable responses from
the annotators, Gurari et al. study a possible form
of calibration as binary detection of such images.
This setting is however limited in that a model (or
person) can assess a question as answerable and be
uncertain about whether the answer is a good one,
as observed by Chen et al. (2023a).

On the topic of estimating uncertainty, several
approaches appear in the literature. Collier et al.
(2021) incorporate a latent trainable variable for
the covariance matrix among classes. The use of
additional binary classifiers— so-called selectors—
was investigated for text QA (Kamath et al., 2020;
Desai and Durrett, 2020; Jiang et al., 2021). This
approach was extended to VQA by Whitehead et al.
(2022) and Dancette et al. (2023). They focus on
fine-tuned models and the use of selectors. We ar-
gue that, with the increasing availability and adop-

tion of LMMs, it is important to study calibration
in zero and few-shot scenarios, which pose unique
challenges for evaluation (Maynez et al., 2023).
Cole et al. (2023a) study different sampling-
based methods to calibrate LLMs in a zero-shot
fashion. It focuses on entity based QA, where there
is little differences in the surface form of equiva-
lent answers. Due to the open-ended problem, the
answers in VizWiz-VQA and UNK-VQA can vary,
as illustrated in Figure 1. This variation needs to
be considered when designing schemes to measure
uncertainty when evaluating multiple samples.

3 Methods

A QA system is said to be well-calibrated when
each prediction has a confidence score which can
help assess how often it is correct. Formally, the
paradigm of selective QA uses a scoring function
s that attaches to each QA pair (¢, a) a numeric
score s(q,a). The score can be compared with a
threshold 7 so that the system answers—aka trig-
gers—when s(q, a) > 7 or abstains otherwise. As
shown in Figure 1, various scoring methods can be
used. We present first the methods from Cole et al.
(2023a) for text-only QA, and then our proposal.

Likelihood The Ilikelihood-based calibration
uses the output language model score p(alq)
computed using the chain rule: p(alg) =
[T, p(tilts, - - - ,ti—1,q) where the t; are the to-
kens that form the answer a.

Sampling Repetition Based on Wilcox (1973)’s
Variation Ratio we compute the frequency of the
most sampled output divided by the total number
of samples, which coincides with the probability of
the mode of the empirical distribution. When more
samples agree with each other, the answer can be
considered to be more trustworthy.

Sampling Diversity Computed as 1 — iiﬁ%‘f:s,
it is inversely proportional to the number of distinct

samples and is zero if all samples are different.

AvG BLEU We propose an approach to grad-
ing the similarity among model answers that re-
lies on averaging a measure of semantic similar-
ity. Since there are multiple answers, we con-
sider the average among all the possible pairs as
an estimate of the diameter or dispersion of the
full set. This is inspired by the measure pro-
posed by Wan et al. (2023) for LLMs. Instead
of ROUGE (Lin, 2004), which is not sensitive to
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Large Multimodal Models (LMMs)

Model LLaVA 13B (61% ac@34% trig)

Flamingo 3B (20.5% ac@71.7% trig)

Large Language Models (LLMs)
PaLM 2 Bison (33.6% ac@78.8% trig) Falcon (18.5% ac@87.0% trig)

Method AUC ECE| C@70 C@80 | AUC ECE| C@60 C@70 C@80 | AUC ECE| C@60 C@70 C@80 | AUC ECE| C@60 C@70 C@80
AVGBLEU | 705 286 738 333|881 195 181 95 47| 736 98 264 184 112 851 135 121 46 L1 |
Likelihood | 688 7.9 716 208 887 173 221 121 05| 575 206 00 00 00| 738 642 72 17 14
Diversity 704 68 672 87| 776 124 114 72 37| 750 399 101 101 10| 862 313 118 00 00
Repetitions | 693 99 732 284|767 54 79 79 44| 727 318 216 100 101 | 840 340 118 00 00

Table 1: Calibration metrics on VizWiz-QA comparing LMMs on the left and LLMs on the right (by using gold
image captions). We use 4-shots, except for LLaVa which only supports 0-shot. Best and second best values are
bolded and underlined respectively. Likelihood lags behind sampling methods by more than 10 points for most
metrics on LLMs but can surpass them in LMMs, although there is no clear winner. AVG BLEU combines both
methods and performs above or comparable to the rest except for ECE, which can be fixed post-hoc by re-scaling.

LLaVA 13B (20% ac@65% trig)
AUC ECE| C@30 C@40
61.0 273 264 13|
60.1 495 221 13
607 524 213 0.0
614 513 213 00

Flamingo 3B (12.5% ac@48.0% trig)
AUC ECE| C@20 C@30 C@40
71.9 99 503 174 24|
724 38 486 184 52
69.0 236 378 35 0.0
69.1 248 323 35 0.0

Model
Method
AVG BLEU |
Likelihood

Diversity
Repetitions

Table 2: Calibration metrics on UNK-QA. Best and sec-
ond best values are bolded and underlined respectively.
As is the case of VizWiz-VQA, likelihood is comparable
or better than sampling methods. AvG BLEU performs
above or comparable to the alternatives.

character n-grams, we use BLEU (Papineni et al.,
2002) and compute the pairwise weighted average
z i P(ailg)BLEU(a;, a;) over the set of k dis-
tinct predicted answers. Other similarity metrics
are studied in Section 4.2. We fix the distance
between a proper answer and unanswerable to 0.

4 Experiments

In our experiments, we use the validation split of
VizWiz-VQA with 4k instances. Each question has
up to 10 crowd-worker answers. Examples can be
seen in Figure 2. We consider a question answer-
able if at least one crowd-worker annotated it as
such. This corresponds to 75% of the questions.

We also include the validation set of UNK-
VQA (Guo et al., 2023), consisting of 1K examples,
synthetically constructed by modifying the images
or text from VQA v2 (Goyal et al., 2017).

On the modeling side, we chose state-
of-the-art LMMs LLaVA (Liu et al., 2023),
Flamingo (Alayrac et al., 2022), and BLIP-2 (Li
et al., 2023). To compare the calibration of LMMs
with LLMs, we leverage the human written cap-
tions for VizWiz images provided by Gurari et al.
(2020). We chose to use gold captions to control
the additional errors and uncertainty which could
arise from model written ones. Nevertheless we
run a study in Section 4.1 using captions from
PaLLI-X (Chen et al., 2023b) and found that simi-
lar results hold. We evaluate state-of-the-art LLMs
PalLM-2 (Anil et al., 2023) and Falcon (Almazrouei
et al., 2023). We sample ten responses with a tem-

perature of 0.7. We consider the model to trigger
if the most likely answer (greedy) does not contain
the sequence “unanswerable”. The full prompts
and BLIP-2 results can be seen in Appendix A. To
simplify the analysis while staying consistent with
the official metric defined in Antol et al. (2015),
we consider a model answer correct if it matches
at least one (instead of three) of the gold answers.

We evaluate the different scoring methods de-
fined in the previous section with intrinsic and ex-
trinsic metrics that we introduce below, over the set
of examples where each model triggers a response.

Expected Calibration Error (ECE) Predictions
are bucketed into ten same-sized bins, ranked by
the confidence. We compute the mean absolute
value of the distance between the average confi-
dence score and the accuracy of predictions in each
bin, averaged across all non empty bins. This intrin-
sic evaluation interprets a confidence score to rep-
resent a probability, so it computes the difference
in the predicted probability of being correct from
the observed probability of being correct. ECE is
therefore noisy and sensitive to re-scaling.

ROC-AUC Area under the receiver operating
characteristic curve measures the ability as a bi-
nary classifier for correct and incorrect predictions
by integrating over the curve of the rates of true and
false positives. It can be interpreted as the proba-
bility that the score of a correct output chosen at
random is higher than that of an incorrect output.

Coverage@Acc While ECE and ROC-AUC as-
sess absolute and relative calibration respectively,
we want a metric closely aligned with selective
QA. Therefore, we compute the triggering rate the
model can achieve if forced to maintain a certain
accuracy among the responses where it triggers.
Formally, C@ Acc is the maximum coverage such
that the accuracy on the C% of most-confident
predictions is at least Acc %. For example, if
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C@70 = 30, then the system is 70% or more accu-
rate on the top 30% most-confident predictions. We
take 100 coverage to mean not all of the examples,
but where the model produced an answer.

We show the overall results for VizWiz in Ta-
ble 1, including the baseline triggering rate and
accuracy before incorporating calibration signals.
The strength of the models is validated by compar-
ing to fine-tuned models on the task, where a Flan-
T5 (Base) (Chung et al., 2022) model trained on
all the available captions is 74.2% accurate when
it triggers, and a PaLLI3-5 (Chen et al., 2023c) is
66.3% accurate when it triggers. Details about
the fine-tuning experiments are explained in Ap-
pendix B. For LLMs, the findings of Cole et al.
(2023a) hold, and likelihood is the worst calibra-
tion metric, repetition and diversity are superior to
it. But, surprisingly, the picture changes for LMMs
where we can see that repetition and diversity meth-
ods are not reliable. In contrast, AVG BLEU works
well across the board, matching or improving the
best metric in most cases. The same holds for UNK-
VQA in Table 2. We omit C@Acc for accuracy
below the model overall accuracy since it is 100.

We also evaluated model-based measures of se-
mantic similarity in Section 4.2 beyond BLEU, but
interestingly, we found that BLEU has strong per-
formance while requiring negligible compute.

4.1 Human vs. model written captions

In order to restrict the noise and sources of uncer-
tainty when evaluating LLMs for the VQA task,
we opted to use gold captions. However, it can be
argued that a more realistic setup would require
the use of automated captions. With that goal, we
evaluated the two LLMs on captions generated by
a fine-tuned PalLI-X model (Chen et al., 2023b),
which reported state-of-the-art results for the task
when using an additional OCR module as input. In-
terestingly we observe improved results when using
the model written captions (higher accuracy and
triggering). Upon inspection of examples we see
that the generated captions tend to be shorter and
more concise, focusing on salient elements of the
photo, which leads on average to better downstream
answers for VizWiz where many questions are ask-
ing about salient objects (ex: “What is this?”).

As is the case for the manual captions, sampling
based methods generally outperform likelihood by
a large margin. The exception is on the ECE metric,
which is expected given that it relies on the align-

Model PaLM 2 Bison (45% ac@79% trig) Falcon (32% ac@96% trig)
Method AUC ECE|l C@60 C@70 | AUC ECE| C@60 C@70

AVG BLEU | 754 12.1 58.3 37.8 | 74.8 79 22.1 1.5

Likelihood | 63.1 1L0 285 41| 6719 211 24 15
Diversity 724 343 426 156 | 753 331 268 0.0
Repetitions | 67.2  27.0 379 156 | 747 349 268 0.0

Table 3: Results on VizWiz-VQA using automated cap-
tions written by PaLLI-X. Sampling based methods per-
form well except for ECE. AvG BLEU performs well
across the board.

ment between the scores and probabilities, can be
fixed post-hoc, and is arguably the least practical
one. We also observe that, AvG BLEU is able to
be better or comparable to best result in every case.

4.2 Replacing BLEU for dense similarity

While BLEU has the advantage of fast execution,
it can fail to capture more nuanced forms of sim-
ilarities among answers. We benchmarked two
additional answer similarity metrics, BEM (Bulian
et al., 2022) and BLEURT (Sellam et al., 2020).
Perhaps surprisingly, the results over the various
tasks show very little effect, as seen in Table 4.
We speculate that the variability among 10 crowd-
worker answers diminishes the possible improve-
ments, but it is possible that other VQA tasks could
benefit from this approach making the additional
compute cost worth the improved calibration.

Method AUC ECE C@60
AvG BLEU 88.1 195 18.1
AvG BEM 87.3 33.6 17.6
AvG BLEURT 88.6 18.8 223

Table 4: Comparison of calibration metrics for Flamingo
predictions when replacing BLEU for trained similarity
metrics. Both BLEURT and BEM give marginal gains
for coverage at the cost of increased latency.

5 Analysis and Discussion

How can we enhance the reliability of a VQA
system? Based on the results presented in this
work and previous literature in the effect of cali-
bration scores in user facing applications (Zhang
et al., 2020) we can make the following recommen-
dations when implementing a VQA system:

(a) Addaconfidence score to the responses based
on AvG BLEU that lets the users of VQA systems
decide whether they can trust the system response
or whether the question at hand is critical and needs
a higher confidence in which case they can ask
another person.

(b) Automated captioning and LLMs on those
captions can be useful to answer visual questions
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Large Multimodal Model (LMM)

Model Blip2 Flan T5-XL (39.3% acc @ 11.3% trig)
Method AUC ECE| C@50 C@60 C@70
AVG BLEU | 72.6 229 65.6 41.0 23.0
Likelihood 66.0 51.2 55.7 26.2 23.0
Diversity 78.7 29.5 65.6 49.2 0.0
Repetitions 75.8 32.6 574 459 0.0

Table 5: Calibration metrics on VizWiz-QA comparing
for BLIP-2. As in the main results for other models, we
see AVG BLEU performs above or comparable to the
alternatives for most metrics and well above likelihood.

but likelihood is not a good calibration score in that
case (Cole et al., 2023Db).

Why are LMMs better calibrated? We specu-
late that this has to do with the inability for diversity
and repetition metrics to capture similarity beyond
text exact match and the grounding effect of the
multi-modality acting as a regularizer and distribut-
ing the likelihood of possible answers in a more
meaningful way. We leave further experiments in
this direction to future work.

The language modality—e.g. gold captions—is
a human generated signal with high information
density and communicative intent (Rambow and
Walker, 1994). Other non-communicative natural
signal modalities have heavy redundancy, noise,
and low information density, as observed in other
multi-modal tasks (Wei et al., 2023). We can spec-
ulate that this produces a regularization effect—
meaning the model training objective forces it to
spread its bets among many answers. Ground-
ing (Harnad, 1990) the question to sections of the
image becomes particularly hard for images taken
by visually impaired people in VizWizVQA due to
occlusions or lack of framing, introducing an addi-
tional source of uncertainty (Chen et al., 2022).

Can we measure accuracy better? In the pre-
vious experiments, we perform exact-match (EM)
criteria to classify whether the generated answer
was correct or not, following the standard VQA
accuracy evaluation (Antol et al., 2015).

This approach led to instances where the model,
when presented with a question such as “What is
my computer screen showing?” produced the re-
sponse “A system restore”. Despite the relevance
of the generated answer, it was erroneously clas-
sified as incorrect due to the stringent acceptance
criteria that required matching exactly the anno-
tated answers, such as “system restore”, “system
restore message”, “‘system restore pop up”.

To address this limitation, we replicated the ex-
periments incorporating three similarity techniques

Method EM BLEU Cos Sim BEM (Bulian et al.)
Accuracy 79% 81% 87% 87%
AVG BLEU 71 69 73 71
Likelihood 69 66 68 66
Diversity 70 67 75 72
Repetitions 69 66 70 69

Table 6: Comparison of ROC-AUC for confidence
scores across different techniques for correct answer
classification on LLaVa predictions. Even though accu-
racy is affected by the method of choice, AvG BLEU is
better or comparable for all techniques.

for classifying correct answers, chosen based on
their widespread adoption and use in compara-
ble experiments (Risch et al., 2021). A similarity
threshold was hand picked upon inspecting 20 in-
stances. The results show variations in accuracy.
Despite these differences, confidence metrics re-
mained stable across the board, with variations of
8% at most, as shown in Table 6. Further details
and experiments can be found in Appendix C.

What errors do models make? We manually
inspected 272 errors made by the best two models
on VizWiz-VQA presented in the previous section,
one LLM and one LMM, with the goal of getting
insights on their weaknesses. We find the following
three most frequent type of errors. First, the LLM
hallucinates more than the LMM and hallucinated
answers in LLMs often trigger a response. Sec-
ond, the gold caption of the LLM may not include
the answer to the question. Third, the answer is
true but not useful for visually impaired people.
Appendix D illustrates each of them.

6 Conclusions

We studied scoring methods to assess the confi-
dence in the predictions of a VQA system in the
VizWiz and UNK-VQA datasets. We observed
that, as shown previously, sampling based methods
might present an advantage over likelihood based
estimates in text models, but the picture changes
for text-image models. Open ended question with
non-entity answers present additional challenges
for sampling methods, so the equivalence among
possible sampled answers needs to be incorporated
as well. Our AvG BLEU score is able to capture
the spread of possible samples in a soft way and ac-
complishes the best results on the calibration eval-
uations we measured, combining the advantages of
sampling and likelihood-based methods.
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Limitations

This study was conducted using several models
over two datasets, which might limit the generaliza-
tion of its conclusions. No other VQA datasets to
our knowledge account for unanswerable questions
in the same rich manner. For that reason, more
analysis and datasets should be created to further
research in this space and we hope our results serve
as an initial step in that direction.

The use of manually curated captions may intro-
duce a source of bias. Our analysis of error patterns
reveals a substantial advantage for the LLMs due
to its direct access to these gold captions. Address-
ing this limitation, future work could explore the
feasibility and implications of working with auto-
matically generated captions, allowing for a more
realistic assessment in real-world scenarios.

Ethical Considerations

In this paper we explore calibration methods for
VQA models. This is an under-researched area
which is particularly relevant for the visually im-
paired community for at least two reasons. First,
quantifying the uncertainty in the day-to-day ques-
tions from this community can help them decide
when to trust an automated VQA and when to ask
another person. Second, our findings show that met-
rics in previous work have unstable performances
for different kinds of models when evaluated over
questions with high uncertainty such as those from
visually impaired people.

The use of rating systems and visual question
answering in the context of people with low or
no vision carries risks since users of such systems
cannot easily verify their results, and erroneous
answers can lead to serious harm. In addition to
accidental failures, models such as those studied
can be attacked with the use of adversarial exam-
ples (Alzantot et al., 2018) by malicious actors
with the aim of taking advantage of a vulnerable
population.

For these reasons, before offering VQA systems
for this population, it is essential to conduct de-
tailed studies of the use cases and their possible
failures, with emphasis on risk mitigation and re-
spect of vulnerable populations (Le Ferrand et al.,
2022). These studies should be designed collabo-
ratively with members of the target group to mini-
mize biases about how said system can be used.
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.
A Few-shot Experiments
Answer the question about the image using a single word
< or phrase. When the provided information is
< insufficient, respond with ’‘unanswerable’.

We show in Figure 3 and Figure 4 the 4-shot
prompts used for LLMs and LMMs respectively,
with representative examples chosen from the train-
ing set. The experiments were conducted in Tesla
T4 GPUs with 16GB of VRAM and it took less
than 4 hours for each model we executed. The re-
sults from BLIP-2 (Li et al., 2023) are shown in
Table 5. We used the official models checkpoints
released in https://hf.co. For PaLM2, we
used the publicly available API? and the Flamingo
predictions on the dataset were shared by the au-

t}lors Question: What does the arrow say?
. Answer: unanswerable

Read the descriptions of the following images and
< answer the questions using a single word or
< phrase. When the provided information is
< insufficient, respond with ’unanswerable’.

Descriptions:
— close up of a computer monitor that is powered on.
- A monitor has a message displayed on it.
- Pictured here is a screenshot that shows an error
<~ message from an app.
— Computer screen displaying an error saying the
< display driver is not supported by Zoom Text.
- a screenshot of someone’s monitor that is having
<~ 1issues

Question: What does the arrow say?
Answer: unanswerable

Descriptions:
- a white paper showing an image of black and brown dog
- A library book with pictures of two dogs on the cover
<> on a wooden table.
- A book with a black and a tan dog walking down a
> snowy street.
- The book cover shows two dogs in the snow . . . .
- A book cover title Dog Years with an image of a black Question: What is the title of this book?
< and brown dog walking up the street, on the Answer: dog years
< left side it has a due date sticker from a
<~ library

Question: What is the title of this book?
Answer: dog years

Descriptions:

— Quality issues are too severe to recognize visual
— content.

- A white object with elastic sides sitting on a wooden
<~ surface.

- A baby diaper keep in the table shown by the image.

— A opened up Diaper laying on a wooden surface.

- Clean maxi Pad over a dark wooden surface.

Question: What color is this
Answer: white

Descriptions:

- image is blur and hard to find what it is

— A woman in pink pajamas standing next to a white
< refrigerator in a kitchen.

- The back of a woman in pink standing at her counter
< and next to her white refrigerator

— A photo of a person wearing a pink shirt and pink
< flower pants in a kitchen next to a
— refrigerator. . .

— A person in red shirt and pink pajama pants stands in Question: What color is this
< a kitchen near cabinets and counters. Answer: white

Question: Is this a woman?
Answer: yes

Descriptions:
{descriptions}

Question: {question}
Answer:

Figure 3: LLM 4-shot prompting for VizWiz-VQA us-
ing captions from Gurari et al. (2020). Question: Is this a woman?

Answer: yes
[IMAGE]

Question: {question}

B Fine-tuning experiments Answer:

The Flan-T5 base model was trained using 3
NVIDIA GTX 1080Ti GPUs (GP102, 11 GiB Figure 4: LMM 4-shot prompting for VizWiz-VQA.

https://cloud.google.com/vertex—ai
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GDDRS5) connected via PCle 3.0 16x, with 32-bit
floating-point precision. The fine-tuning process
extended over 4k global steps until convergence
was achieved, employing a batch size of 16. The
learning rate schedule uses a linear warmup of 800
steps to le-5, followed by cosine decay to 0. Model
optimization uses Adafactor (Shazeer and Stern,
2018). A sequence of 256 tokens was used for in-
put encoding, while the output decoding utilized an
8-token sequence. The predictions for a fine-tuned
PalLI-3 were shared by the authors and we refer to
the paper for the training configuration. We show
the results of the experiments in Table 7.
Model Acc  Trig

LLaVA (13B) 61.2 340
PalLLM-2 (Bison) 33.6 78.8
PaLlI-3 (5B) 66.7 48.1
Flan-T5 (Base) 742 553

Table 7: Comparison of accuracy and triggering rate for
in-context (top) vs fine-tuned (bottom) models. Few-
shot LLMs abstain less than the other models.

C Classifying correct answers

As discussed in Section 5, the experiments show-
cased in this paper used exact-match criteria to
classify an answer as correct: only if the output
generated by the model was exactly one of the ac-
cepted answers it counted as correct. In this section
we describe the replication of these experiments,
employing identical methodologies, introducing
four distinct techniques for classifying correct an-
swers. The selection of these techniques was based
on their widespread adoption and their utilization in
a comparable experiment outlined in (Risch et al.,
2021). We perform this experiment for the LLaVA
13B and PaLLM 2 Bison with similar results.

Each technique is briefly described as follows:
Exact Match (EM) returns True only if the model’s
answer is exactly one of the accepted answers from
the dataset. For Cosine Similarity we used all-
MiniLM-L6-v2 (Wang et al., 2020) as an embedding
model due to its widespread use. BEM, as proposed
in (Bulian et al., 2022), is a fine-tuned BERT model
to classify answer equivalence using the SQuAD
Dataset (Rajpurkar et al., 2016).

In Table 8 we compare the performance of the
ECE method throughout the four tested techniques
to classify correct answers. We can observe how
both the accuracy and the value of ECE change,
however the best performant method remains con-
stant. These findings suggest that the results pre-

Method EM BLEU CosSim BEM
Accuracy 79% 81% 87%  87%
AVGBLEU 286 3542 50.57 50.18
Likelihood 790  10.95 24.06 2297
Diversity 6.80 6.17 13.39  12.30
Repetitions 99 1120 20.49 19.62

Table 8: Comparison of ECE metric for confidence
scores across different techniques for correct answer
classification in LLaVa 13B. Accuracy and ECE metric
are affected by the method of choice, nonetheless the
best performant method (highlighted in bold) remains
constant.

sented in this paper are robust across various an-
swer classification techniques.

D Insights from error analysis

In examining 272 errors from the top-performing
language models LLaVA 13B which is an LMM
and PalLM 2 Bison which is a LLM, we aimed to
identify weaknesses specific to the needs of the
vulnerable population. Three recurrent errors were
observed which accounted for most errors. Firstly,
the LLM tends to hallucinate more than the LMM,
with these hallucinated responses influencing the
final output. For example Figure 5 illustrates how
PalLM 2 Bison hallucinates multiple serial numbers
that appear neither in the image nor in the captions.
This is less frequent for LLaVA 13B which refrains
from answering in most of these cases.

Figure 5: Question “Alright see if you can see the ORCA
serial number now.”. The top 3 answers by PaLM2
Bison with their likelihood are (°31631036°, -1.32),
(’468563995°, -1.41), (4667926374’ -1.41). They are
neither in the image nor in the gold captions. The serial
number is not in the image. Correctly, LLaVA 13B does
not trigger a response in this case considering the ques-
tion unanswerable.

Secondly, Figure 6 shows an example of a ques-
tion that is not possible to answer with the informa-
tion in the gold captions. This is to be expected a
caption cannot include all the information present
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in an image. This is a limitation of the methodology
of using captions instead of images for VQA.

Lastly, the third kind of frequent error observed
are answers that are factually correct, but are not
useful for individuals with visual impairments. A
example of this kind of error is shown in Figure 7.

These findings shed light on critical areas for
improvement in models designed for this particular
user group, showing that well calibrated systems
are important in this domain.

Figure 6: Question “What action is currently selected?”.
The top 3 answers by PaLM?2 Bison with their likelihood
are ("projects’, -0.69), (archives’, -0.76), ('devices’, -
1.13). The correct answer is devices but this information
is not in the gold captions, captions can never be com-
plete. The captions are "The computer digital monitor
screen with some websites open to’, *A quick link bar
has appeared on an Apple computer screen.’, ’Computer
menu bar with options: Devices, Repositories, Projects,
Archives, and Documentation.’, ’some type of MacBook
or laptop device u CNA use’, ’A VizWiz app that has an
organizer and lists projects and archives.’.

Figure 7: Question “Which one is the blue one?”.The
top 3 answers by PaLM?2 Bison with their likelihood are
(’blue’, -0.47), (’second’, -0.63), (right’, -0.82). The
first answer is true but useless for a visually impaired
person. The top 3 answers by LLaVA 13B Bison are
correct. They are (’right’, -0.08), Cright’, -0.08), (’right’,
-0.08). person.
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