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Abstract

Many existing end-to-end systems for hybrid
question answering tasks can be boiled down to
a “prompt-and-pray” paradigm, where the user
has limited control and insight into the interme-
diate reasoning steps used to achieve the final
result. Additionally, due to the context size
limitation of many transformer-based LLMs, it
is often not reasonable to expect that the full
structured and unstructured context will fit into
a given prompt in a zero-shot setting, let alone
a few-shot setting. We introduce BLENDSQL,
a superset of SQLite to act as a unified dialect
for orchestrating reasoning across both unstruc-
tured and structured data. For hybrid question
answering tasks involving multi-hop reason-
ing, we encode the full decomposed reasoning
roadmap into a single interpretable BLEND-
SQL query. Notably, we show that BLEND-
SQL can scale to massive datasets and im-
prove the performance of end-to-end systems
while using 35% fewer prompt tokens. Our
code is available and installable as a package at
github.com/parkervg/blendsql.

1 Introduction

Problem Decomposition In settings involving
both fine-tuning and in-context learning, it has
been demonstrated that generating explicit inter-
mediate steps for complex problems can enhance
accuracy. In their aptly titled “Scratchpad” frame-
work, Nye et al. (2021) revealed that predicting the
complete execution trace led to better results when
fine-tuning language models to generate execution
output. More recent work has shown that prompt-
ing LLMs to decompose complicated problems
into smaller reasoning steps before generating the
final answer can improve results (Wei et al., 2022;
Yao et al., 2023; Wang et al., 2022). However, at
their core, these methods use natural language as
their intermediate reasoning representation. With
BLENDSQL, we argue that natural language alone
is inherently a lossy and ambiguous intermediate

Figure 1: Example BLENDSQL representation for an
OTT-QA dev example.

reasoning representation. Instead, by decompos-
ing a problem into a SQL-like syntax, we allow
for more deterministic reasoning capabilities and
better interpretability of intermediate steps by lever-
aging the compositional nature of relational algebra
(Codd, 1970).

Agents Previous works have explored agents: an
experts-based framework where the main task is
broken down into parts that each agent or expert1

carries out (Parisi et al., 2022; Liang et al., 2022;
Schick et al., 2023; Shen et al., 2023; Liang et al.,
2023; Lu et al., 2023). Furthermore, these works
are based on the presence of a ‘routers’ or ‘planners’
that understand the given task and break it down
into smaller tasks. Although rule-based routers
have been widely used, the ability of LLMs to gen-
eralize to complex texts has enabled their use as

1Here an agent or an expert can be anything from a Python
script, an API call, a tool or a language model.
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planners. LLMs, as planners, process the input and
as output generate text containing the list of sub-
tasks (Shen et al., 2023), the agent(s) to use from a
given set, what are the inputs to the agent(s) (Schick
et al., 2023; Qin et al., 2023; Cheng et al., 2023),
what is expected as response from the agent(s)
(Parisi et al., 2022). With the scope of the tasks
carried out by the agents being very narrow, re-
cent works have primarily focused on the planner
component of the framework. For the same, har-
nessing the in-context learning capabilities of the
LLM (Shen et al., 2023; Qin et al., 2023) or fine-
tuning the planner LLM (Parisi et al., 2022; Schick
et al., 2023; Patil et al., 2023; Tang et al., 2023;
Wang et al., 2023; Lu et al., 2023) have been the
two main methods. Additionally, works have used
LLMs’ in-context learning capability for dataset
creation (Patil et al., 2023; Tang et al., 2023). The
parser in BLENDSQL acts as a planner and gen-
erates the APIs or Ingredients to use in answering
the input question. However, it differs from the
previous works as it goes beyond generating a sin-
gle string representation of complicated problem
decomposition and simplifies the agent framework
using robust and complicated abstract syntax tree
(AST) structures to be encoded into a single string.
It is also important to note that BLENDSQL does
not just rewrite the input statement using formal
constructs (Lu et al., 2021; Wu et al., 2022), it also
adds information using the reference database, in-
put prompt, and internal knowledge of the language
models.

Text-to-SQL On the widely used text-to-SQL
dataset Spider (Yu et al., 2018), many works
demonstrate impressive performance in the few-
shot or zero-shot setting (Gao et al., 2023; Pour-
reza and Rafiei, 2023; Dong et al., 2023; Liu et al.,
2023). Even in settings where text-to-SQL is not
the focus, existing work details the effectiveness of
a common and well-understood intermediate rep-
resentation like SQL for other reasoning tasks. Hu
et al. (2022) frames dialogue state tracking (DST)
as a text-to-SQL task by encoding domains and
slots from MultiWOZ (Budzianowski et al., 2018)
into a serialized database format and using SQL as
an intermediate representation, showing significant
improvement over the “traditional” key-value style
prediction format.

Hybrid Question Answering Unlike text-to-
SQL, hybrid question answering involves an im-

plicit decision to access tabular data, unstructured
data, or both (Chen et al., 2020; Zhu et al., 2021;
Chen et al., 2021). Li et al. (2021) make this more
explicit by routing between end-to-end models and
a parser that generates an intermediate SQL repre-
sentation. Their implementation frames the two as
isolated, specialized systems which are unable to
pass information to one another.

For the scope of this work, we define Hybrid
Question Answering as answering questions using
a corpus of tabular and unstructured multi-modal
content. While this multi-modal content can en-
compass text, images, audio, and video, the pri-
mary focus of this paper is on unstructured text
in conjunction with tabular data. The potential to
adapt this process to other formats, such as images,
is also discussed in Appendix C.

One prior work, UniK-QA (Oguz et al., 2022),
proposes converting structured tabular data into
unstructured text data. Our work does the oppo-
site, and instead converts all unstructured text data
into tabular data. Empirically, UniK-QA improves
on several knowledge-base (KB) QA benchmarks
using a KB-to-text preprocessing model. For ex-
ample, for the KB-to-text model mentioned in the
UniK-QA paper, the relationship between different
entities is assumed to have a simple triplet repre-
sentation: <subj, pred, obj> where pred (predicate)
defines the relationship from the table name. How-
ever, relationships between <subj> and <obj> are
often complicatedly embedded in heterogeneous
information sources (e.g., audio, documents, or col-
umn names of the table), which would then demand
more efforts in developing dedicated KB-to-text
models.

Neuro-Symbolic Frameworks Most similar to
our work is the BINDER method presented in
Cheng et al. (2023), which integrates LLM rea-
soning into symbolic languages like SQL and
Python. While we take inspiration from their neuro-
symbolic framework for reasoning, BLENDSQL
differs in the following ways. (1) We create an
API specialized for SQL, enabling reasoning over
multi-table databases containing unstructured con-
tent, and are capable of executing and optimizing
queries containing JOIN statements, aliases, con-
ditional table expressions, and most other SQLite
operations (2) We enable constrained decoding
according to the database schema (3) We design
our API such that users are able to easily create
any number of custom functions themselves to use
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within a BLENDSQL script.

1.1 Main Contributions

In summary, we make the following contributions.

• To the best of our knowledge, we are the first
to propose framing the context of hybrid ques-
tion answering as a relational database.

• We introduce a new open-source query lan-
guage, BLENDSQL, to orchestrate and opti-
mize hybrid functions across SQL logic and
LLM reasoning.

• We demonstrate that with only a small number
of in-context exemplars, BLENDSQL can out-
perform end-to-end methods using 35% fewer
tokens and without direct access to unstruc-
tured context.

2 BLENDSQL: Overview

We implement BLENDSQL as a superset of the
SQLite relational database management system
(RDBMS)2. An executed BLENDSQL script re-
turns a smoothie object as output, containing the
final result and intermediate reasoning steps taken.
To make a smoothie, we need some ingredients
and a blender. We describe these components be-
low.

2.1 Blender vs. Parser

We use the term “blender” to describe the LLM
which receives the prompts used to perform each
ingredient function within a BLENDSQL script.
Prior to execution, the “parser” receives a set of
few-shot examples and generates a BLENDSQL
query given a question and database context. We
use GPT-4-0613 (Achiam et al., 2023) as both the
blender and the parser for our core experiments.

2.2 Ingredients

Ingredients are at the core of a BLENDSQL script.
They are subprograms used to pass certain logical
operations through LLM-based functions, and are
denoted by double-curly braces (“{{” and “}}”).
BLENDSQL syntax is represented as a parsing ex-
pression grammar, implemented via PyParsing3

(McGuire, 2007). Like vanilla SQL, ingredient
calls are fully recursive, and the context passed to

2https://www.sqlite.org/
3https://github.com/pyparsing/

pyparsing

one can include operations invoking other BLEND-
SQL ingredients.

LLMMap The LLMMap ingredient is a unary
scalar function, much like LENGTH or ABS in stan-
dard SQLite. The output of this operation is then
set as a new column in a temporary table, for later
use within the wider query. Specifically, it accepts
table and column arguments in the string format
“table::column”. It then creates a new column c′

with mapped values v′, which are the output of the
scalar function. With nc as the number of values in
the target column c, we get the following.

V = {vi,∀i∈{1,...,nc}}
fmap(V) → {v′1, ..., v′nc

}

For example, Figure 2 depicts the LLMMap in-
gredient in action. For each value, an LLM is
prompted to answer the question: “Is this a team
event?” Given the diversity in how team events are
denoted in this column (“team event”, “4x100 med-
ley relay”, etc.), it becomes difficult to write SQLite
logic for a generalized solution across the entire
table via pure string parsing. LLMMap, instead, im-
plements a generalized solution to transform values
based on their semantic denotations.

LLMQA The LLMQA ingredient is an aggregate
function that transforms a table subset T into a
single scalar value v′.

fqa(T ) → v′

As shown in Figure 1, this ingredient may be
restricted with the options argument, which en-
sures that the output of the function will be
an existing value in a specific column c, v′ ∈
{vi,∀i∈{1,...,nc}}4. In Figure 2, the LLMQA func-
tion receives a piece of unstructured document con-
text, and the question: “Which NBA season was
suspended due to COVID-19?” Additionally, it re-
ceives a set of column values to use in constraining
the language model’s generation.

For fact verification tasks, we implement a modi-
fied version of this ingredient, LLMValidate, which
always returns either a true or false boolean.

LLMJoin The LLMJoin ingredient creates a cus-
tom mapping between a pair of value sets V 1 and

4This constrained decoding is implemented using guidance,
which manipulates the logit_bias argument in the OpenAI
API.
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name position school

joshua fields right-handed pitcher university of georgia

dennis raben outfielder university of miami

matt jensen second basemen clovis east high school

title content

kenn kasparek
kenn anthony kasparek
( born 1985-9-23 ) is...

pitcher
in baseball , the pitcher is the
player who throws the baseball from...

josh fields (pitcher)
joshua david fields ( born 1985-8-19 )
is an american professional baseball pitcher...

Table 1: Example database configuration from a Hy-
bridQA example, aligned with 3. The top table w con-
tains the structured data corresponding to a table found
on a Wikipedia page, while the bottom table documents
contains unstructured data found in the article content
of a Wikipedia page, indexed with FTS56.

V 2. This mapping is then used to create an auxil-
iary table to carry out a SQL INNER JOIN opera-
tion.

fjoin(V1,V2) → {(v1′1, v2′1), ...(v1′nv1, v2
′
nv2)}

This ingredient is particularly useful in situations
when proper foreign keys do not exist, but some
semantic alignment is still possible. In Figure 2,
“joshua fields” and “josh fields (pitcher)” share the
same referent. We use the LLMJoin ingredient to
align the two distinct references, effectively per-
forming a form of entity linking.

2.3 Query Optimizations
When possible, we execute all SQL predicates
in a subquery first and assign their outputs to a
temporary session table. Since native SQLite
operations are relatively inexpensive, we ensure
that the expensive LLM-based ingredient functions
receive no more (and no less) the subset of data
required to generate a faithful execution output.
As demonstrated below, we only pass the subset
of rows from w where w.school = ’university of
georgia’ to the LLM-based ingredients in 3. We
validate these optimizations with an extensive test
suite5.

3 Datasets

Due to the joint usage of SQL-like syntax and
LLM-based ingredients, we expect our BLEND-

5https://github.com/parkervg/blendsql/
tree/main/tests

SQL to perform well on hybrid question answering
datasets. To validate our hypothesis, we experi-
mented on several challenging benchmark datasets
requiring reasoning over both structured and un-
structured knowledge.

3.1 HybridQA

Compared to previous QA tasks utilizing only pas-
sages (unstructured) or tabular information (struc-
tured), HybridQA contains challenging questions
whose answers demand heterogeneous forms of
information collected from Wikipedia tables and
passages (Chen et al., 2020). In an ablation study,
the original authors show that a table-only model
achieves an accuracy of 8.4 on the dev set, and a
passage-only model achieves an accuracy of 19.5.
Combining both sources, their baseline model im-
proves drastically to 44.0, highlighting the impor-
tance of a model adept at combining both hybrid
data sources.

3.2 OTT-QA

The Open Table-and-Text Question Answering
dataset (OTT-QA) is a “decontextualized” variant
of HybridQA, which requires both text and table
retrieval over a large corpus (Chen et al., 2021).
On the OTT-QA dataset, we demonstrate the po-
tential of BLENDSQL to act as both the retriever
and reader within a unified query language. In the
multi-hop reasoning OTT-QA requires, the rele-
vant passages can only be found after completing
some operation on the structured tables, and vice
versa. We enable this communication between the
reader and retriever components via BM25 full-text
search enabled with the built-in FTS5 extension7

in SQLite. For example, in Figure 1, we first re-
trieve unstructured text from the documents table
with the highest BM25 relevancy to the query “nba
OR covid”. Then, given the structure of the table

“Lebron James Career Statistics”, we constrain the
possible generations given our unstructured context
to only a value occurring in the “Year” column.

3.3 FEVEROUS

The FEVEROUS (Fact Extraction and VERifica-
tion Over Unstructured and Structured information)
dataset contains claims accompanied by context
sentences and tables from Wikipedia (Aly et al.,
2021). Each claim is classified as either “supports”,
“refutes”, or “not enough info”. By using BLEND-

7https://www.sqlite.org/fts5.html
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Figure 2: Visualizing built-in BLENDSQL ingredients.

Figure 3: BLENDSQL for “Which teams has the player
drafted by the Seattle Mariners in 2008 out of University
of Georgia played for in the MLB ?”, aligned with Table
1

SQL as an intermediate representation, we are able
to frame the notion of “truth” as a function over
facts found within a database. Additionally, by
generating an intermediate representation of the
FEVEROUS claim, we not only produce an inter-
pretable decomposition of the implicit truth claims,
but we also have a reusable blueprint for future fact
verification even if the values in our underlying
database are updated. This differs from the tradi-
tional end-to-end approach, where the full hybrid
context must be passed each time a prediction is
made.

BLENDSQL as Predicate Logic BLENDSQL
transforms the propositional claims of FEVEROUS
into predicate logic, providing a new language to
evaluate the truth value of a statement given world
knowledge in a relational database. For example,
we can take the following (abbreviated) example
from the FEVEROUS dev set.

Pesamino Victor (an association foot-
baller) and his team lost in all their in-

ternational matches.

Given the constant p for Pesamino Victor and
two-place predicates PLAYSON, PLAYEDBY, and
WON, this becomes the following.

∃t(ASSOCIATIONTEAM′(t) ∧ PLAYSON′(p, t))

∧¬∃m(INTERNATIONALMATCH′(m)

∧PLAYEDBY′(t,m) ∧ WON′(t,m))

Below, we display the BLENDSQL program cor-
responding to the same statement, given the under-
lying structured (the Pesamino Victor table) and
unstructured (documents) context.

4 Experiments

4.1 Dataset Pre-processing

In all the datasets we evaluate, we place both
structured and unstructured contexts into a SQLite
database as shown in Table 1. We use the FTS5
extension8 to create a full-text index with BM25
ranking over the title and content columns in our
documents table.

8https://www.sqlite.org/fts5.html
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Additionally, we use the fuzzy string matching
described in Lin et al. (2020) to align a given ques-
tion to relevant values in the underlying database,
and provide these “bridge” matches as hints in our
prompt. We serialize our databases as code, as
proven effective for text-to-SQL in the study by
Nan et al. (2023). Specifically, we include the CRE-
ATE clause for each table in the database, along
with n example rows for every table except doc-
uments. In many datasets, the unstructured text
includes lengthy passages that are often irrelevant
to the given question. By withholding the unstruc-
tured content from the parser, we are able to scale
to massive datasets such as OTT-QA.

End-to-End Prompting on HybridQA On the
HybridQA dataset, many data points contain con-
text data that is too large to fit into a single GPT-4
prompt. To solve for this, we include all tabular
data, and truncate the values of the unstructured
content to a max of 400 characters.

4.2 Teaching BLENDSQL via In-Context
Learning

We implement our few-shot prompting via the guid-
ance toolkit9, which supports handlebars-style syn-
tax to control the prompting workflow10. For each
dataset, we randomly sample ∼10 examples from
the train set and annotate their BLENDSQL repre-
sentation. For HybridQA and FEVEROUS, we use
12 examples; for OTT-QA, we use 9.

4.3 Metrics

In an attempt to measure the true performance of
our approach without overfitting to spurious answer
formats present in the free-text question-answering
datasets, we employ the denotation accuracy metric
used by Cheng et al. (2023), from the script here.
This metrics measures semantic “denotation accu-
racy”, normalizing different output formats (such
as “seven” and “7”). On the HybridQA dev set,
for example, 101 gold answers contain natural lan-
guage numbers (five million, three campuses), and
697 gold answers contain numeric representations
of numbers (4 million, 6). The official HybridQA
evaluator would judge these different answer for-
mats as incorrect, and therefore, we opt for measur-
ing semantic denotation instead.

9https://github.com/guidance-ai/
guidance/tree/0.0.64

10For the full prompt, see Appendix B

5 Results

We direct the curious reader to Table 6 in the Ap-
pendix for example predictions and more analysis.

5.1 HybridQA

Unlike in intermediate representations based on
natural language, a BLENDSQL script may result
in an execution error and fail to produce a response.
Additionally, the returned LLMQA ingredient may
deem the question as unanswerable given the pro-
vided context and respond with something in the
spirit of “This table does not provide the necessary
info.” In these cases, we experiment with falling
back to the end-to-end prompting style as a last
resort, as denoted by “BlendSQL + End-to-End” in
Table 2.

With 12 few shot exemplars, the parsed BLEND-
SQL query was unable to generate a prediction on
33% (1,173 examples out of 3,466) of the dev set.
Even with this shortcoming, it outperformed the
truncated context, end-to-end method by 3.76%.
By using BLENDSQL first, and falling back to end-
to-end prompting, we boost performance by 8.63%
to 57.76%, outperforming the oracle document
retriever approach of Sui et al. (2023). Notably,
on the subset of 2,293 questions that generated a
valid BLENDSQL script, we reached an accuracy
of 64.43%, suggesting that improved few-shot ex-
amples and perhaps more refined ingredients may
have the potential to further boost performance.

5.2 OTT-QA

Depicted in Table 3, BLENDSQL allows for com-
petitive performance among existing finetuned
benchmarks, with only 9 few-shot examples. Even
more promising is BLENDSQL’s use of a naive
BM25 document retriever, and ability to encode
the unified reasoning roadmap into a single, debug-
gable query. While we use the predictions from the
table retriever described in Ma et al. (2022), it is up
to our parser to write a satisfactory FTS5 query for
retrieving documents from the BM25 index store.
For these reasons (in-context learning, with a naive
BM25 retriever), it is difficult to compare our re-
sults to existing literature directly. Future work
involving a more robust retrieval algorithm (e.g.,
retrieval with vector embeddings) has the potential
to further improve results.

10‡ We follow the previous work in Sui et al. (2023) and
only evaluate on claims which include table-based evidence.
However, we discard data points with the label “not enough
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Method Accuracy

Oracle Document Retriever
End-to-End (Sui et al., 2023) 56.68

Searching Entire Context
End-to-End 49.13
BLENDSQL 52.89
BLENDSQL + End-to-End 57.76

Table 2: HybridQA dev set results using GPT-4-0613.
End-to-End methods are zero-shot, whereas BLEND-
SQL uses 12 few-shot exemplars to teach the model
this new SQL dialect as an intermediate representation.

Method Accuracy

Transformer-based Doc Retriever
FR+CBR (Chen et al., 2021) 28.1
CARP (Zhong et al., 2022) 33.2
CORE (Ma et al., 2022) 49.0

BM25 Doc Retriever
BLENDSQL∗ 34.15

Table 3: OTT-QA dev set results using GPT-4-0613.
The previous systems are all finetuned, using dedicated
transformer-based retriever components for both the
400k tables and 5M passages. BLENDSQL uses the
top-4 table retriever predictions from Ma et al. (2022),
but encodes both the BM25 passage retrieval + reader
steps in a unified program.

Method Accuracy
End-to-End (Sui et al., 2023) 83.21
BLENDSQL (3 ROWS)‡ 65.7
BLENDSQL (Entire table)‡ 68.03

Table 4: FEVEROUS dev set results using GPT-4-0613.

5.3 FEVEROUS
As shown in Table 4, BLENDSQL does not out-
perform the end-to-end prompting style on the
FEVEROUS dataset. As described in 3.3, this is
likely due to the complexity and ambiguity of out-
lining predicate logic to evaluate the truth value of a
given claim, compared to the other hybrid QA tasks.
Not only have we prompted our parser to compose
a script that evaluates to the correct judgment (“sup-
ports” or “refutes”), but we have implicitly asked
it to identify the various atomic truth claims made
within a claim, and set boundaries for each with
respect to database context. Additionally, the ta-
ble structures in FEVEROUS tend to deviate far
from the traditional relational model, with many
subtables and empty values.

6 Error Analysis

To better understand the advantages and limitations
of BLENDSQL, we annotate randomly sampled
50 BLENDSQL question-answer pairs from Hy-
bridQA mistakes. Our chosen denotation accuracy
metric judges each datapoint as either a 1 or 0. Out

enough”, making the results not directly comparable.
∗ To normalize different output formats (such as “seven”

and “7”), we employ the denotation accuracy metric used by
Pasupat and Liang (2015), from the script here. It is unclear if
the previous methods use the same evaluation script.

Figure 4: Average prompt tokens per question on the
HybridQA dev set. BLENDSQL enables efficient filter-
ing of large context databases to decrease data passed
to the LLM by 35%.

of the 3,466 datapoints in the HybridQA dev set, we
see 1,464 with an accuracy score of 0. Although the
number 1,464 seems intimidating, it is important to
remember that we achieved a literature-comparable
score of 57.76 and to realize that there are many
false negatives from those errors. To distinguish
those false negative errors, we describe Annota-
tion Categories as the parent categories containing
false negative errors and the BlendSQL Error Cat-
egories as the child categories containing only true
negative errors.
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Figure 5: Error analysis on a random 50 samples of the HybridQA dev set. As described in Section 6.1, left shows
17 (34%) of the error are True Negative Errors for BlendSQL (blendsql-error). Right shows the causes of those
True Negative Errors.

6.1 Annotation Categories

Figure 5 shows an overview of the annotation cate-
gories, among the 50 mistakes, there are consider-
able amount of mistakes are false negatives because
those BLENDSQL answers are semantically equiv-
alent to the HybridQA’s ground-truth answer. The
annotation categories, along with their definitions,
are described below:

Lengthy Our LLMQA ingredient tends to pro-
vide a more elaborate answer instead of naively
an address, name, or date. These elaborate but
semantically equivalent answers are annotated as
LENGTHY.

Normalization Even with the normalization
script of Cheng et al. (2023), some unwanted for-
matting variations remain. This second source of
false negative is due to text normalization such as
"$20 millions" versus "20,000,000", "Belize City"
versus "belize" and "METREX" versus "Metrex
Network". We annotate this second source of false
negative as NORMALIZATION.

HybridQA-Centric There are also some ground-
truth answers from HybridQA that we believe
are partially wrong, ambiguous with multiple
answers, or require additional background in-
formation not present in the document or the
table. We annotate those observations into
HYBRIDQA-WRONG, HYBRIDQA-MULTIPLE,
and HYBRIDQA-MISSING.

BlendSQL The mistake caused by BLENDSQL
only occupies 17 out of the 50 sampled mistakes,
amounting to 34% of the true negative rate.

6.2 BlendSQL Error Categories

Focusing on those 17 true negative BLENDSQL
mistakes, we further break down the error into 6
major categories with Figure 5.

Parser The PARSER category indicates the in-
correct answer is caused by a mistake in BLEND-
SQL syntax. For example, the “greater than” syn-
tax (WHERE "date" > {{LLMQA(...)}}) is incor-
rectly generated as “equals” (WHERE "date" =
{{LLMQA(...)}}).

Blender-Centric Besides the most common
PARSER error, we see five additional categories
indicating the direction of the multi-hop reasoning
and the topic of the mistakes. Take the following
question as an example.

What is the difference in time between
Jose Reliegos of Spain and the person
born 5 September 1892 who competed at
the 1928 Olympics?

The answer requires a full-text search of the
athlete name within the document via documents
MATCH ’born 5 september 1892’, then a SQL
query to calculate the time difference based upon
the searched athlete name. In this given exam-
ple, the error is annotated as BLENDER-DOC-
>TABLE(DATE).

6.3 Error Causes

A majority of the BLENSQL mistakes came from the
parser generation. We find that sometimes the gen-
erated BLENDSQL syntax uses LLMQA to answer
questions that are better suited for the LLMJoin
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Model Accuracy F1 % Bad Syntax

DeepSeek-Coder-6.7b-Instruct 26.90 14.05 0.13

StarCoder2-15b 26.23 11.53 0.21

GPT-4-0613 52.89 45.02 0.03

Table 5: Comparing open code-finetuned LLMs against
GPT-4-0613 on the HybridQA dev set. Despite its rel-
atively small size, DeepSeek-Coder-6.7b-Instruct out-
performs StarCoder2-15b. Both open models, however,
perform far below GPT-4-0613.

operation. Those inappropriate parses hence in-
cur incorrect answers related to date and numerical
operation.

Among those blender mistakes, we find the
multi-hop reasoning from DOC->TABLE is usually
more challenging than TABLE->DOC. The reason is
that searching for a potential filter over an unstruc-
tured document is more difficult and open-ended
than a column filter over a structured table.

7 Open Model Evaluations

Closed models like GPT-4-0613, while powerful,
lack a level of transparency and interpretability that
is valuable to the research community. To this end,
we also evaluate two open-source language mod-
els built for coding tasks: DeepSeek-Coder-6.7b-
Instruct11 (Guo et al., 2024) and StarCoder2-15b12

(Lozhkov et al., 2024). Both models are autoregres-
sive decoders with a context window of 16k tokens.
We run experiments on the HybridQA dataset, and
use each respective model as both the parser and
blender to best reproduce the core experiments with
GPT-4-0613.

7.1 Open Model Error Analysis

As shown in Table 5, the two open models fail to
match the performance of GPT-4-0613. This can be
partly attributed to the ability of the parser to gen-
erate valid BLENDSQL syntax: while GPT-4-0613
only generated bad syntax on 3% of the HybridQA
dev set, DeepSeek-Coder and StarCoder2 saw rates
of 13% and 21%, respectively. We explore specific
execution errors yielded by different parser models
in Figure 6. In this Figure, we consider everything
to the right of “No Results” to be a syntax error. Re-
ferring back to section 6.2, these errors are subsets
of the PARSER category.

11https://huggingface.co/deepseek-ai/
deepseek-coder-6.7b-instruct

12https://huggingface.co/bigcode/
starcoder2-15b

Figure 6: Detailing specific execution errors on the
HyrbidQA dev set with various models as the parser.
Most commonly, the LLMQA subprogram receives an
empty table (e.g., due to an overly specific FTS5 query)
and fails to produce a response.

8 Future Work

We hope to study the ability of LLMs not only to
use functions from a previously unseen SQL dialect
but also to create functions that generalize certain
logical patterns, as described in Cai et al. (2023).
Additionally, while instruction fine-tuned LLMs
show impressive abilities in executing BLENDSQL
scripts, we hope to experiment with more special-
ized and inexpensive models for modular tasks such
as fact verification and DPR retrieval.

Finally, as many errors came from BLENDSQL
scripts that were unable to execute properly, we
hope to explore hybrid QA tasks as a form of in-
teractive semantic parsing (Elgohary et al., 2020;
Glenn et al., 2023).

9 Conclusion

We introduce BLENDSQL, a scalable dialect
for problem decomposition and hybrid question-
answering. Results show competitive performance
on popular benchmarks while using only ∼10 few-
shot examples. Additionally, on the HybridQA
dataset, we improve the performance of a naive
end-to-end system by 8.63%, while using 45%
fewer prompt tokens. We open-source all code
and present an installable Python package for fu-
ture researchers to further explore BLENDSQL as
an intermediate representation for hybrid question-
answering.
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10 Limitations

As our core experiments were conducted using
GPT-4-0613, the API costs associated with repro-
ducing the experiments may be a limiting factor. In
an attempt to remedy this, we make our work open
source and share all evaluation outputs.

Additionally, while we show that our approach
can minimize prompt tokens and improve perfor-
mance, we require an extra step of pre-processing
all context into a SQLite database. We aim to
streamline this pre-processing by adding support
for more database management systems, and cre-
ating helper scripts for transforming a hybrid
question-answering context into the appropriate
database format.
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A Appendix

A.1 Inferring Outputs from SQL Syntax
Ingredients in BLENDSQL are inherently stateless;
they do not receive any external information other

than that which is explicitly passed in as arguments.
This approach leads to a view of problem decompo-
sition where each ingredient call is only responsible
for the specialized task it’s been setup to solve for.

However, oftentimes, an ingredient’s placement
within the larger SQL syntax can provide useful
signals for the downstream LLMs. For example,
consider the BLENDSQL query below.
SELECT * FROM w WHERE {{

LLMMap(
'What state is this city in?',
'w::city'

}} = 'CA'

We have a single LLMMap ingredient call, which
will receive all distinct values from the city col-
umn. Examining the query, we also understand that
we expect a returned string that looks like ’CA’, as
opposed to ’California’, or any other equivalent
denotation. By traversing the AST and extract-
ing the arguments of predicates like =, >, and <,
we are able to inject this prior knowledge into the
LLMMap call with a simple flag “Here is an exam-
ple output: CA”. Additionally, by utilizing open
models with publicly accesible logits, we are able
to directly enforce string patterns at the decoding
level (Willard and Louf, 2023). For example, take
the below query.
SELECT * FROM w WHERE {{

LLMMap(
'Is this a team event?',
'w::event'

}} = TRUE

By using the same AST traversal logic described
above, we can infer that we expect the LLMMap
to return a boolean datatype. Using constrained
generation, we are able to only produce a response
from a language model that matches the regular
expression ((true|false);)+13.

B Few-Shot Prompt

Below we show the few-shot prompt we used
for our core experiments, along with an example
database serialized in the “code” format.
{{#system~}}
Generate BlendSQL given the question to answer

the question correctly.
BlendSQL is a superset of SQLite, which adds

external function calls for information not
found within native SQLite.

These external functions should be wrapped in
double curly brackets.

If question-relevant column(s) contents are not
suitable for SQL comparisons or
calculations, map it to a new column using
the new function:
`LLMMap('question', '{table}::{column}')`

13We use a semicolon as a separator here
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If mapping to a new column still cannot answer
the question with valid SQL, turn to an
end-to-end solution using the new function:
`LLMQA('{question}', ({blendsql}))`

If we need to do a `join` operation where there
is imperfect alignment between table values,
use the new function:
`LLMJoin(({blendsql}),
options='{table}::{column}')`

ONLY use these BlendSQL functions if necessary.
Answer parts of the question in vanilla SQL, if

possible.
{{~/system}}

{{#user~}}
{{few_shot_examples}}

{{serialized_db}}
Question: {{question}}
BlendSQL:
{{~/user}}

{{#assistant~}}
{{gen "result" temperature=0.0}}
{{~/assistant}}

CREATE TABLE "w" (
"index" INTEGER,
"no" INTEGER,
"rider" TEXT,
"team" TEXT,
"motorcycle" TEXT

)
/*
3 example rows:
SELECT * FROM w LIMIT 3
index no rider team

motorcycle
0 1 carl fogarty ducati performance
ducati 996

1 4 akira yanagawa kawasaki racing team
kawasaki zx-7rr
2 5 colin edwards castrol honda
honda rc45

*/

CREATE VIRTUAL TABLE "documents" USING
fts5(title, content, tokenize = 'trigram')

C Hybrid QA over Images

The main paper discusses the Hybrid Question An-
swering task with text as the unstructured media in
addition to tabular data. The methodology used for

text can easily be extended for images for Visual
Question Answering (VQA) task14, as shown in
Bae et al. (2024). This section presents an example
of how adding of a VQA Ingredient to BlendSQL
allows us to do QA over a different unstructured
media (images). In this example, a table and the
corresponding image from a Wikipedia page15 are
used for answering a question. Figure 7 shows
the table from the Wikipedia page containing in-
formation about different fountains along with the
corresponding image of the same. A tiny VQA
model16 is used for answering the question once
the correct image has been retrieved. The byte rep-
resentation of the images is stored in the SQLite
database and used for the question answering task.

Below, we show an example natural language
to BLENDSQL pairing for this database context.
The below query corresponds to the question “How
many animals are in the fountain designed by Geor-
gia Gerber?”. When executed, it invokes the VQA
model on the retrieved database content to return
“There are three animals in the fountain”.

14https://github.com/parkervg/blendsql/blob/main/examples/vqa-
ingredient.ipynb

15https://en.wikipedia.org/wiki/Fountains_in_Portland,_Oregon
16https://huggingface.co/bczhou/tiny-llava-v1-hf

Figure 7: Sample of the hybrid table from the Fountains in Portland, Oregon Wikipedia page used for demonstrating
Visual Question Answering using BlendSQL
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Q & A BlendSQL

Q: The 1995 Tooheys 1000 driver

who was second-to-last in the

Tooheys Top 10 was born where ?

A: Sydney

Output: Sydney ✓

Q: What is the title for the

Taiwanese television series where

Jin Chao-chun plays a Chinese

politician who was born in the

year 1090 ?

A: Eight Thousand Li

of Cloud and Moon While the logic for querying the table of unstructured content is correct,

the model grounds the response to the wrong table. The ’role’ column of

"./Jin Chao-chun (0)" should have been used instead.

Output: My Hero , My Daddy ✗

Q: Abdul Hai Neamati was a

member of a political party and was

succeeded by Bashir Baghlani.

A: SUPPORTS

Output: SUPPORTS ✓

Table 6: Example outputs from OTT-QA and FEVEROUS.
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