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Abstract
Data selection in instruction tuning emerges as
a pivotal process for acquiring high-quality data
and training instruction-following large lan-
guage models (LLMs), but it is still a new and
unexplored research area for vision-language
models (VLMs). Existing data selection ap-
proaches on LLMs either rely on single unreli-
able scores, or use downstream tasks for selec-
tion, which is time-consuming and can lead to
potential over-fitting on the chosen evaluation
datasets. To address this challenge, we intro-
duce a novel dataset selection method, SELF-
FILTER, that utilizes the VLM itself as a fil-
ter. This approach is inspired by the observa-
tion that VLMs benefit from training with the
most challenging instructions. SELF-FILTER
operates in two stages. In the first stage, we
devise a scoring network to evaluate the dif-
ficulty of training instructions, which is co-
trained with the VLM. In the second stage,
we use the trained score net to measure the
difficulty of each instruction, select the most
challenging samples, and penalize similar sam-
ples to encourage diversity. Comprehensive
experiments on LLaVA and MiniGPT-4 show
that SELF-FILTER can reach better results com-
pared to full data settings with merely about
15% samples, and can achieve superior perfor-
mance against competitive baselines.1

1 Introduction

Instruction-following foundation models, such as
Gemini (Anil et al., 2023), GPT-4 and GPT-4 Vi-
sion (OpenAI, 2023), have shown exceptional per-
formance in multi-modality tasks. Their capabili-
ties are primarily derived from the Reinforcement
Learning with Human Feedback (RLHF) (Ouyang
et al., 2022) paradigm and the Instruction Fine-
Tuning (IFT) (Longpre et al., 2023) framework.
LIMA (Zhou et al., 2023) indicates that while foun-
dation models primarily acquire their knowledge

1Our code and model checkpoints are available at
https://github.com/RayRuiboChen/Self-Filter

during pre-training phases, only a small amount of
instruction is needed for fine-tuning these models
to produce the desired outputs during interactions.
However, the low-quality instructions can signif-
icantly degrade the models’ performance. To ad-
dress this challenge, dataset selection tasks have
been proposed, which aim to select high-quality
instruction-tuning data to enhance the performance
of instruction-following foundation models.

Existing data selection methods have many limi-
tations in selecting high-quality instruction-tuning
data. Traditional data pruning metrics (Toneva
et al., 2019; Meding et al., 2022; Yang et al., 2023)
usually use the influence on model accuracy to
filter samples, i.e., dependent on the classifica-
tion tasks, and are unsuitable for the generative
models. Zhou et al. (2023) manually crafted high-
quality instruction dataset, which is costly and time-
consuming. Chen et al. (2023) query ChatGPT to
rank instructions, but the performance is unstable
and there is no information from images in the mul-
timodal setting. Other works (Cao et al., 2023; Li
et al., 2023d) use pre-defined evaluation datasets to
construct metrics, thus highly relying on the qual-
ity and the distribution of the selected evaluation
datasets, which can potentially cause over-fitting
problems and harm the models’ generalization abil-
ity. These limitations prevent existing data selec-
tion approaches from being applied to VLMs. To
our best knowledge, InstructionGPT-4 (Wei et al.,
2023) is the only dataset selection method focusing
on VLMs. They also introduce additional tasks to
train a data selector, and their experiments are only
limited to MiniGPT-4 on a small dataset with 3.4k
samples.

To address the aforementioned issues, we pro-
pose SELF-FILTER by leveraging VLM itself as
an effective data filter. Specifically, We first gener-
ate score embeddings for each training instruction
through feature extractors, such as CLIP (Radford
et al., 2021) and GPT-4 Vision, with the training
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instruction itself as inputs. After obtaining score
embeddings, we use them to train a score net to-
gether with the target VLM. The score net takes
the score embeddings as input and produces the
weight of corresponding training instructions in
VLM training losses. We expect that these weights
can indicate the “difficulty" of the samples to be
learned by VLMs during instruction tuning. Then
we choose the instruction data with the highest
difficulty to construct the filtered dataset. More-
over, we introduce a penalty mechanism on similar
training samples to enhance the diversity of instruc-
tions. Compared with InstructionGPT-4 (Wei et al.,
2023), our method can easily transfer to any vision-
language model with large-scale datasets.

Through comprehensive experiments on the
widely studied vision-language models (e.g.,
LLaVA and MiniGPT-4), we show that with only
around 15% samples of the raw instruction tun-
ing dataset, SELF-FILTER can surpass the model
trained on the original instruction data across var-
ious evaluation datasets and benchmarks. SELF-
FILTER also outperforms several competitive base-
lines and achieves state-of-the-art performance.

Our contributions are summarized as follows:

• We propose a novel method named SELF-
FILTER, and demonstrate that large vision-
language models themselves can serve as fil-
ters for instruction-finetuning. We show the
efficacy of our method through extensive ex-
periments.

• To the best of our knowledge, we are the first
to show that on large-scale instruction tuning
datasets, vision-language models do not nec-
essarily require a large number of data. A
small amount of high-quality data is sufficient
for successful instruction tuning.

• Our method does not require additional pre-
defined evaluation tasks or surrogate mod-
els. Importantly, it makes no assumptions
about downstream tasks, thereby preserving
the model’s generalization capabilities—a crit-
ical factor for addressing complex real-world
applications.

2 Related Work

2.1 Data Selection

Data selection is an emerging topic in large-
language model instruction-tuning (Chen et al.,

2023; Cao et al., 2023), aiming at selecting high-
quality data and discarding harmful data, which
could cause hallucinations. Alpagasus (Chen et al.,
2023) is the pioneer of automatic filtering. They
query ChatGPT for instruction quality, improving
the efficiency of training. Li et al. (2023b) pro-
poses using the IFD score as a proxy of the sample
difficulty. Instruction Mining (Cao et al., 2023)
uses a linear combination of several indicators to
judge the sample quality. Concurrent work by Li
et al. (2023d) proposes to use one-shot learning
performance on pre-defined tasks to filter data.

InstructionGPT-4 (Wei et al., 2023) is the only
work in VLM instruction tuning. They utilize the
combination of multimodal scores as the indica-
tors and rely on a regression model trained on pre-
defined tasks to conduct data selection. Their appli-
cation is also limited to MiniGPT-4 with only 3.4k
instructions.

2.2 Instruction Finetuning
Instruction tuning is an essential step for pre-
trained foundation models to obtain instruction-
following capabilities, and deal with complex hu-
man queries. Alpaca (Taori et al., 2023), Vi-
cuna (Chiang et al., 2023), WizardLM (Xu et al.,
2023a) distill GPT-family models and release high-
quality instruction-tuning datasets and build up the
easy-to-use tools for instruction-finetuning. Fol-
lowing them, MiniGPT-4 (Zhu et al., 2023) and
LLaVA (Liu et al., 2023b) first utilize instruction
tuning in multimodal models. They adopt the same
pipeline, designing templates to distill GPT-family
models and obtain data. After that, more vision-
language models like InstructBlip (Dai et al., 2023)
and Qwen-VL-Chat (Bai et al., 2023) also exploit
the instruction tuning procedure to gain chat ability.

A detailed related work discussion can be found
in Appendix A.

3 Methodology

In this section, we briefly review the related back-
ground knowledge of vision-language models and
elaborate on the task formulation. Then we thor-
oughly introduce our proposed SELF-FILTER.

3.1 Preliminary
Instruction-Following Vision-Language Mod-
els. The training process of current instruction-
following vision-language models can roughly be
divided into two parts, (1) pre-training, (2) instruc-
tion fine-tuning (IFT), or reinforcement learning
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Figure 1: Illustration of the stage 1 of SELF-FILTER. In the target vision-language models, samples that are more
challenging usually yield higher losses. During the training process, the loss of each instruction is combined with a
learnable weight generated by the score net. Through minimizing this weighted loss function L, the instructions
with higher loss tend to have lower weights. It is important to note that in stage 1, both the target VLM and the score
net are actively trained, with the pre-trained feature extractors remaining frozen. Following this, stage 2 involves
employing the score net to estimate the weights for each instruction, in which a lower weight signifies a higher
difficulty level for the model.

from human feedback (RLHF). During pre-training,
the models may fine-tune their image and text back-
bones and align their representations. For IFT and
RLHF, the models will gain instruction-following
ability to output high-quality responses in conver-
sations.

Task Formulation. We present the definition of
our data selection task in instruction-finetuning.
Given the instruction tuning dataset D = {xj}Nj=1,
where xj = (xi

j ,x
t
j) denotes the input image and

text pair, our task is to select a subset and to prune
D to any desired size m, so that the vision-language
model f can achieve the best performance on down-
stream tasks {Ti}ti=1 after training on the selected
subset Dm

f ⊂ D, |Dm
f | = m. Here the VLM f is

already pre-trained. We present the total VLM loss
as L, and the VLM loss on a single instruction xi

as Li.
Notably, we could not have access to the distribu-

tion of downstream tasks in real-world applications,
so we should preserve the models’ generalization
ability while conducting data selection.

3.2 SELF-FILTER

Motivation. The goal of data selection tasks is
to find the instructions with the highest quality and
diversity. In assessing the quality of instruction
data, prior research (Xu et al., 2023a; Zhao et al.,
2023; Cao et al., 2023) has indicated that the most
challenging samples, or “hardest" samples, can pro-

vide significant insights and are therefore valuable
for model training. These “hardest" samples are
defined as those that present substantial learning
challenges to VLMs during the training process.
Motivated by this observation, we aim to develop
an evaluation metric capable of quantifying the
learning difficulty di (with VLMs) of each sample
xi to accurately reflect its quality.

While many metric-based data selection meth-
ods (Chen et al., 2023; Cao et al., 2023; Liu et al.,
2023c) have been applied to large language models
(LLMs), directly transferring them to more com-
plex multimodal contexts proves challenging, often
yielding suboptimal outcomes as evidenced by our
experiments. Given the difficulty of evaluating
multimodal instructions with only a singular met-
ric, we propose to combine these features via a
lightweight scoring network s, which can be either
a Multi-Layer Perceptron (MLP) or a linear layer.

To increase the diversity within the filtered in-
struction dataset, we introduce a penalty mech-
anism targeting similar examples. Specifically,
when a sample is chosen for the filtered dataset,
we reduce the likelihood of selecting its k-nearest
neighbors from the raw dataset. This approach is
designed to ensure a broader variety of instructional
content by actively reducing redundancy among the
chosen samples.

In the rest part of this section, we introduce
SELF-FILTER, which consists of two stages: a)
score net training, and b) data selecting by quality
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Algorithm 1 Stage 1: Train the score net

Require: Raw multimodal instruction dataset D,
target vision-language model f , score net s and
its parameters ϕ, batch size b, feature extractors
M
for each step do

Sample a minibatch B = {xi}bi=1 ∼ D
for xi in B do

Calculate the VLM loss Li of xi

Si ←M(xi)
wi ← s(Si, ϕ)

w′
i ← exp(wi)∑b

j=1 exp(wj)
b

L ← 1
b

∑b
i=1w

′
iLi

Use L to backpropagate and optimize the
vision-language model and the score net

and diversity.

Stage 1: Training the Score Net. Paul et al.
(2021) identifies loss as an important indicator
for measuring the difficulty level of training in-
structions, with more challenging instructions typ-
ically exhibiting higher loss. Motivated by data
re-weighting approaches (Gao et al., 2023; Zhang
and Pfister, 2021), we propose utilizing learnable
weights, produced by a score net, within the VLM
loss framework to assess the difficulty of training
instructions. Given that more challenging instruc-
tions typically incur higher loss, their correspond-
ing learnable weights are inclined to decrease dur-
ing the training process. Consequently, we can
assess and rank the difficulty of instructions based
on their learnable weights. The illustration of stage
1 of SELF-FILTER is shown in Figure 1.

The initial phase in training the score net in-
volves preparing the input. This is accomplished
by extracting features from the training instructions
using various extractors, such as CLIP and GPT-
4V. Let M = {Mi}ni=1 denote the series of feature
extractors. We combine the output features from
these extractors to form the input of the score net
Si ∈ S:

Si = M(xi) = [M1(xi), · · · ,Mn(xi)] (1)

After preparing the input, we use a score net
s(·, ϕ) : S → R, where ϕ represents the param-
eters of the score net, to project the generated input
embeddings to the weight of the corresponding in-
structions in the learning objective of VLMs. Given
a sample xi and corresponding input embedding

Si, the weight of xi in the VLM loss is given by
wi = s(Si, ϕ). Denoted by Li the original VLM
loss on xi, the new loss after reweighting is given
by wiLi.

It is important to note that the weights generated
by the score net for different instructions are inde-
pendent and may vary significantly in scale, render-
ing them inadequate for cross-instruction difficulty
ranking. To overcome this issue, we introduce an
inter-batch weight normalization technique that ap-
plies the softmax function to the weights within the
sampled batch. This results in a normalized weight,
denoted as w′

i = exp(wi)∑b
k=1 exp(wk)

b, where b is the

batch size. Our learning objective is subsequently
formulated as follows:

L =

b∑

i=1

exp(wi)∑b
k=1 exp(wk)

Li (2)

Through combining the weights with the VLM
loss, the score net can receive guidance along with
the training process of the VLM itself, avoiding the
introduction of possibly unreliable surrogate mod-
els or additional evaluation datasets, and preserving
the generalization ability of our target VLM. The
detailed algorithm of stage 1 is shown in Algo-
rithm 1.

In our experiments, we observe that utilizing a
limited set of pre-calculated scores as feature ex-
tractors M , e.g., CLIP Score (Hessel et al., 2021)
and GPT Score (Chen et al., 2023), yields satis-
factory results. However, for larger data volumes,
more comprehensive features like CLIP-encoded
features tend to outperform, as they contain richer
information. This enables the score net s to more
effectively find the relationship between coarse fea-
tures and instruction quality through larger scale
training.

Stage 2: Filtering the Instructions Consider-
ing Quality and Diversity. After obtaining the
trained score net s in stage 1, we proceed to com-
pute the final weight wi for each sample. Intu-
itively, more challenging multimodal instructions
produce larger losses during training, which in
turn, through backpropagation, results in a smaller
weight wi. Therefore, we define our difficulty met-
ric as di = −wi.

We do not directly use the training loss to rank in-
structions due to the observation that newly trained
samples typically exhibit smaller losses. This could
lead to biased ranking and, as demonstrated in our
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Algorithm 2 Stage2: Filter the instructions

Require: Raw multimodal instruction finetuning
datasetD, target pruning size m, k-nearest neigh-
bor algorithm KNN, similarity metric Sim
Dm

f ← {}
for xi in D do

Si ←M(xi)
wi ← s(Si, ϕ)
di ← −wi

for m iterations do
i← argmaxi,xi∈D di
Dm

f ← Dm
f ∪ {xi}

D ← D − {xi}
for xj in KNN(xi) do

dj ← dj − γSim(xi,xj)
2di

Output Dm
f

experiments (see Section 4.3), suboptimal perfor-
mance.

Moreover, diversity has been recognized as a crit-
ical factor for effective data selection (Wei et al.,
2023; Maharana et al., 2023). In our approach, we
enhance diversity by penalizing the k-nearest neigh-
bors of a newly selected sample, explicitly lowering
their difficulty scores to encourage a broader vari-
ety of selections. After selecting an instruction xi

to the filtered dataset, we adjust the difficulty of its
k-nearest neighbors examples by:

dj = dj − γSim(xi,xj)
2di , (3)

where xj is one of the k-nearest neighbors of xi,
and Sim(xi,xj) ∈ R represents their similarity.
γ is a hyperparameter and is empirically set to
1. The whole process of stage 2 is described in
Algorithm 2.

4 Experiments

In this section, we first detail our settings and the
chosen hyperparameters. Then we introduce the
evaluation benchmarks and datasets used in our
experiments and the baseline methods. Finally,
we show that our proposed SELF-FILTER can get
state-of-the-art performance through extensive ex-
periments.

4.1 Settings and Hyperparameters
We evaluate our approach on two extensively stud-
ied vision-language models: LLaVA (Liu et al.,
2023b) and MiniGPT-4 (Zhu et al., 2023). These
models employ vision encoders and large language

models as backbones, and they design different
pre-training tasks to train projection modules for
aligning multimodal representations. Then they em-
ploy automatically generated multimodal instruc-
tion datasets through instruction-finetuning. Fur-
ther information regarding the specific versions of
the models is available in Appendix B.

The instruction-tuning dataset in LLaVA com-
prises 157,712 training samples, whereas MiniGPT-
4 has 3,439 samples. Our approach adheres strictly
to the original instruction-tuning settings and hyper-
parameters as outlined in their official implementa-
tions. We use 8 A6000 GPUs in our experiments.

For the selection of feature extractors M , in
MiniGPT-4, we incorporate CLIP Score (Hessel
et al., 2021), Imagereward (Xu et al., 2023b), Chat-
GPT, and GPT-4Vision. In LLaVA, the chosen fea-
ture extractors include CLIP Score, Imagereward,
and ChatGPT (referred to as Scores in Table 1). Ad-
ditionally, we experiment with using the features
directly generated by the CLIP encoders (referred
to as CLIP in Table 1). Comprehensive details
about all the feature extractors and their utilization
can be found in Appendix C.

For the score net, we implement it as a linear
layer. We set the value of k to 10 for the KNN al-
gorithm in the diversity module and employ cosine
similarity between CLIP features to measure the
sample similarity, as described in Eq. 3.

4.2 Evaluations
Benchmarks and Datasets We employ two eval-
uation tools, LVLM-eHub (Xu et al., 2023c) and
VLMEvalKit (Contributors, 2023), to conduct a
comprehensive assessment of our method. Our
evaluation encompasses a diverse array of bench-
marks and datasets, including MMBench (Liu
et al., 2023d), MME (Fu et al., 2023), SEED-
Bench (Li et al., 2023a), HallusionBench (Liu
et al., 2023a), MathVista (Lu et al., 2023), Sci-
enceQA (Lu et al., 2022), OK-VQA (Marino
et al., 2019), TextVQA (Singh et al., 2019), Vis-
Dial (Das et al., 2017), VCR (Zellers et al., 2019),
MSCOCO (Lin et al., 2014), and Pope (Li et al.,
2023c). The interpretation of their evaluation met-
rics is detailed in Appendix D.

Baselines. We compare the performance of SELF-
FILTER with random filtering and four other com-
petitive baselines:

• EL2N: (Paul et al., 2021) Initially intro-
duced for classification tasks, EL2N (Error L2-
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Table 1: Main results for SELF-FILTER on LLaVA (Liu et al., 2023b). Scores represents using CLIP Score, Imagereward and
ChatGPT as feature extractors, and CLIP presents using CLIP features. We also try removing the diversity module under the
Scores setting. The meanings of the numbers are detailed in Appendix D.

Baseline SELF-FILTER

Full data Random GraNd EL2N
Prototy-
picality

Alpaga-
sus

Scores
w/o

Diversity
CLIP

Samples 158k 25k 25k 25k 25k 25k 25k 25k 25k

MMBench 23.97 30.67 28.26 30.41 29.64 34.71 30.58 24.66 38.48

MME
Overall 1132.89 1093.15 1138.49 969.48 1165.69 1096.05 1126.24 1079.9 1218.15

Perception 884.68 858.15 884.49 723.77 904.98 827.84 850.89 804.19 955.65
Reasoning 248.21 235.00 254.00 245.71 260.71 268.21 275.35 275.71 262.50

SEED-Bench 39.96 44.38 45.15 43.86 46.80 47.67 45.34 40.94 47.54

Hallusion
Bench

aACC 45.32 43.85 42.27 41.22 45.32 42.69 48.15 45.53 45.85
fACC 14.74 14.16 9.83 9.25 13.29 10.12 11.54 10.98 14.45
qACC 10.33 9.01 8.57 7.25 10.77 6.81 11.11 10.99 10.33

MathVista 25.10 24.10 24.60 24.80 25.40 23.90 25.40 26.70 26.40
ScienceQA 55.03 56.12 52.79 58.01 56.87 58.75 56.22 55.83 59.40

OK-VQA TextVQA VisDial
VCR1_MCI

VCR1_OC
MSCOCO_MCI

MSCOCO_OC
MSCOCO_Pope Average

Evaluation Datasets
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Figure 2: Main results on MiniGPT-4 (Zhu et al., 2023). w/o Diversity represents removing the diversity module in
our method. SELF-FILTER achieves the best results on most tasks, and has a higher average accuracy.

Norm) score is defined as E∥p(w,x)− y∥2,
where w represents the parameters, x denotes
the input features, and y ∈ {0, 1}K is the
ground truth label in the form of a one-hot
vector. To align with the generative model,
we modify the score as the form of the aver-
age cross-entropy loss for a single instruction.

• GraNd: (Paul et al., 2021) GraNd (Gradient
Normed) score is defined as Ew∥g(x,y)∥2,
which utilizes the norm of gradients caused
by each sample to quantify their influence. A
higher GraNd score suggests that the corre-
sponding sample is more important.

• Prototypicality: (Sorscher et al., 2022) The
prototypicality metric involves performing k-
means clustering in the embedding space. The
difficulty of each data point is determined by
the Euclidean distance to its nearest cluster
centroid, i.e., the prototype. In our experi-
ments, we utilize the last hidden layer feature

as the embedding.

• Alpagasus: (Chen et al., 2023) Alpagasus
queries ChatGPT to provide evaluation scores
and detailed explanations for each data point.
Then these scores are utilized for ranking and
filtering instructions.

Our method, along with all the aforementioned
baselines, does not require additional datasets or
surrogate models, ensuring a fair comparison.

4.3 Experimental Results

MiniGPT-4 Results. We evaluate MiniGPT-4
with LVLM-eHub, and the results are presented
in Figure 2. With only 500 samples (14.5% of the
dataset), SELF-FILTER achieves the best results
in 6 out of 8 tasks, significantly outperforming
the random baseline. Additionally, our findings
demonstrate that the diversity module contributes
to enhancing the selection process. The specific
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Table 2: The easiest sample and hardest sample produced by SELF-FILTER.

Easiest
Sample

Text Image

[Human]: How many people are visible in the image?

[GPT]: There is a man and a woman standing over a table, making a total of two people visible in the image.

[Human]: What is the man doing in the image?

[GPT]: In the image, the man is cutting into a chocolate frosted cake.

[Human]: Are there any other elements on the table besides the cake?

[GPT]: Yes, there are orange flowers on the table in addition to the cake.

Hardest
Sample

Text Image

[Human]: What precautions should someone take when planning to surf in rough waters?

[GPT]:

When planning to surf in rough waters, like the man wearing a black wetsuit in the image, it is essential to take several precautions to ensure

safety. These precautions include:

1. Wearing appropriate gear: A wetsuit provides buoyancy, warmth, and protection from any potential hazards in the water, such as rocks.

2. Checking weather and water conditions: Understanding the current ocean conditions and the forecast will help surfers anticipate how rough

the waves might be and decide if it’s safe to surf.

3. Being aware of rip currents: These strong currents can carry surfers away from the shore, so it’s crucial to understand how to spot and

escape them.

4. Surfing with a buddy: Having a surfing partner ensures there’s someone to help or alert others in case of an emergency.

5. Knowing personal limits: Understanding one’s skill level and not attempting to surf waves that are beyond that level is essential for safety.

6. Proper warm-up and stretching: This can help prevent injuries while surfing in challenging conditions.

7. Communicating with local surfers: They can offer insights into the specific beach break and advise on potential hazards and safe spots.

By taking these precautions, surfers can significantly reduce the risks associated with surfing in rough waters and enjoy the exhilaration and

challenges that such conditions offer.

numerical results for MiniGPT-4 can be found in
Appendix G.

Table 3: Results for selecting the hardest samples and
the easiest samples. 25k samples are used in training.
Choosing the easiest samples found by SELF-FILTER
can greatly hurt the performance.

Hardest (Ours) Easiest

MMBench 38.48 24.14

MME
Overall 1218.15 962.36

Perception 955.65 713.43
Reasoning 262.5 248.93

SEED-Bench 47.54 43.18

Hallusion Bench
aACC 48.15 43.01
fACC 14.45 12.14
aACC 10.33 8.13

MathVista 26.4 25.1
ScienceQA 59.4 55.88

LLaVA Results. Our main experimental results
on LLaVA using VLMEvalKit are displayed in
Table 1. We train the model with 25k samples
(15.9%) selected from the original dataset of 158k
instances, resulting in substantial improvements
compared to the full data settings. While several
competitive baseline methods can also surpass the
full dataset performance, our approach leads to
higher results.

Furthermore, we observe that using CLIP fea-
tures (referred to as the CLIP setting) leads to

further performance improvement. This finding
suggests that the score net can effectively extract
information from coarse features. In contrast, pre-
calculated scores such as CLIP Score and ChatGPT
outputs may be prone to inaccuracies and informa-
tion losses.

5 Analysis

In this section, we first show the importance of
the diversity module and choosing harder samples
through ablation studies. Then we show that our
method can indeed select the difficult samples in
the case study. Finally, we analyze the influence of
pruning size and batch size.

5.1 Ablation Study

As Table 1 and Figure 2 show, removing the diver-
sity module and not imposing penalties on similar
samples may maintain similar performance on cer-
tain datasets, but lead to degradation on others,
such as VisDial for MiniGPT-4 and MMBench for
LLaVA.

This underscores the importance of ensuring di-
versity during data selection. Given the potential
variation in data quality across different topics, a
sole emphasis on quality might result in an unbal-
anced distribution of topics.

In addition, we want to point out that directly
using the training loss to measure difficulty (noted
as EL2N in Table 1) will yield suboptimal perfor-
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mance, as newly trained samples tend to produce
smaller losses, causing a biased ranking.

5.2 Why Choose the Hardest Samples?
We try to select the easiest samples as the filtered
dataset in LLaVA under the CLIP setting, and the
results are presented in Table 3. The evaluation
scores experience a significant drop compared to
the hardest policy, reaffirming the observations
made by Xu et al. (2023a) that difficult samples
are more informative and effective for instruction
tuning.

5.3 Case Study
In this section, we investigate the samples selected
and abandoned by our method. Table 2 showcases
the easiest and hardest samples identified by the
score net from the training data in LLaVA. Addi-
tional examples can be found in Appendix F.

The discarded easy examples typically consist of
uncomplicated and direct questions, such as count-
ing the objects in an image and describing the sce-
nario. In contrast, more challenging instances focus
on intricate tasks involving reasoning and planning,
often having greater length. The Pearson correla-
tion between the difficulty score and the sample
text length is -0.6325, reflecting the significance
of length as a factor but also emphasizing that it
cannot be the sole determinant of difficulty. In sum-
mary, our approach adeptly and precisely identifies
challenging samples for instruction tuning.

Additionally, it is evident that the distribution of
topics among difficulty levels is uneven, with the
top 5 most challenging samples all talking about
surfing. Consequently, it is necessary to design
the diversity module to ensure a more balanced
representation across various subjects.

5.4 Performance under Different Pruning Size
We conducted experiments with different target
pruning sizes, and the results are illustrated in Fig-
ure 3. We use the CLIP setting in LLaVA, and
our method consistently outperforms others in the
majority of cases. As the pruning size m decreases,
the evaluation results initially show improvement
by discarding low-quality data, reaching a peak at
25k samples. Subsequently, the results gradually
decline, emphasizing the prominence of quantity
as a determining factor. It’s noteworthy that limited
data significantly impacts data diversity.

In traditional classification tasks, Paul et al.
(2021) observed a substantial performance decline
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Figure 3: Experimental results under difference target
pruning size m.

with approximately 30%-50% data. In contrast,
in the instruction tuning task, a mere 5k samples
(3.17%) still yield reasonable results, implying that
little knowledge is learned during this stage.

5.5 Influence of Different Batch Size
We performed experiments using varying batch
sizes during the training of the score net in Al-
gorithm 1. The local batch size b determines the
number of observed samples when adjusting the
weights. It’s important to note that we concurrently
modified the gradient accumulation steps to main-
tain the overall batch size for the vision-language
model unchanged.

The results are presented in Table 4. In our pri-
mary experiments, we adhere to the LLaVA set-
tings, employing a batch size of 16. Notably, the
performance exhibits minimal variance across dif-
ferent local batch sizes, indicating the robustness
of SELF-FILTER, capable of accurately extracting
information even from a local window as small as
4 samples.

5.6 Time Cost Analysis
We further investigate the time cost issue. It’s essen-
tial to note that both most baselines and Stage 1 in
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Table 4: Results for different batch size b.

Batch Size 16 8 4

MMBench 38.48 37.46 43.13

MME
Overall 1218.15 1178.02 1179.24

Perception 955.65 930.52 924.95
Reasoning 262.5 247.5 254.29

SEEDBench 47.54 48.33 48.20

Hallusion
Bench

aACC 45.85 45.22 45.01
fACC 14.45 15.03 13.01
qACC 10.33 10.11 10.77

MathVista 26.4 25.5 25.6
ScienceQA 59.4 58.55 60.09

SELF-FILTER first need to train the VLM with the
full dataset, thus, the training costs are close. The
approximate training time required for experiments
conducted on LLaVA is outlined in Appendix E.
Note that certain baseline approaches entail addi-
tional post-processing steps, which incur supple-
mentary time costs, unlike SELF-FILTER, which
does not require such steps.

The primary focus for the data selection in in-
struction tuning task is on identifying high-quality
instructions, and efficiency is not a main concern.
The overall goal is to remove harmful and noisy in-
structions that can severely deteriorate the model’s
performance.

6 Conclusion

In this paper, we propose SELF-FILTER to select
high-quality instructions from the noisy dataset.
Our method leverages the vision-language model
itself as a filter, and does not need any supplemental
evaluation datasets, enhancing the model’s gener-
alization ability. We design a score net framework
to effectively rank all the samples based on the
predicted difficulty and discard low-quality instruc-
tions to help representation learning. Our compre-
hensive experiments on LLaVA and MiniGPT-4
demonstrate the effectiveness of our approach, and
verify that large vision-language models learn most
of their knowledge from the backbones and the pre-
training stage, while a small amount of high-quality
samples is sufficient for instruction tuning.

Limitations

Though we prove the effectiveness of SELF-
FILTER on LLaVA and MiniGPT-4, we could
further extend the experiments on other vision-
language models. A more careful search for hy-

perparameters, e.g., the batch size and γ in the
diversity module can generate better results.

Another limitation is that we could explore dif-
ferent architectures of the score net, for example,
a small vision-language model. We could drop
the feature extractors under this setting, and di-
rectly feed the samples into the score net to predict
weights.
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A Additional Related Work

A.1 Vision-Language Model
Vision-language models have various training
strategies and various architectures. CLIP (Rad-
ford et al., 2021) uses contrastive learning to
acquire high-quality unimodal representations.
BLIP (Li et al., 2022) designs a Q-Former to bridge
two modalities. Current instruction-following
vision-language models, e.g., LLaVA (Liu et al.,
2023b), MiniGPT-4 (Zhu et al., 2023) and In-
structBLIP (Dai et al., 2023) usually exploit pre-
trained language models (e.g., Llama (Touvron
et al., 2023), Vicuna (Chiang et al., 2023)) and
vision models (e.g., ViT (Dosovitskiy et al., 2021),
CLIP encoders) as backbones, and use projection
modules to transform visual information into the
embedding space of language models.

A.2 Data Selection

Data selection, or data pruning is always an im-
portant topic in the machine learning area. It tries
to train a better model with less data, or greatly
reduce the data size while do not lose too much
model performance. Toneva et al. (2019) design
a forgetting score to reflect whether the sample is
easy to learn. Paul et al. (2021) point out that loss
and gradient norm can be informative metrics for
pruning. Sorscher et al. (2022) choose to use the
distance from the cluster centroid to measure diffi-
culty. Meding et al. (2022) propose to use multiple
models to evaluate each image and classify it into
“trivial", “impossible" or normal. Yang et al. (2023)
examine the influence of the model’s generalization
ability when removing a sample.

Data selection is an emerging topic in large-
language model instruction-tuning (Chen et al.,
2023; Cao et al., 2023), aiming at selecting high-
quality data and discarding harmful data, which
could cause hallucinations. Alpagasus (Chen et al.,
2023) is the pioneer of automatic filtering. They
query ChatGPT for instruction quality, improving
the efficiency of training. Li et al. (2023b) pro-
poses using the IFD score as a proxy of the sample
difficulty. Instruction Mining (Cao et al., 2023)
uses a linear combination of several indicators to
judge the sample quality. Concurrent work by Li
et al. (2023d) proposes to use one-shot learning
performance on pre-defined tasks to filter data.

A significant difference is that most previous
methods (Cao et al., 2023; Wei et al., 2023; Li
et al., 2023d) need additional evaluation tasks to
learn the weights for different indicators, but we
design a score net to automatically combine them,
and our score net can utilize very coarse features
like the CLIP feature which is a 1536-dimensional
vector, avoiding too much information loss when
calculating the indicators.

InstructionGPT-4 (Wei et al., 2023) is the only
work in VLM instruction tuning. They utilize the
combination of multimodal scores as the indica-
tors and rely on a regression model trained on pre-
defined tasks to conduct data selection. Their appli-
cation is also limited to MiniGPT-4 with only 3.4k
instructions.

A.3 Instruction Finetuning

Instruction tuning is an essential step for pre-
trained foundation models to obtain instruction-
following capabilities, and deal with complex hu-
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man queries. (Ouyang et al., 2022; Li et al., 2024;
Wu et al., 2023) Alpaca (Taori et al., 2023), Vi-
cuna (Chiang et al., 2023), WizardLM (Xu et al.,
2023a) distill GPT-family models and release high-
quality instruction-tuning datasets and build up the
easy-to-use tools for instruction-finetuning. Fol-
lowing them, MiniGPT-4 (Zhu et al., 2023) and
LLaVA (Liu et al., 2023b) first utilize instruction
tuning in multimodal models. They adopt the same
pipeline, designing templates to distill GPT-4 and
obtain data. After that, more vision-language mod-
els like InstructBlip (Dai et al., 2023) and Qwen-
VL-Chat (Bai et al., 2023) also exploit the instruc-
tion tuning procedure to gain chat ability.

B Vision-Language Model Version

For LLaVA, we use the LLaVA v1.0 7B model.
The language backbone is Vicuna-7B-v1.3, and
the vision encoder is clip-vit-large-patch14. For
MiniGPT-4, we use Vicuna V0 7B as the language
model.

C Feature Extractors

C.1 GPT Input Templates

The data structures of the instruction tuning
datasets for LLaVA and MiniGPT have some dif-
ferences, so we design different GPT templates for
them in Table 5. The templates are adapted from
Chen et al. (2023).

We then use the output numbers as the scores for
each instruction.

C.2 Imagereward

Imagereward (Xu et al., 2023b) is a general-
purpose text-to-image human preference reward
model. We directly input the image-text pair in the
instruction tuning datasets to get the output score.

C.3 CLIP Score

CLIP Score (Hessel et al., 2021) is defined as the
cosine similarity between the text and image fea-
tures. The model we used is clip-vit-large-patch14.

C.4 CLIP Features

We use the clip-vit-large-patch14 image and text
encoders to encode the input samples. The em-
bedding size for both of them is 768, making the
final concatenated CLIP feature with a dimension
of 1536.

D Evaluation Benchmarks and Datasets

LVLM-eHub We use OK-VQA, TextVQA, Vis-
Dial, VCR, MSCOCO and Pope in LVLM-eHub
for MiniGPT-4. They are all transformed into the
visual question answering (VQA) form, and the
numbers represent accuracy. Specifically, MCI rep-
resents the multi-class identification task, and OC
represents the object counting task. Pope (Li et al.,
2023c) is an evaluation metric for object hallucina-
tion.

VLMEvalKit. We use MMBench, MME, SEED-
Bench, Hallusion Bench, Math Vista and Sci-
enceQA on VLMEvalKit for LLaVA experiments.
Among them, MMBench, MME and SEED-Bench
measure the general ability of VLMs, and a higher
number indicates better performance. Hallusion
Bench tests the VLMs’ robustness against possible
language hallucination and visual illusion. aACC is
the simple average accuracy, fACC is the accuracy
per figure, and qACC is the accuracy per question.
More detailed explanations for those metrics can
be found in Liu et al. (2023a). Math Vista mea-
sures models’ math ability, while SiceneQA is the
science-related question-answering dataset. Their
numbers are the accuracy.

E Time Cost Analysis

In this section, we illustrate the approximate time
cost for SELF-FILTER and the baselines in Table 6.

F Additional Case study

In this section, we display the top 5 easiest and
hardest samples found by SELF-FILTER in Table 7
and Table 8

G MiniGPT4 Experimental Results

We provide the exact numbers for the main experi-
mental results on MiniGPT-4 in Table 9.
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Table 5: GPT input templates.

Model Template

MiniGPT-4
ChatGPT

We would like to request your feedback on the performance of AI assistant in
response to the instruction and the given input displayed following.

Instruction: Describe this image in detail.
Response: [Caption]

Please rate according to the quality of the response to the instruction. Each
assistant receives a score on a scale of 0 to 10, where a higher score indicates
higher level of the quality. Please first output a single line containing the value
indicating the scores. In the subsequent line, please provide a comprehensive
explanation of your evaluation, avoiding any potential bias.

GPT-4Vision

We would like to request your feedback on the performance of AI assistant in
response to the instruction and the given image above.

Instruction: Describe this image in detail.
Response: [Caption]

Please rate according to the quality of the response and the input image. Each
assistant receives a score on a scale of 0 to 10, where a higher score indicates
higher level of the quality. Please first output a single line containing the value
indicating the scores. In the subsequent line, please provide a comprehensive
explanation of your evaluation, avoiding any potential bias.

LLaVA ChatGPT

We would like to request your feedback on the performance of AI assistant in
response to the instruction and the given input displayed following.

Conversation: [Conversation]

Please rate according to the quality of the response to the instruction. Each
assistant receives a score on a scale of 0 to 10, where a higher score indicates
higher level of the quality. Please first output a single line containing the value
indicating the scores. In the subsequent line, please provide a comprehensive
explanation of your evaluation, avoiding any potential bias.

Table 6: Time cost comparison.

Training Time Cost Time Cost Compared with Full Data Device

Full data baseline ∼ 12 hours × 1 8 A6000 GPUs

Random - - -
GraNd ∼ 12 hours × 1 8 A6000 GPUs
EL2N ∼ 12 hours × 1 8 A6000 GPUs
Prototypicality ∼ 12 hours × 1 8 A6000 GPUs
Alpagasus - - Querying GPT models

SELF-FILTER Stage 1 ∼ 12 hours × 1 8 A6000 GPUs
SELF-FILTER Stage 2 ∼ 12 hours × 0.03 1 A6000 GPU
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Table 7: Top 5 Easiest samples.

1st Easiest
Sample Text Image

[Human]: How many people are visible in the image?
[GPT]: There is a man and a woman standing over a table, making a total of two people visible in the image.
[Human]: What is the man doing in the image?
[GPT]: In the image, the man is cutting into a chocolate frosted cake.
[Human]: Are there any other elements on the table besides the cake?
[GPT]: Yes, there are orange flowers on the table in addition to the cake.

2nd Easiest
Sample Text Image

[Human]: Who is sitting at the table in the image?

[GPT]: A young lady is sitting at the table in the image. She appears to be celebrating her birthday, as there is a birthday cake
with lit candles present.

[Human]: What is happening with the birthday cake?

[GPT]: An older woman is holding the birthday cake with lit candles and is bringing it to the young woman who’s sitting at
the dining room table.

[Human]: Is there any indication that the photo is old?

[GPT]: Based on my visual observation, I cannot determine whether the photo is old or not, as my analysis is purely based on
the content of the image and not its quality, color, or other aspects that could suggest its age.

[Human]: What is the relationship between the young lady and the older woman?

[GPT]:
Although it is difficult to be certain about the relationship between the young lady and the older woman based on the
image alone, the scenario suggests that they may be family members or close friends, as they appear to be sharing a
birthday celebration together. The older woman could possibly be the mother, grandmother, or an aunt of the young lady.

3rd Easiest
Sample Text Image

[Human]: What activity is the woman in the image engaged in?
[GPT]: The woman in the image is engaged in shopping while talking on her cell phone inside of a store.
[Human]: What is the woman holding in her hand besides her cell phone?
[GPT]: Besides her cell phone, the woman is holding a small box, which possibly contains a holiday decoration.
[Human]: Is the woman walking or standing still while talking on her phone?
[GPT]: The woman is walking while talking on her cell phone in the store.
[Human]: Are there any noticeable features about the woman’s footwear?
[GPT]: The woman is barefooted while talking on her phone, which is an unusual choice of footwear for shopping.
[Human]: What can we infer about the woman’s situation during this instance?

[GPT]:

Based on the available information, we can infer that the woman is multitasking, as she is shopping and talking on her
cell phone simultaneously. The fact that she is barefooted suggests she might be preoccupied, in a hurry, or simply
relaxed at the moment, not paying particular attention to her choice of footwear. Since she is holding a small box that
contains a holiday decoration, it is possible that she is shopping for seasonal items or looking for a gift. The woman is
likely in the middle of a discussion or seeking advice from someone on the other end of the phone call, which could be
related to choosing the right product or making an important decision regarding her shopping.

4th Easiest
Sample Text Image

[Human]: How many women are in the image?
[GPT]: There are two women in the image.
[Human]: What are the two women doing?
[GPT]: The two women are sitting at a table, having a meal together in a restaurant or a cafe.
[Human]: What type of food is visible on the table?
[GPT]: There are plates with donuts on the table in front of the women.
[Human]: What kind of seating arrangement do the women appear to be in?
[GPT]: The women appear to be sitting in a booth at a restaurant.
[Human]: Can you describe the social aspect of the scene?

[GPT]:

The image portrays a casual and social setting, with two women sharing a meal and enjoying each other’s company.
They are likely having a conversation, exchanging stories, or discussing various topics while sitting in the booth.
The presence of the donuts on the table suggests that this could be a snack or dessert shared between friends or family
members. It reflects a common everyday scenario where people gather around food to strengthen their bonds, relax,
and have a good time. The restaurant or cafe setting provides a comfortable and welcoming atmosphere that encourages
social interactions and leisurely dining experiences.

5th Easiest
Sample Text Image

[Human]: What might be the special occasion the man is celebrating?

[GPT]:

Given the image shows a man bending over in front of a cake with lit candles and a cat nearby, it suggests that the
man might be celebrating a special occasion, such as his birthday. The lit candles on the cake are a common tradition
during birthday celebrations, and the presence of a cat could indicate that the man is at home with his pet, enjoying
a cozy, intimate celebration.
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Table 8: Top 5 Hardest samples.

1st Hardest
Sample Text Image

[Human]: What precautions should someone take when planning to surf in rough waters?

[GPT]:

When planning to surf in rough waters, like the man wearing a black wetsuit in the image, it is essential to take several
precautions to ensure safety. These precautions include:
1. Wearing appropriate gear: A wetsuit provides buoyancy, warmth, and protection from any potential hazards in the
water, such as rocks.
2. Checking weather and water conditions: Understanding the current ocean conditions and the forecast will help surfers
anticipate how rough the waves might be and decide if it’s safe to surf.
3. Being aware of rip currents: These strong currents can carry surfers away from the shore, so it’s crucial to understand
how to spot and escape them.
4. Surfing with a buddy: Having a surfing partner ensures there’s someone to help or alert others in case of an emergency.
5. Knowing personal limits: Understanding one’s skill level and not attempting to surf waves that are beyond that level
is essential for safety.
6. Proper warm-up and stretching: This can help prevent injuries while surfing in challenging conditions.
7. Communicating with local surfers: They can offer insights into the specific beach break and advise on potential hazards
and safe spots.
By taking these precautions, surfers can significantly reduce the risks associated with surfing in rough waters and enjoy the
exhilaration and challenges that such conditions offer.

2nd Hardest
Sample Text Image

[Human]: What challenges do surfers commonly face?

[GPT]:

Surfers commonly face several challenges related to the dynamic nature of the ocean and the physical demands of the sport.
In the image, a person in a wet suit is riding a wave on a surfboard, which depicts some of these challenges:
1. Variable weather conditions: Surf conditions depend on factors like wind, tides, and swells; these change constantly and
might affect the surfer’s ability to ride waves safely and effectively.
2. Physical demands: Surfing requires balancing on a surfboard, which demands strong core, upper body, and leg muscles.
Paddling to catch waves can be tiring, and surfers need stamina and endurance to stay in the water for extended periods.
3. Timing and technique: Effective surfing requires excellent coordination, timing, and technique since surfers need to catch
waves at the right moment, stay on the surfboard, and perform various maneuvers, all while maintaining balance.
4. Sharks and other marine creatures: In some regions, surfers may encounter sharks or other potentially dangerous sea creatures.
Awareness, safety measures, and understanding of the marine environment can help minimize the risks associated with such
encounters.
5. Rip currents and undertows: These powerful water currents can pose a risk to surfers as they might make it difficult to
return to shore or maintain control in the water.
Overall, surfers need to develop their skills, strength, and ocean knowledge to navigate these challenges and enjoy the thrill
of riding waves safely.

3rd Hardest
Sample Text Image

[Human]: What are some factors that can affect this surfer’s performance and safety?

[GPT]:

Several factors can affect this surfer’s performance and safety while riding the wave. Some of these factors include:
1. Wave conditions: The size, power, and shape of the wave can influence the surfer’s ability to perform maneuvers and maintain
balance. Unexpected changes in wave conditions or encountering a challenging wave could increase the risk of falling, getting
caught inside or even being pushed towards hazardous areas.
2. Surfer’s skill level: The surfer’s experience and skill level play a crucial role in their performance and safety. A less experienced
surfer might struggle to maintain control and execute complex maneuvers, which could result in accidents or injuries.
3. Equipment: The surfboard, leash, and wetsuit can impact the surfer’s performance and safety. A poorly chosen surfboard might
make it challenging to navigate the waves effectively, and a damaged leash could cause the surfer to lose their board in a wipeout,
increasing the risk of injury.
4. Weather conditions: Wind and tide conditions can affect the surf and the surfer’s ability to ride the wave smoothly. Strong winds
might make it difficult to maintain balance and control, while extreme tide conditions may expose hidden obstacles or create
unfavorable surfing conditions.
5. Ocean environment: Hidden rocks, reefs, or other hazards in the water can pose risks to the surfer’s safety. Additionally, ocean
currents and rip tides can move the surfer away from their intended position, which could lead to dangerous situations.
By being aware of these factors, surfers can take necessary precautions, improve their skills, and choose suitable equipment to
ensure a safe and enjoyable surfing experience.

4th Hardest
Sample Text Image

[Human]: How many people are surfing in the image?
[GPT]: There are two people surfing in the image.
[Human]: What is the condition of the waves in the ocean?
[GPT]: The waves in the ocean are big and choppy, providing an exciting and challenging surfing experience for the surfers.
[Human]: Is one of the surfers standing up on the surfboard?
[GPT]: Yes, one of the surfers is standing up on the surfboard, while the other surfer is not.
[Human]: What are some challenges surfers might face when riding big, choppy waves?

[GPT]:

Riding big, choppy waves presents several challenges for surfers, some of which include:
1. Balance and stability: Maintaining balance on a surfboard while maneuvering choppy waves can be difficult as the
unpredictable movement of the water makes it harder for surfers to find a steady footing.
2. Timing: Catching and riding a big wave requires precise timing. Surfers need to paddle at the right speed and position themselves
properly to catch the wave. Choppy conditions can make it harder to determine the best moment to catch a wave and ride it successfully.
3. Strength and endurance: To successfully ride choppy waves, surfers must have strong upper body and leg muscles to paddle, maintain
balance, and push through the turbulence. These waves can also be physically exhausting, which requires good overall fitness and endurance.
4. Risk of accidents: Big, choppy waves increase the risk of accidents like wipeouts, collisions with other surfers, and encounters with
dangerous underwater obstacles. The rough conditions might also cause surfers to lose control of their boards, potentially resulting in injuries.
5. Unpredictability: The unpredictable nature of choppy waves makes it more challenging for surfers to anticipate the wave’s behavior
and adjust their techniques accordingly. Surfers must be highly adaptable and capable of making split-second decisions to maneuver
through these conditions effectively.
In conclusion, surfing big, choppy waves requires advanced skills, good physical fitness, attentiveness, and adaptability. The unpredictable
nature of the water and the potential risks involved make it a thrilling yet challenging activity for surfers.

5th Hardest
Sample Text Image

[Human]: How many surfers are visible in the image?
[GPT]: There are two surfers visible in the image - one riding a wave on top of a surfboard, and the other swimming out to surf.
[Human]: What is happening to the surfer on the surfboard?
[GPT]: The surfer on the surfboard is in the midst of a fall as the wave is breaking, resulting in a wipeout.
[Human]: What is the second person doing in the water?
[GPT]: The second person is swimming out towards the waves, possibly intending to surf or catch some waves as well.
[Human]: What is the overall atmosphere of the scene in the image?

[GPT]: The overall atmosphere of the scene in the image is dynamic and action-packed, with surfers engaging in their sport amidst the powerful
waves. It captures the excitement and challenges of surfing, as well as the skill and determination required to ride the waves successfully.

[Human]: What are the potential risks of wipeouts in surfing, and how can surfers minimize these risks?

[GPT]:

Wipeouts are an inherent part of surfing and can pose risks to surfers due to the potential for injury or more serious accidents. Some of
the potential risks associated with wipeouts include:
1. Collisions with the surfboard or other objects: Falling off the surfboard can result in surfers colliding with their own boards, causing
injuries. Additionally, they might collide with rocks, reefs, or other surfers in crowded surf breaks.
2. Drowning or near-drowning: Wipeouts can cause surfers to be held underwater by the wave, resulting in disorientation and
potentially drowning if they are unable to resurface in time.
3. Being caught in a rip current: A wipeout may force the surfer into a rip current, a strong water stream that can carry them away
from the shore quickly and create difficulty in returning to the beach.
4. Impact injuries: A hard fall from a surfboard can result in the surfer hitting the water surface with force, leading to injuries
such as sprains, fractures, or even head trauma.
To minimize these risks, surfers can take several precautions:
1. Wearing appropriate protective gear: Using helmets, wetsuits or rash guards, and other protective equipment can help shield the
surfer’s body from injuries during wipeouts.
2. Developing swimming and water safety skills: Surfers should ensure they are strong swimmers and understand ocean safety
principles, such as how to identify and escape from rip currents and using the best techniques for resurfacing after being held underwater.
3. Practicing proper surfing techniques: Mastering the sport’s fundamentals, including paddling, duck diving, and foot positioning on
the board, can help surfers maintain control and minimize the risk of wipeouts.
4. Surfing within their skill level: Surfers should be aware of their abilities and choose waves, surf breaks, and conditions that match
their skill level, avoiding situations that might expose them to unnecessary risk.
5. Staying aware of their surroundings: Surfers should always maintain situational awareness in the water, paying attention to other
surfers, potential hazards, and changing ocean conditions to prevent accidents.
By following these recommendations, surfers can reduce the risks associated with wipeouts and enjoy the thrilling experience
of surfing more safely.
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Table 9: Main results on MiniGPT-4.

Full Data (3.4k) Random (500) w/o Diversity (500) Ours (500)

OK-VQA 40.07 35.08 36.86 38.74
TextVQA 21.36 20.02 21.94 21.96
VisDial 66.74 55.35 60.75 65.39

VCR1_MCI 54.56 46.26 58.18 60.01
VCR1_OC 34.56 32.39 36.93 36.80

MSCOCO_MCI 48.67 42.32 51.48 51.68
MSCOCO_OC 37.71 36.44 40.81 40.63

MSCOCO_Pope 54.34 52.85 56.56 58.63

Average 44.75 40.09 45.44 46.73
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