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Abstract

Aspect sentiment quad prediction (ASQP) has
garnered significant attention in aspect-based
sentiment analysis (ABSA). Current ASQP re-
search primarily relies on pre-trained gener-
ative language models to produce templated
sequences, often complemented by grid-based
auxiliary methods. Despite these efforts, the
persistent challenge of generation instability
remains unresolved and the effectiveness of
grid methods remains underexplored in cur-
rent studies. To this end, we introduce Grid
Noise Diffusion Pinpoint Network (GDP), a
T5-based generative model aiming to tackle the
issue of generation instability. The model con-
sists of three novel modules, including Diffu-
sion Vague Learning (DVL) to facilitate effec-
tive model learning and enhance overall robust-
ness; Consistency Likelihood Learning (CLL)
to discern the characteristics and commonali-
ties of sentiment elements and thus reduce the
impact of distributed noise; and GDP-FOR, a
novel generation template, to enable models to
generate outputs in a more natural way. Exten-
sive experiments on four datasets demonstrate
the remarkable effectiveness of our approach
in addressing ASQP tasks.1

1 Introduction

Aspect sentiment quad prediction (ASQP) has re-
cently attracted widespread attention in the field
of aspect-based sentiment analysis (ABSA), a fine-
grained sentiment analysis task that aims to extract
more comprehensive sentiment elements that in-
clude (1) aspect terms (at); (2) opinion terms (ot);
(3) aspect categories (ac); (4) sentiment polarity
(sp). An instance is shown in the upper half of
Figure 1.

ASQP subtasks usually entail identifying at and
excavating its corresponding ac, then establishing

∗Corresponding author
1Code for our method is available at : https://github.

com/ch11en/GDP_

Sentence The battery life is so good .
Label  (battery life, good, battery quality, positive)

Sentence I had it on my desk and was watching YouTube videos and it 
went black .

Label (NULL, NULL, the laptop functionality, negative) 
Pred (i, NULL, the laptop functionality, negative)❌
Sentence It is simply amazing .
Label (NULL, amazing, the restaurant overall, positive)
Pred (NULL, amazing, the ambience, positive)❌

Correct Example

Two Error Cases

Figure 1: The results of Label and Pred are presented
in the order of (at, ot, ac, sp), with items containing
prediction errors highlighted in red font text.

connections between them by incorporating sup-
porting ot and/or sp. However, more than 30% of
sentiment expressions manifest implicitly (Peper
and Wang, 2022; Cai et al., 2021) in practice, pos-
ing significant challenges in accurately extracting
quadruples from sentences containing implicit at
and/or ot.

Owing to its extensive applicability across var-
ious scenarios, considerable efforts have been de-
voted to ABSA (Pontiki et al., 2016; Zhang et al.,
2022a). Presently, there are two predominant
methodologies. (1) Pipeline approaches (Zhang
et al., 2022a) render multitasking learning more
intuitive by dedicating each module to solving spe-
cific tasks. However, this method often overlooks
inter-element relationships, rendering it susceptible
to the cascading effects of error propagation (Wu
et al., 2020). (2) Generative approaches (Zhang
et al., 2022a) enable end-to-end solutions for ASQP,
thereby mitigating potential error propagation en-
countered in pipeline-based approaches. By learn-
ing to generate sentiment elements in the form of
natural language, these approaches harness the se-
mantics of sentiment elements to the fullest, specif-
ically addressing the challenges associated with
easily omitted at and ot elements.

While the aforementioned methodologies offer
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valuable insights into addressing ASQP tasks, they
fall short in generating stable outputs, including
errors in outputting semantically similar words, in-
clusion of unfriendly implicit words, and output du-
plication, as illustrated in the lower half of Figure
1. Xu et al. (2021) introduced a span-based method
to address these issues by serializing sentiment-
related “word sequences” and rating them. How-
ever, this approach is prone to overlooking scat-
tered or implicit sentiment information. Wu et al.
(2020) proposed a table-filling approach, but this
method diminishes the model’s sensitivity to the in-
terplay among elements. Furthermore, Zhang et al.
(2022b) argue that independently assigning each
label in the table-filling method may lead to dis-
crepancies, potentially resulting in incorrect output
predictions.

Therefore, we take notice of the diffusion models
(Ho et al., 2020; Li et al., 2022) that were employed
to address noise in signal propagation. The train-
ing process of the diffusion model involves two
stages: the forward noise addition process and the
reverse denoising process. The model is based on a
neural network, which has memory and denoising
capabilities and can effectively learn the charac-
teristics of the datasets. Drawing inspiration from
these models, we introduce Grid Noise Diffusion
Pinpoint Network (GDP), a T5-based generative
model aiming to tackle the issue of generation insta-
bility. Within our model, we propose the Diffusion
Vague Learning (DVL) mechanism to emulate the
forward process to construct vague grids and utilize
a golden grid to guide the backward convergence
process. Furthermore, we introduce a novel loss
calculation target called Consistency Likelihood
Learning (CLL) to consolidate identical sentiment
elements and thereby reduce each elements dis-
tribution noise generated during training process.
Finally, we design a novel output template named
GDP-FOR to enhance the naturalness of the gen-
erated results. The contributions of this paper are
outlined as follows:

• We propose GDP to mitigate the inherent mis-
takes of pre-trained language models by incor-
porating DVL into the T5 model. To the best
of our knowledge, this is the first attempt to
combine the diffusion concept into the ASQP
task.

• We propose CLL to bring different sentiment
elements within the same quadruple closer

together. This objective effectively improves
the model’s ability to discriminate complex in-
put elements and reduce vague noise, thereby
assisting the model in extracting quadruples.

• We design a new generation template called
GDP-FOR, which takes into account both
grammar and human intuition, in order to en-
able the model to produce results in a more
natural manner.

• We conducted extensive experiments on
Res15, Res16, Laptop, and Restaurant
datasets. The results demonstrate that GDP
can offer superior performance over baselines,
which indicates the universal effectiveness of
our model.

2 ASQP Task Definition

We adhere to the definitions established in previous
works focused on generation-based methods (Hu
et al., 2022; Zhang et al., 2021a; Cai et al., 2021;
Hu et al., 2023). The ASQP task aims to predict
all aspect-level quadruplets Q1, Q2, ..., Qn in the
source sentence S, where Qi = (ati, aci, oti, spi).
Each component represents the aspect term, as-
pect category, opinion term, and sentiment polarity.
Quadruples will be marked as implicit when lack-
ing clear at or ot (Peper and Wang, 2022).

3 Methodology

In this section, we will introduce the constituent
elements of GDP: (1) Diffusion Vague Learning
(DVL), a noise mitigation module; (2) Consistency
Likelihood Learning (CLL), a novel objective for
calculating sentiment distribution that aids in reduc-
ing noise generated by various sentiment elements;
(3) GDP-FOR, a rational generation format that
is more suitable for realistic scenarios. These ap-
proaches are specifically designed to enhance the
model’s intentional generation capabilities and mit-
igate the impact of implicit expressions noise and
other noise. The overall structure is depicted in
Figure 2.

3.1 Diffusion Vague Learning

The distribution of sentiment elements and the map-
ping vector space generated by a semantically sim-
ilar sentence are often closely aligned (Peper and
Wang, 2022), posing challenges in differentiating
noise from the actual sentence and extracting the
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Figure 2: Overall structure of GDP model.

correct quadruple. To address this concern, we in-
troduce DVL to acquire the desired samples. Each
sample is derived through multiple self-attention
mechanisms within the enhanced transformer ar-
chitecture (Vaswani et al., 2017).

Vague Matrix Learning As can be seen in the
the upper middle part of Figure 2, The states he
obtained from the encoder layer undergo a linear
layer to construct the vertical axis of the vague grid.

V me = Softmax(Norm(Pool(Linear(he)))) (1)

The label l and the aspect category mask matrix
M are combined and subsequently sent to the De-
cLayer (Decoder layer) for training, where padid
represents pad token ID that set to −100 and t de-
notes the iteration step.

h
(t)
d = DecLayer(l ·M (t) + (1−M (t))× (padid)) (2)

Building upon the conception of the Diffusion
model (Ho et al., 2020) and Diffusion-LM (Li et al.,
2022), we insert a trace of vague factors V F (t),
which follows a Gaussian distribution, into h

(t)
d at

each time step t to simulate the forward diffusion
process.

V
(t)
d = h

(t)
d · V F (t) (3)

Subsequently, the outputs V (t)
d are concatenated to

obtain a vague matrix V md. Afterward, we feed

...

Guidance Grid

TGrid 1TGrid  1Grid

------ : Gradient guide update
—— : Grid comparison

Vague grid Denoising simulation

Figure 3: Denoising simulation. This part is an explana-
tion of the third part in the overall structure diagram of
the model of Figure 2

Vm into a linear layer to produce the final result
after softmax operations:

V md = Softmax(Linear(Concat(V
(1)
d , ..., V

(t)
d ))) (4)

Vague Grid Loss Objective The outputs from
the encoder V me and decoder V md are combined
through concatenation. Subsequently, these merged
outputs are fed into the grid model for integration,
forming a comprehensive grid G for predictions.

G(t) = Grid Linear






[V m
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e , V m
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d ] . . . [V m
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e , V m

(m)
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. . .

...
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(1)
e , V m

(m)
d ]





 (5)

As depicted in the right portion of Figure 2, a
reference grid, known as the “Golden Guidance
Grid”, is utilized as an instructor to steer the back-
ward convergence process. The iterative process is

3719



depicted in Figure 3.

Lgrid = − 1

T

∑

t∈T
Ggolden grid · log(G(t)) (6)

3.2 Sentiment Distribution Learning
Consistency Likelihood Learning CLL seeks
to understand the similarity in consistency distri-
bution for each sentiment element to reduce the
probability of noise generation. As illustrated in
Figure 2, we observe the likelihood of each senti-
ment element aligning with the ground-truth sen-
timent label ŷat, ŷot, ŷsp (abbreviated as ŷ(at,ot,sp),
the following y and Mask are the same).

y
(t)
(at,ot,sp) = Linear(H

(t)
e · Element Mask(at,ot,sp)) (7)

For each correct sentiment element, we need to
bring it closer to the corresponding correct senti-
ment label ŷ(at,ot,sp). For each ambiguous sam-
ple elements, we differentiate error samples to the
greatest extent possible. In this way, both the cor-
rect and incorrect elements can be considered si-
multaneously.

L(at,ot,sp) = −
∑

t∈T
y
(t)
(at,ot,sp) log(ŷ(at,ot,sp)) (8)

Joint Distribution Learning Objective Joint
distribution learning considers the distribution of
each learned sentiment element and the influence
of the vague noise factor. The ultimate training
objective is to concurrently integrate the four afore-
mentioned losses:

Ltotal = Lgrid + Lat + Lot + Lsp (9)

3.3 Structured Generation Format
Previous Structured Generation Formulation
In a previous work, Zhang et al. (2021a) linearize
the Qi = (ati, aci, oti, spi) into an output format
P(Qi) and utilize it as the generation goal:

P(Qi) = Pac(aci) is Psp(spi) because Pat(ati) is Pot(oti) (10)

The mapping function is as follows: (1) If at
and/or ot are explicitly stated, Pat = at and/or
Pot = ot; otherwise, Pat and/or Pot is set to NULL;
(2) ac will be converted into the pre-defined map-
ping rule C, such as Pac = {the support quality}
for ac = {SUPPORT#QUALITY}; (3) sp will be
mapped into sentiment semantic words {great, ok,
bad} for clearer expression. The upper left corner
of Figure 2 shows the quadruple elements.

Datasets Laptop Restaurant
#Categories 121 13
#Sentences 4076 2286
#EAEO Quads 3269 (56.8%) 2429 (66.40%)
#EAIO Quads 1237 (21.5%) 350 (9.57%)
#IAEO Quads 910 (15.8%) 530 (14.5%)
#IAIO Quads 342 (5.94%) 349 (9.54%)

Table 1: ACOS dataset statistics.

Datasets Res15 Res16 Restaurant Laptop

Train
#Sent 834 1264 2934 1530
#Quad 1354 1989 4172 2484

Dev
#Sent 209 316 326 171
#Quad 347 507 440 261

Test
#Sent 537 544 816 583
#Quad 795 799 1161 916

Quad/Sent ratio (%) 1.58 1.55 1.42 1.60

Table 2: Overall statistics.

If a sentence contains multiple quadruples, a
special separator token [SSEP] will be inserted to
create segmentation. In the end, we obtain the
output:

P(Q1) [SSEP ] P(Q2) ... [SSEP ] P(Qn) (11)

Hu et al. (2022) utilize special tokens to separate
individual sentiment elements and demonstrate that
the effectiveness of a template order varies across
diverse datasets. An example of one of their tem-
plates is provided below:

[AT ] xat [OT ] xot [AC] xac [SP ] xsp (12)

GDP Structured Generation Format In this
work, we design a more rational generation format
named GDP-FOR for the GDP model. Specifically,
we give at the highest priority, followed by ot to en-
sure logical coherence and alignment with human
intuition. Subsequently, due to the strong affiliation
among ac, at, and ot, ac is placed third in order.
Finally, sp is required to encompass all fine-grained
sentiment elements, so it is positioned at the end of
the template. The procedure is outlined as follows:

The Pat(at) is Pot(ot) | Pac(ac) | Psp(sp) (13)

4 Experimental Setups

In this section we introduce the detailed experimen-
tal setups on which our experiments rely.

Datasets We conduct experiments on four
datasets: Res15, Res16, Restaurant, and Laptop.
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The first two datasets, proposed by (Zhang et al.,
2021a), are classic ASQP task datasets, while the
last two, proposed by (Cai et al., 2021), include
numerous implicit words. Detailed ACOS statistics
are provided in Table 1, and the overall statistics
are presented in Table 2.

Evaluation Metrics The F1 scores used in our
method are the primary evaluation metric, and cor-
responding precision and recall scores will also be
reported. The correctness of a predicted quad is
affirmed when all the predicted elements precisely
match the gold labels.

Implementation Details The T5-BASE model
(Raffel et al., 2020) serves as the foundation for
implementing the GDP model, employing a tradi-
tional Transformer encoder-decoder architecture.
The experiment is conducted using PyTorch version
1.13.1 and executed on a single Nvidia RTX 3090
GPU. During the training phase, we set the batch
size, training epochs, and optimizer parameters to
8, 20, and Adam (Kingma and Ba, 2014), respec-
tively. The learning rate was fine-tuned on various
datasets to optimize performance. In the inference
phase, a beam search with a value of 5 is employed
for generating output sentences. Although we ex-
perimented with setting the beam search from 2 to
10, the results indicated that setting it to 5 yields the
best outcomes. Ultimately, we present the results
based on the averaged scores obtained from 5 runs
with different random seed initializations.

Comparison Method We meticulously compare
the GDP model against a selection of robust base-
lines, encompassing both non-generation and gen-
eration methods. (1) Pipeline Methods: Double-
Propagation-ACOS (Cai et al., 2021), JET-ACOS
(Xu et al., 2020), TAS-BERT-ACOS (Wan et al.,
2020), Extract-Classify-ACOS (Wang et al., 2017),
TASO-BERT-Linear-CRF (Zhang et al., 2021a); (2)
Generation Methods: GAS (Zhang et al., 2021b),
Paraphrase (Zhang et al., 2021a), Seq2Path (Mao
et al., 2022), GEN-SCL-NAT (Peper and Wang,
2022), Special_Symbols (Hu et al., 2022), Spe-
cial_Symbols+UAUL (Hu et al., 2023), OTG (Bao
et al., 2022), MVP (Gou et al., 2023), DLO (Hu
et al., 2022), DLO+UAUL (Hu et al., 2023).

5 Experimental Results

5.1 Overall Results
The experimental results of the model on the ACOS
and ASQP datasets are presented in Table 3 and

4. In terms of the ACOS datasets, GDP demon-
strates superior performance in F1 score compared
to other methods. A particularly notable obser-
vation is the comparison with the robust baseline
OTG, where the GDP model showcases absolute
F1 score enhancements of 1.38% on the Restau-
rant dataset and 0.44% on the Laptop dataset. GDP
also exhibits commendable performance on the two
ASQP datasets. While the GDP model may exhibit
suboptimal results on Res15, it attains state-of-the-
art results on Res16 dataset. Importantly, when jux-
taposed with a robust baseline like DLO+UAUL,
the GDP model achieves noteworthy absolute F1
score improvements of 1.11%.

Pipeline methods, placed above the dashed line
in both tables, have shown deficiencies in terms of
all indicators. These challenges could potentially
arise from error accumulation across multiple sub-
tasks. Among the methods below the dashed line
in both tables, the inconspicuous performance of
generative methods may be attributed to two fac-
tors: limited sensitivity to noise factors and weak
denoising ability in model generation. Therefore,
we posit that the robust performance of the GDP
model primarily stems from its improved ability
to capture noise in multi-scale local and global
features through a meticulously designed forward
diffusion and reverse guidance process, along with
a carefully crafted output template. Additionally,
the model introduces a novel sentiment distribution
computation objective, enabling it to obtain a clear
distribution of consistent sentiment labels within
the same quadruple for better extraction of both
explicit and implicit aspect sentiment quadruples
in sentences.

5.2 Ablation Study

To assess the effectiveness of individual compo-
nents, we conducted a comprehensive ablation
study on the GDP model by excluding various
components of the technique. The ablation study
outcomes on the ACOS and ASQP datasets are pre-
sented in Table 5 and 6, respectively. Specifically,
the ‘✗’ and ‘✓’in the first three columns respec-
tively indicate whether a module is included or not.
It can be observed that by removing various compo-
nents, performance on the four datasets consistently
decreases (average decrease of 1.91%).

DVL Ablation Our initial goal in building the
DVL module is to assist the model in recogniz-
ing both explicit and implicit noise within the
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Methods
Laptop Restaurant

Pre % Rec % F1 % Pre % Rec % F1 %
Double-Propagation-ACOS 13.04 ▼33.8% 0.57 ▼43.63% 8.00 ▼37.48% 34.67 ▼30.04% 15.08 ▼48.63% 21.04 ▼43.17%
JET-ACOS 44.52 ▼2.32% 16.25 ▼27.95% 23.81 ▼21.67% 59.81 ▼4.9% 28.94 ▼34.77% 39.01 ▼25.2%
TAS-BERT-ACOS 47.15 ▲0.31% 19.22 ▼24.98% 27.31 ▼18.17% 26.29 ▼38.42% 46.29 ▼17.42% 33.53 ▼30.68%
Extract-Classify-ACOS 45.56 ▼1.28% 29.48 ▼14.72% 35.80 ▼9.68% 38.54 ▼26.17% 52.96 ▼10.75% 44.61 ▼19.6%
GAS 41.60 ▼5.24% 42.75 ▼1.45% 42.17 ▼3.31% 60.69 ▼4.02% 58.52 ▼5.19% 59.59 ▼4.62%
Paraphrase 41.77 ▼5.07% 42.56 ▼1.64% 43.34 ▼2.14% 58.98 ▼5.73% 59.11 ▼4.60% 59.04 ▼5.17%
Seq2Path - - 42.97 ▼2.51% - - 58.41 ▼5.8%
GEN-SCL-NAT - - 45.16 ▼0.32% - - 62.62 ▼1.59%
MVP - - 43.92 ▼1.56% - - 61.54 ▼2.67%
Special_Symbols 43.58 ▼3.26% 42.72 ▼1.48% 43.15 ▼2.33% 59.98 ▼4.73% 58.40 ▼5.31% 59.18 ▼5.03%
OTG 46.11 ▼0.73% 44.79 ▲0.59% 45.44 ▼0.04% 63.96 ▼0.75% 61.74 ▼1.97% 62.83 ▼1.38%
GDP (ours) 46.84 44.20 45.48 64.71 63.71 64.21

Table 3: Comparison results on ACOS datasets. The best results are highlighted in bold, and the suboptimal results
underlined. All comparative model data were obtained from the corresponding papers.

Methods
Res15 Res16

Pre % Rec % F1 % Pre % Rec % F1 %
TASO-BERT-Linear 41.86 ▼7.34% 26.50 ▼8.45% 32.46 ▼17.29% 49.73 ▼11.43% 40.70 ▼21.38% 44.77 ▼16.84%
TASO-BERT-CRF 44.24 ▼4.96% 28.66 ▼21.65% 34.78 ▼14.97% 48.65 ▼12.51% 39.68 ▼22.40% 43.71 ▼17.90%
Extract-Classify-ACOS 35.64 ▼13.56% 37.25 ▼13.06% 36.42 ▼13.33% 38.40 ▼22.76% 50.93 ▼11.15% 43.77 ▼17.84%
GAS 45.31 ▼3.89% 46.70 ▼3.61% 45.98 ▼3.77% 54.54 ▼6.62% 57.62 ▼4.46% 56.04 ▼5.57%
Paraphrase 46.16 ▼3.04% 47.72 ▼2.59% 46.93 ▼2.82% 56.63 ▼4.53% 59.30 ▼2.78% 57.93 ▼3.68%
Special_Symbols+UAUL 49.12 ▼0.08% 50.39 ▲0.08% 49.75 59.24 ▼1.92% 61.75 ▼0.33% 60.47 ▼1.14%
DLO+UAUL 48.03 ▼1.17% 50.54 ▲0.23% 49.26 ▼0.49% 59.02 ▼2.14% 62.05 ▼0.03% 60.50 ▼1.11%
GDP (ours) 49.20 50.31 49.75 61.16 62.08 61.61

Table 4: Comparison results on ASQP datasets. The best results are highlighted in bold, and the suboptimal results
underlined. All comparative model data were obtained from the corresponding papers.

data. Therefore, we conducted ablation experi-
ments by removing its constituent part to demon-
strate whether the DVL module is valid. The re-
sults reveal the most significant degradation across
all datasets (an average decrease of 1.31% in the
ACOS datasets and 1.06% in the ASQP datasets),
substantiating its ability to aid the model in rec-
ognizing noise and contributing to more accu-
rate quadruplet extraction. Notably, performance
degradation on the ASQP datasets is not as pro-
nounced as on the ACOS datasets. We posit that the
abundance of implicit words in the ACOS dataset
sparked the model’s interest in learning these nu-
ances, thereby assisting in generating "more pure"
template sentences.

CLL Ablation We contend that the elimination
of the CLL component, which involves process-
ing the original sentiment elements directly rather
than the clustered sentiment elements, would lead
to a reduction in the model’s sensitivity to the dis-
tribution of sentiment elements. The results from
the two tables clearly indicate a consistent decline
in performance across all datasets (an average de-
cline of 1.29% in the ACOS datasets and 0.85% in
ASQP datasets) upon removing these components.
This underscores the efficacy of the CLL module

in helping the model attain deeper and more pre-
cise insights. CLL encourages the model to cap-
ture subtle connections among various sentiment
elements by clustering similar elements and dis-
tancing different elements, effectively narrowing
the gap between correct words, similar words, and
implicit elements. Ultimately, this aids the model
in achieving excellent performance.

GDP-FOR Ablation To validate the effective-
ness of the GDP-FOR components, we replace
GDP-FOR with the original generation template
(10). As depicted in Tables 5 and 6, excluding GDP-
FOR has a noticeable negative impact on overall
performance (an average decrease of 1.01% in the
ACOS datasets and 0.74% in the ASQP datasets).
Particularly noteworthy is the substantial impact
on the Laptop dataset (45.48% → 44.04%), distin-
guished by a higher number of ac (121 vs. 13 for
the Laptop and Restaurant datasets), an increased
volume of sentences, and more intricate implicit
representations than the Restaurant datasets. We
posit that another reason for the diminished per-
formance upon removing GDP-FOR is the redun-
dancy present in the original template, which poses
challenges for accurate generation by the model.
This confirms our belief that a meticulously de-
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DVL CLL GDP-FOR Restaurant Laptop Avg
✓ ✓ ✓ 64.21 45.48 -
✗ ✓ ✓ 63.13▼1.08% 43.94▼1.54% ▼1.31%
✓ ✗ ✓ 63.17▼1.04% 43.95▼1.53% ▼1.29%
✓ ✓ ✗ 63.48▼0.73% 44.04▼1.44% ▼1.01%
✗ ✗ ✗ 61.94▼2.27% 43.57▼2.14% ▼2.09%

Table 5: Ablation study results on ACOS datasets. We
use F1 score as the main criterion for consideration.

DVL CLL GDP-FOR Res15 Res16 Avg
✓ ✓ ✓ 49.75 61.61 -
✗ ✓ ✓ 48.72▼1.03% 60.53▼1.08% ▼1.06%
✓ ✗ ✓ 48.91▼0.84% 60.76▼0.85% ▼0.85%
✓ ✓ ✗ 49.02▼0.73% 60.87▼0.74% ▼0.74%
✗ ✗ ✗ 48.12▼1.63% 59.78▼1.83% ▼1.73%

Table 6: Ablation study results on ASQP datasets. We
use F1 score as the main criterion for consideration.

signed output template is crucial for handling multi-
quadruple examples.

In summary, our complete GDP method consis-
tently delivers robust performance, with its compo-
nents synergistically addressing the intricate chal-
lenges inherent in the ACOS and ASQP tasks.

5.3 Analysis of Vague Grid Weight
As illustrated in Figure 4a, we present the results
of the GDP model across different grid weight con-
figurations on four datasets to analyze the impact
of varying vague grid weights for the loss func-
tion on performance. It is observed that as λgrid
gradually increases from 0 to 1, the F1 values for
all datasets initially rise then fluctuate and decline,
which confirms that simulating the iterative pro-
cess of diffusion models using a vague grid can
effectively improve sensitivity toward noise factors
generated during training. Moreover, we observe
that the Res15 and Restaurant datasets are less af-
fected by changes in grid weights. We attribute
this difference to the sent/quad ratio in each dataset.
The higher the proportion, the more quadruples a
sentence contains, which invisibly creates difficul-
ties for model generation.

5.4 Analysis of Iterative Steps in Diffusion
Vague Learning

In this subsection, we conducted ablation experi-
ments on the number of iteration steps for adding
noise during the DVL stage of the model. Figure 4b
shows our experimental results on the four datasets.
As the number of time steps progresses from 0 to
20, the F1 performance of model transitions from
subpar to satisfactory, eventually declining, which
proves that the number of time steps in simulat-
ing diffusion processes has a significant impact

on model performance. A plausible interpretation
suggests that when the number of time steps is
low, the noise level is insufficient for the model
to capture obvious features of sentiment elements.
Conversely, with a large number of time steps, the
model struggles to accommodate all the noisy data,
highlighting the need for further enhancements in
our diffusion simulation model.

5.5 Error Analysis and Case Study

We conducted an error analysis on our model with
the aim of gaining a comprehensive understanding
of its prediction behavior and identifying the rea-
sons for errors. Randomly selecting 100 sentences
from the Dev set of each dataset, we utilized the
trained model to generate predictions. The genera-
tion results are illustrated in Figure 5.

In the first example, the actual ot in the label
is ‘NULL’. However, our model implicitly char-
acterizes the ot as ‘expected’. Similarly, in the
second case, the output is ‘i’ in the position of the
at, whereas the expected label is ‘NULL’. Although
the at is explicit, our approach incorrectly predicts
the at. We believe there are two possible reasons
for this phenomenon: (1) the model may not have
learned sufficiently rich semantic representations;
(2) it may have learned excessive noise information
in vague matrix learning. While GDP has consis-
tently achieved performance improvements across
various generative methods, particularly in address-
ing issues related to implicit information sensitivity,
further research is needed to assist models in dis-
tinguishing implicit elements.

6 Related Work

6.1 Aspect-Level Sentiment Analysis

Early investigations into aspect-based sentiment
analysis (ABSA) primarily focused on individual
elements, such as aspect term extraction (ATE)
(Liu et al., 2015; Xu et al., 2018), aspect category
detection (ACD) (Zhou et al., 2015; Tulkens and
van Cranenburgh, 2020), opinion term extraction
(OTE) (Li et al., 2018; Mensah et al., 2021), and
aspect sentiment classification (ASC) (Wang et al.,
2021; Zhou et al., 2021). At present, researchers
are progressively placing greater emphasis on ex-
tracting compound sentiment elements (Zhu et al.,
2023). Scholars represented by (Zhao et al., 2020;
Liang et al., 2020; Liu et al., 2021) have refined
the single element extraction and proposed some
branch direction such as aspect-opinion pair extrac-
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(a) Evaluation results of vague grid weight analysis (b) Evaluation results of time step analysis

Figure 4: Analysis of the impact of module weights on model performance.

Sentence this computer was 10 fold what i had expected.

Label (computer, NULL, the laptop overall, positive) 

Pred (computer, expected, the laptop overall, positive)❌
Sentence i have been going back again and again.
Label (NULL, NULL, the restaurant overall, positive)
Pred (i, NULL, the restaurant overall, positive)❌

Error Cases Predicted By GDP  

Figure 5: GDP error case display.

tion (AOPE), End-to-End ABSA (E2E-ABSA), and
aspect category sentiment analysis (ACSA). Peng
et al. (2020) focus on aspect sentiment triplets.

Recently, Aspect Sentiment Quadruple Extrac-
tion (ASQP), a new research direction aiming to
process whole sentiment elements, has drawn much
attention. To implement this approach, researchers
have introduced a pipeline method (Cai et al.,
2021) and a generation-based method (Zhang et al.,
2021a). Numerous experiments have shown that us-
ing generative methods for ASQP tasks is more ef-
fective, which is currently the mainstream approach
because of its simplicity and end-to-end manner of
generation. In subsequent improvement research,
Hu et al. (2022) modified the output sequence of the
model to demonstrate the effectiveness of element
arrangement for generative ASQP tasks. Peper and
Wang (2022) introduced contrastive learning to ob-
tain representations of explicit and implicit exam-
ples to assist learning, and also achieved excellent
results.

6.2 Concept of Diffusion Model

Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) were originally proposed in the field of
computer vision to address the noise problem; these

were originally latent variable models designed
for continuous data domains. The model training
process can be divided into two steps: the forward
noise addition process and the reverse denoising
process.

The forward process originates from data x0 ∼
q(x). The model adds the noise corresponding to
time step t and obtains output xt according to xt−1.
At step T (the final time step) to obtain xT , the data
is transformed into an invisible noise distribution.
In the reverse process, according to the given condi-
tion xt (t decrements from T to 0), Bayes’ theorem
is used to determine xt−1. As a result, the target
sentence or image can be generated by iteratively
sampling noise.

In contrast to the above works on ASQP, we
borrowed the idea of the forward noise addition
process and reverse denoising process from diffu-
sion models to handle the noise during the training
process.

7 Conclusion

In this article, we note that previous studies on
ASQP have exclusively focused on essential con-
tent for model generation, overlooking the incorpo-
ration of various noise during the training process.
In this research, we introduce a novel denoising ap-
proach called Diffusion Vague Learning (DVL) and
seamlessly integrate it into the T5 model, thus es-
tablishing a GDP model. Simultaneously, we incor-
porate Consistency Likelihood Learning (CLL) to
address the problem of sentiment element fragmen-
tation during model training, effectively reducing
the generation of noise. Finally, we meticulously
design an output template for the GDP model that
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aligns more closely with human intuition and gram-
matical rules. Extensive experiments demonstrate
that the GDP method achieves cutting-edge results.

8 Limitations

Our work represents the pioneering exploration
of integrating generative ASQP tasks with diffu-
sion concepts. Despite achieving state-of-the-art
performance, our approach grapples with certain
limitations:

Firstly, GDP still encounters challenges when
dealing with robust implicit works noise as well as
other noise. Instances highlighted in the error anal-
ysis (refer to §5.5) underscore that complex cases
demand a more profound semantic understanding.
While GDP exhibits substantial advancements in
the generation paradigm, determining the most ef-
fective type of noise treatment remains a challenge.

Secondly, the grid diffusion method necessitates
the construction of a two-dimensional table repre-
sentation. Consequently, the size of the table repre-
sentation is notably larger than that of the sequence
representation. Hence, our method consumes more
training memory than alternative approaches.

We firmly believe that addressing the aforemen-
tioned limitations can lead to further enhancements
in the model.
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