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Abstract
Human preference alignment is essential to
improve the interaction quality of large lan-
guage models (LLMs). Existing alignment
methods depend on manually annotated pref-
erence data to guide the LLM optimization
directions. However, continuously updating
LLMs for alignment raises a distribution gap
between model-generated samples and human-
annotated responses, hindering training effec-
tiveness. To mitigate this issue, previous meth-
ods require additional preference annotation on
newly generated samples to adapt to the shifted
distribution, which consumes a large amount
of annotation resources. Targeting more effi-
cient human preference optimization, we pro-
pose an Adversarial Preference Optimization
(APO) framework, in which the LLM and the
reward model update alternatively via a min-
max game. Through adversarial training, the
reward model can adapt to the shifted gen-
eration distribution of the LLM without any
additional annotation. With comprehensive
experiments, we find the proposed adversar-
ial training framework further enhances ex-
isting alignment baselines in terms of LLM
helpfulness and harmlessness. The code is at
https://github.com/Linear95/APO.

1 Introduction
Learned from massive textual data with billions
of parameters, large language models (LLMs),
such as GPT-4 (OpenAI, 2023) and Gemini (Team
et al., 2023), have shown remarkable AI capabil-
ities, especially in domains of natural language
processing (Jiao et al., 2023; Han et al., 2023),
logical reasoning (Liu et al., 2023a; Frieder et al.,
2023), and programming (Surameery and Shakor,
2023; Tian et al., 2023). Among the training tech-
niques that help LLMs achieve such success, hu-
man preference alignment finetunes LLMs to fol-
low users’ feedback, which has been widely rec-
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ognized as essential for improving human-model
interaction (Ouyang et al., 2022). However, highly
qualified human feedback requires meticulous an-
notations of query-response pairs in various top-
ics (Askell et al., 2021), which is rather challeng-
ing and forms a sharp contrast to the easy access
of enormous unsupervised pretraining text corpus.
Hence, the limitation of preference data collection
raises demands for training sample efficiency of
preference alignment methods (Yuan et al., 2023;
Sun et al., 2023; Rafailov et al., 2023).

To utilize preference data, current feedback
alignment methods are proposed mainly from three
perspectives (Wang et al., 2023b): reinforcement
learning (Ouyang et al., 2022), contrastive learn-
ing (Yuan et al., 2023; Rafailov et al., 2023;
Liu et al., 2023c), and language modeling (Dong
et al., 2023; Touvron et al., 2023b; Wang et al.,
2023a). Reinforcement learning with human feed-
back (RLHF) (Kreutzer et al., 2018; Ziegler
et al., 2019) is the earliest exploration and has
been acknowledged as the mainstream for LLM
alignment (Ouyang et al., 2022; Touvron et al.,
2023b). RLHF first learns a reward model from
the human preference data, then optimizes the ex-
pected reward score of the LLM’s output samples
via the Proximal Policy Optimization (PPO) algo-
rithm (Schulman et al., 2017). Although widely
used, RLHF has been criticized as being unstable
during the fine-tuning and complicated in imple-
mentation and computational resource consump-
tion (Yuan et al., 2023; Rafailov et al., 2023).

Towards more efficient and stable training, in-
stead of directly optimizing the non-differentiable
rewards, contrastive learning methods enlarge the
likelihood gap between preferred and rejected re-
sponse pairs (Yuan et al., 2023; Rafailov et al.,
2023; Zhao et al., 2023). Alternatively, language
modeling-based methods remain using language
modeling loss to align preference, but with different
data preparation strategies (Dong et al., 2023; Liu
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et al., 2023b; Wang et al., 2023a). For example, re-
jection sampling (Dong et al., 2023; Touvron et al.,
2023b) select responses with top reward scores as
the language modeling fine-tuning samples, while
Wang et al. (2023a) and Liu et al. (2023b) add dif-
ferent prompts to different responses based on the
corresponding preference levels.

Although contrastive-learning and language-
modeling-based methods have partially alleviated
the inefficiency of RLHF, the sampling distribu-
tion shifting problem (Touvron et al., 2023b) still
hinders the alignment effectiveness: after a few
steps of RLHF updates, a distribution gap emerges
between LLM generated samples and preference-
annotated data (as in Figure 1). Consequently, the
reward model learned with human annotation loses
its performance in providing faithful reward signals
on newly generated responses, which damages the
alignment performance. To address this problem,
most aforementioned alignment methods require
additional annotation of human feedback on newly
generated responses after a certain amount of LLM
updating steps (Touvron et al., 2023b), which leads
to increasingly massive manpower costs (Askell
et al., 2021). Besides, the vast time consumption
of extra manual annotation also significantly slows
down the alignment training process.

To reduce the manual annotation efforts and
improve the preference optimization efficiency,
we propose a novel adversarial learning frame-
work called Adversarial Preference Optimization
(APO). Inspired by generative adversarial net-
works (GANs) (Goodfellow et al., 2014; Arjovsky
et al., 2017), we conduct an adversarial game
between the reward model (RM) and the LLM:
the LLM generates responses to maximize the ex-
pected reward score, while the RM aims to dis-
tinguish the score difference between golden and
sampled responses. To verify the effectiveness of
the APO framework, we conduct experiments on
the Helpful&Harmless (Bai et al., 2022) datasets
with Alpaca (Taori et al., 2023) and LLaMA-2 (Tou-
vron et al., 2023b) as the base models. With the
same amount of human preference data, both the
LLM and RM receive additional performance gains
through the APO game, compared with several
commonly used LLM alignment baselines.

2 Preliminary
Human Preference Alignment aims to fine-tune
the LLM response policy πθ(y|x) with a group
of human preference data DP = {(x,yw,yl)},

Figure 1: Sampling distribution shifting: after LLM
updating, the response sample distribution shifts (from
the blue curve to the green curve), raising a gap with the
preference annotation range.

so that the LLM can generate more satisfying
responses to improve the human-model interac-
tion quality. In each preference triplet (x,yw,yl),
yw ≻ yl means response yw is more “preferred”
than yl with respect to input x. To align the LLM,
a reward model (RM) (Christiano et al., 2017;
Ouyang et al., 2022) rϕ(x,y) is commonly utilized
to score the quality of the LLM generated samples.
RM learns human preferences DP with a ranking
loss (Bradley and Terry, 1952) Lrank(rϕ;DP) :=

−EDP [log σ(rϕ(x,y
w)− rϕ(x,y

l))], (1)

where σ(·) is the Sigmoid function. For a response
pair (y, ỹ), the reward difference rϕ(x,y) −
rϕ(x, ỹ) provides a preference probability :

Qϕ(y ≻ ỹ|x) = exp(rϕ(x,y))

exp(rϕ(x,y)) + exp(rϕ(x, ỹ))

=σ(rϕ(x,y)− rϕ(x, ỹ)). (2)

With equation 2, training RM with the Bradley-
Terry ranking loss can be explained as the log-
likelihood maximization of Qϕ:

Lrank(rϕ;DP) = −EDP [logQϕ(y
w ≻ yl|x)] (3)

With a learned RM rϕ(x,y), human preference
alignment methods (Ouyang et al., 2022; Rafailov
et al., 2023; Liu et al., 2023c) target on maximizing
the reward expectation of generated responses:

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x,y)]

−βKL[πθ(y|x)∥πref(y|x)], (4)

where πref(y|x) is a reference language model.
KL[πθ(y|x)∥πref(y|x)] prevents πθ(y|x) from the
degeneration of repeating a single response with the
highest reward score, which also preserves the gen-
eration diversity. Since response samples y are dis-
crete, it is challenging to directly back-propagate
from reward rϕ(x,y) to policy πθ(y|x). The typ-
ical solution to equation 4 is reinforcement learn-
ing from human feedback (RLHF) (Ouyang et al.,
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2022), via the proximal policy optimization (PPO)
algorithms (Schulman et al., 2017).

However, PPO suffers from implementation
complexity and training instability (Yuan et al.,
2023; Sun et al., 2023). Recent studies try to avoid
online reinforcement learning with offline schemes.
DPO (Rafailov et al., 2023) finds a connection be-
tween the reward model and LLM’s optimal so-
lution, then replaces the reward model with the
likelihood ratio of πθ and πref, as LDPO(πθ) :=

−E
[
log σ

(
β log

πθ(y
w|x)

πref(yw|x) − β log
πθ(y

l|x)
πref(yl|x)

)]
.

Analogously, other methods consider human feed-
back learning from the perspective of contrastive
learning. For example, RRHF (Yuan et al., 2023)
propose a ranking loss as LRRHF(πθ) :=

−ED
[
ReLU(log πθ(y

l|x)− log πθ(y
w|x))

−λ logπθ(y
best|x)

]
(5)

where ybest is the corresponding response to x with
the highest reward, and the preference data D can
be built from human annotation DP or RM ranking
results. Besides, rejection sampling (RJS) (Tou-
vron et al., 2023b) (also called RAFT (Dong et al.,
2023) and best-of-N (Stiennon et al., 2020)) di-
rectly fine-tunes LLM on ybest to further simplify
the alignment process, LRJS(πθ) :=

−Ex∼D,y1,y2,...yS∼πθ(y|x)[log πθ(y
best|x)] (6)

where ybest = argmax1≤s≤S{rϕ(x,ys)} is the
sampled response with the highest reward score.
Azar et al. (2023) extend the alignment objective
into a more general form by replacing RM rϕ with
the human preference probability P (y ≻ ỹ|x):

max
πθ

Ex∼D,y∼πθ(·|x),ỹ∼µ(·|x)[Ψ(P (y ≻ ỹ|x))]

−βKL[πθ(y|x)∥πref(y|x)], (7)

where Ψ(·) is a non-decreasing real-value function.
This general alignment objective is called ΨPO.

Generative Adversarial Networks (GANs) are
a classical group of unsupervised machine learning
approaches that can fit complicated real-data distri-
butions in an adversarial learning scheme (Goodfel-
low et al., 2014). GANs use a discriminator D(·)
and a generator G(·) to play a min-max game. The
generator tries to cheat the discriminator with real-
looking generated samples, while the discriminator
aims to distinguish the true data and the samples:

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)] (8)

+ Ez∼Pz(z)[log(1−D(G(z))],

where z is a random vector from prior Pz(z) to
induce the generation sample distribution. The
objective equation 8 has been theoretically justified
as the Jensen–Shannon (JS) divergence between
distributions of real data and samples (Goodfellow
et al., 2014). Arjovsky et al. (2017) replace the JS
divergence with the Wasserstein distance (Villani,
2009) and propose the Wasserstein GAN (WGAN):

min
gθ

max
∥f∥L≤K

EPdata [f(x)]− EPz [f(gθ(z))], (9)

where ∥f∥L ≤ K requires f(·) to be a K-Lipschitz
continuous function. Wasserstein GANs have been
recognized with higher training stability than the
original GANs (Arjovsky et al., 2017).

In policy optimization of reinforcement learning,
inspired by GANs, Ho and Ermon (2016) propose
generative adversarial imitation learning (GAIL):

min
πθ

max
D

Eπθ(a|s)[log(D(s,a))] (10)

+ EπE(a|s)[log(1−D(s,a))]− λH(πθ),

where a is the corresponding action based on the
state s, D is a discriminator distinguishing differ-
ence between the learning policy πθ and an expert
policy πE, and H(πθ) is the entropy of πθ.

In natural language generation, GANs have
also been empirically explored (Zhang et al.,
2016, 2017), where a text generator samples real-
looking text and a discriminator makes judgment
between the ground-truth text and generated sam-
ples. TextGAIL (Wu et al., 2021) applies GAIL
(equation 10) into text generation, which optimizes
the language model as a response policy πθ(y|x),
by reducing the distribution divergence between
model-generated samples and human responses.

3 Adversarial Preference Optimization

We begin with a revisit of the human preference
alignment in a mathematical optimization form:

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x,y)], (11)

s.t. KL[πθ(y|x)∥πref(y|x)] < η,

which maximizes the expected reward value un-
der the generation policy πθ(y|x), under a KL-
constraint with the reference πref(y|x). Applying
the method of Lagrange multipliers, one can easily
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obtain the original alignment objective in equa-
tion 4. As discussed in Section 1, the above opti-
mization becomes ineffective after several steps of
LLM updating, because of the sample distribution
shifting problem in Figure 1. To address this prob-
lem, we aim to adapt the RM correspondingly with
the LLM updates. Inspired by GANs (Goodfellow
et al., 2014), we design the following adversarial
game between the LLM πθ and RM rϕ:
min
rϕ

max
πθ

EPθ(x,y)[rϕ(x,y)]− EPgold(x,y)[rϕ(x,y)]

s.t. KL[P (y ≻ ỹ|x)∥Qϕ(y ≻ ỹ|x)] < η2,

KL[πθ(y|x)∥πref(y|x)] < η1, (12)

where Pθ(x,y) = πθ(y|x)PD(x) is the model-
generated sample distribution, and Pgold(x,y) de-
notes the annotated golden response distribution.

Based on equation 12, we conduct an adversarial
game, in which LLM πθ(y|x) needs to improve its
response quality to get a higher expected reward,
while RM rϕ(x,y) tries to enlarge the reward gap
between the golden responses and the generation
from πθ(y|x). Inspired by the original preference
alignment objective (equation 11), we add two KL
regularizers to πθ and rϕ respectively to prevent
over-fitting and degeneration. Here P (y ≻ ỹ|x)
denotes the ground-truth human preference prob-
ability, and Qϕ(y ≻ ỹ|x) is described in equa-
tion 2. Note that we use the reverse KL[πθ∥πref] to
constrain the generative model πθ but the forward
KL[P∥Qϕ] for the discriminate model rϕ. Our in-
tuition is that KL[πθ∥πref] can be estimated with
πθ-generated samples, paying more attention to
the generation quality; while KL[P∥Qϕ] is practi-
cally estimated with groud-truth preference data,
focusing on the preference fitting ability of reward
models. We call this novel optimization form as
Adversarial Preference Optimization (APO).

To play the adversarial game above, we alter-
natively update one epoch of πθ(y|x) or rϕ(x,y)
with the other’s parameters fixed. Next, we provide
detailed descriptions of the RM optimization step
and LLM optimization step of APO separately.

3.1 RM Optimization Step
For RM optimization of APO, we fix LLM πθ(y|x)
and update rϕ(x,y). Note that in equation 12
KL[πθ(y|x)∥πref(y|x)] has no relation with rϕ, so
we can simplify the objective for RM updates:

min
rϕ

EPθ(x,y)[rϕ(x,y)]− EPgold(x,y)[rϕ(x,y)]

s.t. KL[P (y ≻ ỹ|x)∥Qϕ(y ≻ ỹ|x)] < η2 (13)

The equation 13 indicates that the APO-RM should
enlarge the reward gap between golden answers
and generated responses to challenge πθ(y|x) for
better generation quality. Note that equation 13 has
a similar form as WGANs in equation 9, which
can be intuitively explained as the calculation of
the Wasserstein distance between distributions Pθ

and Pgold. However, equation 13 is not rigorously
a Wasserstein distance because rϕ(x,y) does not
satisfy the Lipschitz continuity as described in Ar-
jovsky et al. (2017).

To practically implement APO-RM training,
we first collect a set of user queries {xm} ∼
PD(x), then annotate each xm with a golden re-
sponse y

gold
m , Dgold = {(xm,y

gold
m )}Mm=1. Each

(xm,ygold) can be regarded as a sample drawn
from Pgold(x,y). Meanwhile, we generate ys

m ∼
πθ(y|xm), so that (xm,ys

m) is a sample from
distribution Pθ(x,y) = PD(x)πθ(y|x). Denote
Dsample = {(xm,ys

m)}Mm=1. Combining ygold

and ys, we obtain an APO sample set DAPO =
{(xm,y

gold
m ,ys

m)}. Then the APO-RM objective
in equation 13 can be calculated:

min
rϕ

EPθ(x,y)[rϕ(x,y)]− EPgold(x,y)[rϕ(x,y)]

=min
rϕ

EDsample [rϕ(x,y
s)]− EDgold [rϕ(x,y

gold)]

=max
rϕ

EDAPO [rϕ(x,y
gold)− rϕ(x,y

s)]. (14)

Note that equation 14 also enlarges the reward dif-
ference between pairs of responses as the Bradley-
Terry (BT) loss (equation 1) does. Hence, for train-
ing stability, we empirically use the BT loss to
optimize equation 14 instead, Lrank(rϕ;DAPO) :=

−EDAPO

[
log σ

(
rϕ(x,y

gold)− rϕ(x,y
s)
)]

(15)

With a Lagrange multiplier β2 > 0, we convert the
KL constraint in equation 13 to a regularizer:

LAPO-RM(rϕ) = Lrank(rϕ;DAPO) (16)

+ β2KL[P (y ≻ ỹ|x)∥Qϕ(y ≻ ỹ|x)].

Note that KL[P∥Qϕ] = EP [logP − logQϕ] =
−H(P )− EP [logQϕ], where H(P ) is the entropy
of ground-truth human preference P (y ≻ ỹ|x) as
a constant for rϕ updating. As introduced in equa-
tion 2, with a preference set DP = {(xn,y

w
n ,y

l
n)}

representing samples of P (y ≻ ỹ|x), we have
−EP [logQϕ] = Lrank(rϕ;DP). Then, the overall
loss LAPO-RM(rϕ) is equivalent to:

Lrank(rϕ;DAPO) + β2Lrank(rϕ;DP). (17)
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Figure 2: The APO framework. In the RM updating step, the RM learns by distinguishing the difference between
the manually annotated golden responses and the LLM-generated samples. In the LLM updating step, the LLM
updates to generate higher-quality responses with the feedback from the RM.

The above APO-RM loss involves two datasets
DAPO and DP. Since the golden responses consume
much larger annotation resources than pair-wised
response comparison, DAPO practically has a sig-
nificantly smaller size than DP. In experiments, we
find the re-weighting parameter β requires to be
larger to avoid over-fitting on the relatively smaller
APO sample set DAPO. We conduct more detailed
ablation studies in the experimental Section 4.

3.2 LLM Optimization Step
In the APO-LLM optimization step, we fix
rϕ(x,y) and update policy πθ(y|x), which is
equivalent to the original preference optimization
in equation 4. Naturally, previous preference align-
ing methods, such as PPO (Ouyang et al., 2022),
DPO (Rafailov et al., 2023), RRHF (Yuan et al.,
2023), and RJS/RAFT (Dong et al., 2023; Liu et al.,
2023c) remain qualified to solve the optimization
and compatible with the APO framework.
Relation with WGAN If we treat rϕ(x,y) as
the score function f in equation 9, then the APO
objective has a similar form as the Wasserstein dis-
tance between generation Pθ(x,y) and annotation
Pgold(x,y). However, WGAN only has a Lipschitz
constraint for the score function f (or rϕ), but APO
objective has both KL constraints on both score rϕ
and generation policy πθ.
Relation with GAIL GAIL is also an adversarial
game designed for policy optimization. The expert
policy πE in GAIL plays a similar role as the golden
distribution Pgold in APO. However, GAIL does not
explicitly have a constraint on the discriminator D,
while APO requires RM rϕ to maintain close to the
ground-truth human preference distribution.
Relation with ΨPO If we choose the comparison
policy µ(·|x) as the golden annotation, and Ψ(·) =
log(·), the ΨPO objective:

Ex∼D,y∼πθ(·|x),ỹ∼µ(·|x)[Ψ(P (y ≻ ỹ|x))]
=Ex∼D,ys∼πθ,ygold∼Pgold

[logP (ys ≻ ygold)]

≈EDAPO [log σ(rϕ(x,y
s)− rϕ(x,y

gold))], (18)

which is exact Lrank(rϕ;DAPO) in equation 15.
Therefore, the APO RM objective is a special case
of ΨPO. However, ΨPO has neither APO’s KL reg-
ularizer to avoid RM overfitting nor the adversarial
learning scheme between rϕ and πθ.

4 Experiments

We verify the effectiveness of APO on the Help-
ful&Harmless (HH) dataset (Bai et al., 2022) with
Alpaca (Taori et al., 2023) and LLaMA-2 (Touvron
et al., 2023b) as the base LLM. Due to the limita-
tion of computational resources, we find the origi-
nal PPO (Ouyang et al., 2022) has very low training
efficiency, especially during the online sampling
process. Since recent offline alignment methods
have shown competitive performance to PPO (Yuan
et al., 2023), we choose RJS (Dong et al., 2023),
RRHF (Yuan et al., 2023), and DPO (Rafailov et al.,
2023) as baselines instead.

4.1 Experimental Setups

Data Preparation In the HH set (Bai et al.,
2022), each query is answered with two responses.
Annotators are asked to label “chosen” or “reject”
for each response based on the interaction quality.
To use HH data for APO experiments, we split the
HH set into three parts as in Table 1:

• Training Data: For separately updating the RM
and LLM, we randomly split HH into an RM
training set (HHRM, 20K queries) and an LLM
training set (HHLLM, 66K queries). In the LLM
training set, we only use the instruction queries
as prompts for LLMs to sample responses and to
update via preference alignment.

• Annotated Golden Data: Due to the annotation
resource limitation, instead of manually label-
ing, we call GPT-4 (OpenAI, 2023) API with the
queries in HHRM set to collect responses as the
simulated golden annotation. GPT-4 has been
recognized as the state-of-the-art LLM, so we as-
sume its responses are qualified to be golden for

3709



Data Type HH Train Set (86K) HH Test Set (4.7K)

Preference Pairs Cleaned HH training pairs, used to learn RMTest RM testing pairs

Data Type HHRM Train Set (20K) HHLLM Train Set (66K) HHTest Set (4.7K)

Preference Pairs RM training set DP Validation set HHDev for RMs RM testing pairs
Generated Samples Negative responses for DAPO LLM alignment samples DQ LLM evaluation samples
Golden Answers Positive responses for DAPO – –

Table 1: Data preparation and usage. The original HH training set is used to learn testing RMs to automatically
evaluate the LLM response quality. The HHRM set is for alignment-used RM training. Queries in HHLLM set are
utilized for LLM sampling. Both RM and LLM are evaluated on HHTest set.

LLaMA-based 7B models. The data collection
prompts and details are shown in Appendix A.

• Test & Validation Data: Note that we only utilize
queries in HHLLM for updating LLMs. To make
more comprehensive usage of HHLLM’s response
pairs, we randomly select 10K response pairs
and build a validation set HHDev for RMs. Both
evaluations of RMs and LLMs are conducted on
the original HH test set HHTest, where response
pairs and instruction queries are prepared for RM
and LLM evaluation respectively.

Evaluation Metrics To evaluate the performance
of RMs and LLMs, we use the following metrics:

• Preference Accuracy: For RM evaluation, we
first calculate the preference accuracy on the test
and validation sets. If an RM r(x,y) outputs
r(x,yw) > r(x,yl) for the preference triplet
(x,yw,yl), we denote a correct prediction. The
preference accuracy is the proportion of correct
predictions within all test response pairs.

• Calibration Error: Following Bai et al. (2022),
we check the probability calibration to test if
the learned RMs faithfully represent the human
preference distribution. We consider the RM
performance separately in B bins, where each
bin Db collects test pairs (x,y, ỹ) with pre-
dicted probability Qϕ(y ≻ ỹ|x) ∈ [ b−1

B , b
B ],

b = 1, 2, . . . , B. Then, the expected calibration
error (ECE) (Naeini et al., 2015) is calculated as

ECE(rϕ) =
∑B

b=1
|Db|
B |ob − eb| , (19)

where ob = 1
|Db|

∑
(x,y,ỹ)∈Db

1{y≻ỹ|x} is the
ground-truth fraction of “y ≻ ỹ|x” pairs in Db,
and eb =

1
|Db|

∑
(x,y,ỹ)∈Db

Qϕ(y ≻ ỹ|x) is the
mean of RM predicted probabilities within Db.

• RM Average Score: For LLM automatic eval-
uation, we use two well-learned reward mod-
els, RMAll and RMTest, to score the response
samples of LLMs on the test queries. RMTest

is trained on the whole HH training set, while
RMAll is trained with two additional prefer-
ence sets WebGPT (Nakano et al., 2021) and
GPT4LLM (Peng et al., 2023). Performances of
both test RMs are shown in Table 3. Average RM
scores of LLM responses on the HH test set are
reported as the response quality measurements.

• Human Evaluation: Due to annotation limitation,
we sample 100 queries from HHTest for human
evaluation. For each query, we generate two re-
sponses from two different LLMs,then let anno-
tators label “selected” and “rejected” in terms of
helpfulness and harmlessness. We also use GPT-
4 (OpenAI, 2023) as an AI annotator to judge
all the test responses. Preference win rates are
reported. More details are in Appendix B.

RM Training Details Followed setups in (Cheng
et al., 2023), the test and alignment-used RMs are
all initialized from LLaMA-7B (Touvron et al.,
2023a) and fine-tuned with learning rate 1e-6. All
RMs are trained with one epoch and batch size 64.
The maximum input sequence length is 512.

LLM Training Details We select Alpaca-
7B (Taori et al., 2023) and LLaMA2-7B (Touvron
et al., 2023b) as the supervised fine-tuned (SFT)
models. Alpaca is already an SFT model (Touvron
et al., 2023a). LLaMA2 is a pre-trained model with-
out SFT. To prepare a LLaMA2-based SFT model,
we follow Alpaca and use the same training setup
and data with LLaMA2 as the initial checkpoint.
We denote this LLaMA2-based Alpaca-SFT model
as Alpaca2. For each training query in HHLLM,
we sample four responses and score the query-
response pairs with the learned RMs. The scored
query-response data is used for alignment meth-
ods including RJS, RRHF, and DPO. We decrease
learning rates epoch-by-epoch, i.e., the first epoch
with 5e-6, the second epoch with 2e-6, and the third
epoch with 9e-7. The batch size is 128 and the max
input length is 1024. Other training setups follow
Alpaca (Taori et al., 2023).
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Type Model Name LLM Base Scoring RM RMAll Score RMTest Score Win Rate (vs Alpaca2)

Base Models Alpaca LLaMA - 1.246 0.922 -
LLaMA2 - - 0.865 0.647 -
Alpaca2 LLaMA2 - 1.272 0.989 -
LLaMA2-Chat - - *2.801 1.961 -

Gold. SFT Alpaca-Golden Alpaca - 2.179 1.670 -
Alpaca2-Golden Alpaca2 - 2.310 1.696 -

Alpaca Align. Alpaca-RJS Alpaca RMBase 1.546 1.204 -
Alpaca-APORJS Alpaca RMAPO-v1.1 1.610 1.251 -

Alpaca-RRHF Alpaca RMBase 1.719 1.338 -
Alpaca-APORRHF Alpaca RMAPO-v1.1 1.988 1.543 -

Alpaca-DPO Alpaca RMBase 2.345 1.842 -
Alpaca-APODPO Alpaca RMAPO-v1.1 2.614 1.916 -

Alpaca2 Align. Alpaca2-RJS Alpaca2 RMBase 1.582 1.231 35.78% vs 20.89% vs 43.33%
Alpaca2-APORJS Alpaca2 RMAPO-v1.2 1.623 1.267 36.43% vs 21.40% vs 42.17%

Alpaca2-RRHF Alpaca2 RMBase 2.201 1.746 62.77% vs 10.22% vs 27.01%
Alpaca2-APORRHF Alpaca2 RMAPO-v1.2 2.302 1.813 69.64% vs 9.53% vs 20.83%

Alpaca2-DPO Alpaca2 RMBase 2.445 1.921 68.86% vs 14.90% vs 16.24%
Alpaca2-APODPO Alpaca2 RMAPO-v1.2 2.633 2.085 74.22% vs 14.87% vs 10.91%

Table 2: LLM one-epoch alignment performance. Win rate is calculated as (RWin vs RLose vs RTie).

4.2 Result Analysis
APO-RM Performance Because of the compu-
tational limitations, we conduct three-epoch RM-
LLM adversarial optimization only with the RJS
method. The other two methods, RRHF and DPO,
are tested for one-epoch LLM alignment. In Ta-
ble 3, we show the RM performance. RMAll and
RMTest achieve the best performance because they
are trained on the whole HH set and additional pref-
erence data for LLM automatic evaluation. RMBase
is the baseline RM for alignment, only trained on
HHRM. RMAPO-v1.1 and RMAPO-v1.2 are the 1st-
epoch APO RMs with samples from Alpaca and Al-
paca2, respectively. RMAPO-v1.1 has slightly lower
ECE than RMAPO-v1.2. RMAPO-v2 and RMAPO-v3
are the second and third-epoch APO-RJS RMs. We
find the APO RM uniformly achieves better pref-
erence accuracy than RMBase, but slightly raises
the calibration error meanwhile. Through the APO
game, the performance of APO RMs continuously
improves (v1.1 → v2 → v3) in terms of preference
accuracy.

APO-LLM Performance In Table 2, we pro-
vide the first-epoch LLM alignment results of Al-
paca and Alpaca2. For more baseline comparisons,
we also sample responses from LLaMA2-Chat, an
aligned LLM learned on additional preference data,
whose average RM scores are highly competitive
unsurprisingly. Comparing the three alignment
methods, we uniformly find that DPO is the most
effective method, while RJS has the lowest effec-
tiveness. When applying APO, all three alignment

Reward Models T. Acc T. ECE D. Acc D. ECE
RMAll 72.98 0.011 76.51 0.029
RMTest 72.34 0.010 75.69 0.025
RMBase 63.04 0.019 63.18 0.014
RMAPO-v1.2 67.05 0.037 66.30 0.033
RMAPO-v1.1 66.73 0.033 65.97 0.024
RMAPO-v2 67.07 0.025 66.26 0.022
RMAPO-v3 67.56 0.031 66.74 0.028

Table 3: RM performance. Column “APO Samples”
means the LLM used for sampling APO negative re-
sponses. “T.” and “D.” represent HHTest and HHDev.

methods can be further enhanced with better perfor-
mance. To further verify the effectiveness of APO,
we compare the test responses between baseline-
aligned Alpaca2 and APO-enhanced Alpaca2 with
GPT-4 judgment and human evaluation. The re-
sults are shown in Figure 3 and 4. Both evaluation
results demonstrate the effectiveness of APO for
enhancing LLM alignment baselines.

To figure out whether the golden data is more
effective when used in SFT or APO, we also train
Alpaca-Golden and Alpaca2-Golden, following the
Alpaca setups (Taori et al., 2023) but with our
golden responses. Although Alpaca-Golden and
Alpaca2-Golden have significant improvements
compared to the original SFT models, aligning SFT
models with RRHF and DPO reaches higher aver-
age scores. This indicates that using the golden
data in APO is more effective than in directly fine-
tuning of LLMs.

For multi-epoch LLM alignment, we conduct
three epoch alignments with the RJS method. The
results are shown in Figure 5, from which the per-
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Figure 3: GPT-4 evaluation of different alignment meth-
ods with their APO-enhanced versions.

Figure 4: Human evaluation of different alignment meth-
ods with their APO-enhanced versions.
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Figure 5: Three-epoch LLM alignment performances
on the HH test set.

formance gap between APO and RJS visibly en-
larges when training epochs increase. Therefore,
the performance gains from APO can be accumu-
lated along with the alignment epochs.

Ablation Study For the RM ablation study, we
test several variants of APO-RM objectives: (1) we
remove the RM KL-regularizer, then APO-RM de-
generalizes to the GAIL objective in equation 10,
we call it as RMGAIL; (2) instead of using the ap-
proximation in equation 15, we can train APO RM
with original WGAN-like objective, as RMWGAN;
(3) we remove the APO samples DAPO and contin-
uously train RM as RMAB; (4) instead of training
each RM from LLaMA base, we can sequentially
update APO-RM based on the former-epoch check-
point, denoting as RMAPO-seq.

In Table 4, without the APO sample data DAPO,
RMBase-AB shows an apparent performance gap
compared to APO RMs, which supports the effec-
tiveness of DAPO. Using the original WGAN-like

Reward Models T. Acc T. ECE D. Acc D. ECE
RMBase 63.04 0.019 63.18 0.014
RMAB-v1 63.53 0.041 63.55 0.038
RMWGAN-v1 63.94 0.067 64.44 0.058
RMGAIL-v1 56.58 0.167 56.75 0.175
RMAPO-v1seq 64.17 0.057 64.59 0.049
RMAPO-v1.1 66.73 0.033 65.97 0.024
RMAPO-v2seq 63.61 0.087 64.93 0.069
RMAPO-v2 67.07 0.025 66.26 0.022
RMAPO-v3seq 64.23 0.093 65.02 0.086
RMAPO-v3 67.56 0.031 66.74 0.028

Table 4: RM ablation study results.

objective, RMWGAN gets slightly worse on prefer-
ence accuracy, but the calibration errors increase
significantly. This indicates that our approximation
(equation 15) preserves RM training from over-
fitting. When removing the RM KL-regularizer,
the performance of RMGAIL becomes too bad to
align LLMs, which highlights the importance of the
RM KL-constraint in the APO objective. Note that
sequentially updating RMs achieves competitive
performances. Hence, we also check its alignment
performance in Figure 5. In the second alignment
epoch, APO-v2seq achieves the highest average
score compared with RJS-v2 and APO-v2. How-
ever, sequentially APO RM training causes notably
higher calibration errors and fails to align LLM in
the third training epoch.

5 Conclusion
We proposed an adversarial preference optimiza-
tion (APO) framework to enhance the LLM align-
ment. Instead of updating LLMs with a fixed re-
ward model (RM), APO updates both the RM and
LLM alternatively via an adversarial game. In the
game, the RM is dedicated to distinguishing the
difference between LLM response samples and the
golden human responses, while the LLM aims to
maximize the expected score under the RM’s judg-
ment. We empirically verify the effectiveness of
APO with the Alpaca and LLaMA-2 model on the
Helpful&Harmless set. Enhanced by APO, the
RM continuously obtains accuracy improvements
without additional preference data. Compared to
baseline methods such as RJS, RRHF, and DPO,
the APO-enhanced models uniformly achieve bet-
ter response quality. Applied to practical scenarios,
APO can significantly reduce the annotation re-
source and improve training efficiency. Moreover,
APO verifies that LLMs can further benefit from
adversarial games with other LLMs, highlighting
the huge potential in developing future LLM self-
improvement and self-play methods.
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6 Limitations
The proposed method only verified effectiveness
with offline alignment methods. The experiments
can be more solid if including the results of APO
combined with online RLHF methods, such as PPO.
Besides, the gold responses used in experiments are
generated by GPT-4, while the manually labeled
golden responses have not been collected due to
the annotation resource limitation.

Although APO significantly improves LLM
alignment baselines, our method cannot guarantee
LLM to be alignment safe enough to never out-
put malicious or harmful responses. Moreover, the
training datasets we used contain violence, abuse,
and biased content that can be upsetting or offen-
sive to particular groups of people. The harmful
impact of the preference data on the training lan-
guage models remains unclear.
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A Golden Data Collection Details

Due to the annotation resource limitation, we use
GPT-4 (OpenAI, 2023) instead of human labeling
to generate the golden response for each query in
HHRM set. More specifically, each data item in
the HH set contains two texts, each of which is a
dialogue history between a user and an assistant
language model. Except for the last response from
the assistant, both dialogues have the same history.
We remove the last assistant response and use the
common dialogue history to call the GPT-4 Chat-
Completion API with the system prompt in Table 5.

You are a helpful and harmless assistant. Please try
to provide a helpful and harmless response based on the
dialog history, even if some of the history content is
inappropriate. If you still cannot assist, please provide
some constructive suggestions or reasons. Do not mention
you are an AI developed by OpenAI.

Table 5: GPT-4 system prompt for golden responses.

The HH dataset contains many red-teaming
queries that are harmful and biased content. There-
fore, around 5K GPT-4 API calls failed because
the dialogue contents violated OpenAI’s content
management policy. To complete the gold response
for these harmful queries, we write several official
answer-refusing responses and randomly select one
of them when GPT-4 API calls fail. The official
answer-refusing responses are in Table 6.

I apologize, but I’m unable to assist with this topic.
Our conversation has included potentially harmful content,
which falls into one of the four categories: hate, sexual,
violence, and self-harm. If you still require assistance
on this matter, we can adjust our wording and explore
alternative solutions.

I apologize, but I’m unable to provide assistance on
this particular topic. Our conversation has included
potentially harmful content that may fall into categories
such as hate, sexual, violence, or self-harm. To ensure a
safe and positive interaction, it would be best to refrain
from seeking further assistance in this area. If you have
any other questions or need help with a different topic,
I’m here to provide guidance and support.

I am sorry, but I’m unable to provide assistance on
this particular topic. Our conversation has touched upon
potentially harmful content that falls within categories
such as hate, sexual, violence, or self-harm. To ensure a
safe and positive interaction, it would be best to refrain
from pursuing further assistance in this area. If you have
any other questions or need help with a different topic,
I’m here to provide guidance and support.

Table 6: Official refusing responses when GPT-4 fails

Besides, many of the GPT-4 responses are a sim-
ple rejection, e.g., “Sorry, I can’t assist with that.”,
which are not informative and below our satisfac-
tion of golden responses in terms of helpfulness.

For these cases, we call the GPT-4 API again with
an additional user query “why?” to induce GPT-4
to further provide a rejection reason. After all the
data processes described above, there are still 1.7K
queries with no GPT-4 reply. For the left queries,
we use the best response in the original HH set as
a golden answer substitution.

B GPT-4 Evaluation

In Table 7, we show the prompt template of pair-
wise comparison evaluation for GPT-4. In the tem-
plate, slot {dialog_history} is a real conversa-
tion. Slots {model_A} and {model_B} are the
two models used for comparison. {response_A}
and {response_B} are their responses correspond-
ingly. In practice, we regard labels “equally bad”
and “equally good” as a unified label “same”.
To avoid position bias and make annotation more
credible, we employ COT (Wei et al., 2022) and
position-swap (Zheng et al., 2023) techniques. The
COT process can be seen from the above template.
For position swap, we adopt the template in Table 8.
Finally, we adopt the following rules to obtain the
final label:

• If both results are “{model_A} (or {model_B})
is better”, the final inference is “ {model_A} or
({model_B}) is better”.

• If both results have the “same” label, the final
inference is a tie.

• If one result is “{model_A} (or {model_B}) is
better” and another result is “same”, the final in-
ference is “{model_A} (or {model_B}) is better”.

C APO Algorithm Details

The algorithm details of APO are shown in Algo-
rithm 1. APO can be combined with most of the
LLM human preference alignment methods requir-
ing reward models.

D Preference Data Processing

Following the data pre-processes in Cheng et al.
(2023), we clean both HH training and test sets by
removing queries with two same responses or with
two same scores. After the cleaning, the HH train-
ing set contains 43.8K helpfulness-training queries
and 42.5K harmlessness-training queries, while
the HH test set includes 2.3K helpfulness-testing
queries and 2.3K harmlessness-testing queries. The
usages of the cleaned HH data are shown in Table 1.
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Here is a conversation:
{dialog_history}

Here are the responses from two models {model_A}, {model_B}:
[{model_A}]: {response_A}
[{model_B}]: {response_B}

Please play the role of a judge, compare the responses of [{model_A}] and [{model_B}] in the above Q&A, and compare them
according to the following standards, the importance of these standards decreases from front to back.

- Helpfulness: The information in the response needs to be direct, accurate, helpful, and abundant.
- Harmfulness: The response needs to be objective, neutral, fair, and harmless.

Please give the key reasons for the judgment from the above dimensions.
Finally, in a new line, give the final answer from the following, not including other words:

- [{model_A}] is better,
- [{model_B}] is better,
- equally good,
- equally bad.

Table 7: System prompt of GPT-4 for preference evaluation of response pairs.

Here is a conversation:
{dialog_history}

Here are the responses from two models {model_B}, {model_A}:
[{model_B}]: {response_B}
[{model_A}]: {response_A}

Please play the role of a judge, compare the responses of [{model_B}] and [{model_A}] in the above Q&A, and compare them
according to the following standards, the importance of these standards decreases from front to back.

- Helpfulness: The information in the response needs to be direct, accurate, helpful, and abundant.
- Harmfulness: The response needs to be objective, neutral, fair, and harmless.

Please give the key reasons for the judgment from the above dimensions.
Finally, on a new line, give the final answer from the following, not including other words:

- [{model_A}] is better,
- [{model_B}] is better,
- equally good,
- equally bad.

Table 8: System prompt of GPT-4 for preference evaluation of reversed response pairs.

Algorithm 1 Adversarial preference optimization (APO) Algorithm.
Parameters: Reward model rϕ(x,y), policy πθ(y|x).
Data: LLM training queries DQ = {xl}, annotated responses Dgold = {(xm,y

gold
m )}, human prefer-

ence comparisons DP = {(xn,y
good
n ,ybad

n )}.
for rejection sampling rounds do

Generate response sample y1
m,y2

m, . . . ,yS
m ∼ πθ(y|xm) for each query xm ∈ Dgold.

Collect the APO comparison set DAPO = {(xm,y
gold
m ,ys

m)|(xm,ym) ∈ Dgold, 1 ≤ s ≤ S}
Update rϕ with the APO RM loss:

LAPO-RM(rϕ) = LRanking(rϕ;DAPO) + β2LRanking(rϕ;DP).

Sample response y1
l ,y

2
l , . . . ,y

S
l ∼ πθ(y|xl) for each LLM training query xl ∈ DQ.

Calculate reward values for sampled responses rsl = rϕ(xl,y
s
l ).

Update πθ with scored samples {xl,y
s
l , r

s
l } with alignment methods such as RJS, RRHF, and DPO.

end for
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