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Abstract

This study investigates how Large Language
Models (LLMs) leverage source and reference
data in machine translation evaluation task, aim-
ing to better understand the mechanisms behind
their remarkable performance in this task. We
design the controlled experiments across vari-
ous input modes and model types, and employ
both coarse-grained and fine-grained prompts
to discern the utility of source versus reference
information. We find that reference information
significantly enhances the evaluation accuracy,
while surprisingly, source information some-
times is counterproductive, indicating LLMs’
inability to fully leverage the cross-lingual ca-
pability when evaluating translations. Further
analysis of the fine-grained evaluation and fine-
tuning experiments show similar results. These
findings also suggest a potential research di-
rection for LLMs that fully exploits the cross-
lingual capability of LLMs to achieve better
performance in machine translation evaluation
tasks.

1 Introduction

The last decade has witnessed significant develop-
ment in Neural Machine Translation (NMT) (Bah-
danau et al., 2015; Vaswani et al., 2017; Hassan
et al., 2018). As the quality of machine translations
has been improved, it becomes more challenging
and critical for automatic translation evaluation.
The recent study (Freitag et al., 2022) calls for
stopping using BLEU (Papineni et al., 2002), a
traditional metric, as it is not reliable for high-
quality translations and has a lower correlation
with human judgements. Neural metrics based on
pre-trained language models (Devlin et al., 2019;
Liu et al., 2019; Conneau et al., 2020), such as
COMET (Rei et al., 2020), show a higher correla-
tion with human judgments. However, these neural

∗Work was done during internship at Tencent AI Lab.
†Corresponding authors

Input Mode Accuracy Kendall’s τ

All LPs En-De Zh-En En-Ru

T 0.759 0.181 0.228 0.195
S-T 0.876 0.212 0.220 0.219
R-T 0.891 0.284 0.286 0.253

S-R-T 0.876 0.255 0.274 0.211

Table 1: The system-level accuracy and segment-level
Kendall’s τ correlation of ChatGPT when using differ-
ent inputs.

metrics only provide a score lacking interpretabil-
ity and still exhibit robustness issues hard to de-
tect (Yan et al., 2023). Recently, Large Language
Models (LLMs) (OpenAI, 2023; Touvron et al.,
2023; Wang et al., 2023b) have also been used as
translation evaluators. GEMBA (Kocmi and Fed-
ermann, 2023b) presents that GPT-4 can achieve
state-of-the-art performance in system-level assess-
ment. While LLMs show remarkable performance
in translation evaluation tasks, the reasons underly-
ing their success have not been thoroughly investi-
gated.

In this paper, we take the further step to inves-
tigate how LLMs leverage source and reference
information in evaluating translation in both coarse-
grained and fine-grained settings, bringing better
understanding of the working mechanism of LLMs.
Four input modes are defined, each of which
exposes different information to LLMs. These
include Translation-only (T), Source-Translation
(S-T), Reference-Translation (R-T) and Source-
Reference-Translation (S-R-T) modes. We first in-
struct both open and closed LLMs to predict coarse-
grained quality scores using GEMBA prompt, but
given different information, namely sources and
references. While references significantly improve
the system-level accuracy and segment-level cor-
relations, we surprisingly find that the source in-
formation is sometimes counterproductive. For
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example, as shown in Table 1, ChatGPT1 achieves
the best performance in the R-T mode, while S-R-
T mode leads to performance degradation. This
indicates LLMs’ inability to fully leverage cross-
lingual capabilities when evaluating translation sen-
tences, despite ChatGPT’s impressive performance
in multi-lingual or translation tasks.

In addition to the superficial score prediction,
we further explore the fine-grained error detection
to better understand the cross-lingual ability. Our
fine-grained experiments confirm the above obser-
vations, where we follow AutoMQM (Fernandes
et al., 2023) method to predict error spans and cate-
gories for translation sentences and study the per-
formance of LLMs with different input modes. We
also conduct a comprehensive meta-evaluation for
the error span and error category, alongside execut-
ing a critical error detection task. The findings sug-
gest that LLMs struggle to fully utilize the source
information for translation evaluation.

Lastly, we examine the effect of fine-tuning,
which makes deeper modifications to the model,
with Multidimensional Quality Metrics (MQM)
data (Freitag et al., 2021a). Although fine-tuning
can greatly improve the model’s performance
of translation evaluation, the negative impact of
source sentence still exists. These experimental
results reveal the limitation of current LLMs on
machine translation evaluation tasks and suggest a
potential research direction that fully exploits the
cross-lingual capability of LLMs to achieve better
performance.

Overall, our main contributions are as follows:

• To the best of our knowledge, we are the first
to explore the working mechanism of LLMs
in evaluating translation by testing the impor-
tance of sources and reference information.

• We conduct extensive experiments to discern
the utility of source versus reference informa-
tion through various aspects, suggesting that
LLMs are unable to fully utilize the cross-
lingual capability to evaluate translation sen-
tences.

• We provide an in-depth analysis of translation
error detection. Our code and data would be
released for the research community to pro-
mote the development of LLMs in automatic
translation estimation tasks.2

1We use gpt-3.5-turbo-0613 in our experiments.
2Code and data are available at https://github.com/

NJUNLP/lost_in_the_src.

2 Related Work

Automatic Translation Evaluation. Automatic
evaluation has been a crucial and tough problem
along with the development of machine transla-
tion. Traditional metrics like BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005) and
chrF (Popovic, 2015) rely heavily on n-gram match-
ing algorithms. Despite their past success, they fail
to keep pace with the increasing performance of
translation models that generate semantically cor-
rect translations.

Neural metrics leverage the meaningful represen-
tations of pre-trained language models to evaluate
translations. BertScore (Zhang et al., 2020) and
MoverScore (Zhao et al., 2019) calculate similar-
ity using these representations, while generation-
based methods like Prism (Thompson and Post,
2020) and BartScore (Yuan et al., 2021) assess
text quality through generation tasks, conditioned
on sources or references. Learned metrics such
as COMET (Rei et al., 2020), BLEURT (Sel-
lam et al., 2020), UniTE (Wan et al., 2022) and
XCOMET (Guerreiro et al., 2023) apply neural
networks to predict quality scores in a supervised
manner. Particularly, UniTE suggests that the in-
teraction between source and hypothesis may have
an adverse effect. Although UniTE performs best
with the S-R-T mode, our work shows this is not
always the case for LLMs.

LLMs that can follow the instructions of eval-
uation tasks are also used to evaluate translations.
GEMBA (Kocmi and Federmann, 2023b) shows
that GPT-4, when asked to directly generate a qual-
ity score, is the state-of-the-art translation evalu-
ator at that time in the system-level assessment.
EAPrompt (Lu et al., 2023), AutoMQM (Fernan-
des et al., 2023), and GEMBA-MQM (Kocmi and
Federmann, 2023a) endeavor to instruct LLMs in
detecting translation errors meticulously and la-
belling the error category and severity. Despite
their remarkable performance, the reasons underly-
ing their success have not been thoroughly investi-
gated.

LLM-based Text Evaluation. Evaluating text
quality is a challenging problem even for humans.
LLMs with broad world knowledge and expertise
in linguistics, like ChatGPT, have been used as
natural language evaluators. GPTScore (Fu et al.,
2023) utilizes the conditional probability for text
evaluation. Other works (Wang et al., 2023a; Liu
et al., 2023a; Wang et al., 2023c; Chan et al., 2023;
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Score the following translation from {src_lang} to {tgt_lang} with respect to
the human reference on a continuous scale from 0 to 100 that starts on "No
meaning preserved", goes through "Some meaning preserved", then "Most meaning
preserved and few grammar mistakes", up to "Perfect meaning and grammar".

{src_lang} source: "{source}"

{tgt_lang} human reference: "{reference}"
{tgt_lang} translation: "{translation}"
Score (0-100):

Figure 1: The GEMBA-SQM prompt template. The green parts will be included in the prompt if the reference
information is given. Similarly, the red part will be in the prompt if the source is given. Detailed prompts can be
found in Appendix A.

Liu et al., 2023b) prompt ChatGPT to generate eval-
uations for natural texts using various techniques.
InstructScore (Xu et al., 2023) proposes an explain-
able metric by fine-tuning the Llama-7B with data
generated from GPT-4 and self-generated outputs,
proving the feasibility of using open, smaller mod-
els for evaluation purposes. This study primarily
focuses on employing LLMs for assessing transla-
tions, with a major emphasis on the cross-lingual
ability. However, the insights gained from our re-
search may extend to other NLG evaluation tasks.
LLMs demonstrate a greater ability to capitalize on
reference information, while they may face chal-
lenges in effectively utilizing task input like source
information.

3 Coarse-grained Score Prediction

We first investigate how LLMs leverage the source
and reference information in conducting coarse-
grained evaluations of translation quality via score
prediction. We adopt the GEMBA-SQM prompt
template (Kocmi and Federmann, 2023b), as shown
in Figure 1. The inclusion of source and reference
information in the prompt varies based on the se-
lected input mode. For instance, in the R-T mode,
the source text in red is omitted from the prompt.
We assess the efficacy of LLMs across four dis-
tinct input modes, examining their impact on the
model’s performance.

3.1 Experimental Setup

Data. We use the test set from WMT22 Met-
ric Shared Task (Freitag et al., 2022) which con-
tains the MQM annotated data for three transla-
tion directions: En-De, Zh-En, and En-Ru. Ref-
erence A (refA) is used as the standard refer-
ence. The quality of references can affect the
performance of reference-based metrics (see Ap-
pendix C). The golden quality score is calculated

from the MQM ratings annotated by humans. The
weighting scheme of each error severity and cate-
gory can be found in Freitag et al. (2021a).

Models. We evaluate both the closed model GPT-
3.5-turbo and open models, including the Llama2-
Chat series (Touvron et al., 2023) and Mistral-7B-
Instruct (Jiang et al., 2023). We only consider the
chat version of these models because base mod-
els without alignment may not follow instructions
according to our preliminary study. All of these
models possess a certain level of translation ability
in the specified language pairs (Zhu et al., 2023).

Evaluation Metrics. Following Kocmi and Fed-
ermann (2023b), we use the system-level accuracy
and segment-level Kendall’s τ correlation as our
primary evaluation metrics, complemented by the
Pearson correlation ρ. We use the PERM-BOTH
hypothesis test with 1000 resampling runs and
p=0.05 (Deutsch et al., 2021).

3.2 Results
Table 2 demonstrates the main results of the meta-
evaluation of the coarse-grained translation quality
score, in which we include COMET-22 (Rei et al.,
2022), BLEU and chrF as baselines.

One of the most surprising findings is that the R-
T mode is the most effective among the four modes
in most cases. The R-T mode surpasses other
modes in system-level accuracy and segment-level
correlations across models, particularly excelling
with strong models like GPT-3.5 and Llama2-70B-
Chat. This suggests that the reference information
can significantly enhance the evaluation accuracy,
but the source information has little or no impact on
the translation evaluation task. On the other hand,
the numerous lower scores in S-T mode compared
to T mode also indicate that LLMs do not fully
utilize their cross-lingual capability and may even
be confused by the source in this task. We further
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Model Mode All LPs En-De Zh-En En-Ru

Acc. τ ρ τ ρ τ ρ

GPT-3.5-turbo

T 0.759 0.181 0.153 0.228 0.157 0.195 0.169
S-T 0.876 0.212 0.242 0.220 0.219 0.219 0.186
R-T 0.891 0.284* 0.280 0.286* 0.230 0.253* 0.217*

S-R-T 0.876 0.255 0.285 0.274 0.248* 0.211 0.196

Llama2-7B-Chat

T 0.620 0.052 0.036 0.156 0.195 0.042 0.054
S-T 0.599 -0.010 -0.037 0.093 0.121 0.008 0.003
R-T 0.788 0.217* 0.200* 0.284 0.260 0.213 0.177

S-R-T 0.748 0.187 0.173 0.290 0.277* 0.222 0.196*

Llama2-13B-Chat

T 0.675 0.000 0.003 0.034 0.03 0.032 0.029
S-T 0.591 0.041 0.028 0.056 0.041 0.084 0.038
R-T 0.701 0.107 0.100 0.104* 0.097* 0.108 0.105

S-R-T 0.650 0.108 0.109 0.053 0.055 0.108 0.102

Llama2-70B-Chat

T 0.737 0.148 0.105 0.215 0.177 0.220 0.145
S-T 0.807 0.126 0.123 0.194 0.153 0.134 0.126
R-T 0.887* 0.241* 0.221* 0.271* 0.228* 0.222 0.160*

S-R-T 0.843 0.167 0.180 0.250 0.197 0.178 0.103

Mistral-7B-Instruct

T 0.726 0.108 0.079 0.232 0.211 0.228* 0.160
S-T 0.646 0.063 0.052 0.238 0.190 0.180 0.131
R-T 0.796 0.123 0.119 0.228 0.213 0.158 0.118

S-R-T 0.770 0.157* 0.143* 0.237 0.228* 0.170 0.146

COMET-22 / 0.839 0.368 0.512 0.428 0.585 0.400 0.469
BLEU / 0.708 0.169 0.193 0.145 0.175 0.140 0.160
chrF / 0.734 0.214 0.231 0.147 0.154 0.168 0.168

Table 2: The system-level accuracy and segment-level Kendall’s τ and Pearson ρ correlations of different models
with different input modes on WMT22 test set. Bold scores indicate the highest values, while asterisks mark the
significantly highest among the four input modes. The underlined S-T mode scores are significantly lower than the
T mode scores.

Model Part Acc. En-De τ Zh-En τ En-Ru τ

GPT-3.5-turbo src 0.051 0.001 -0.010 -0.009
ref 0.066 0.073 0.056 0.025

Llama2-7B-Chat src -0.030 -0.046 -0.028 -0.012
ref 0.159 0.181 0.163 0.193

Llama2-13B-Chat src -0.067 0.021 -0.014 0.026
ref 0.043 0.087 0.034 0.050

Llama2-70B-Chat src 0.013 -0.048 -0.021 -0.065
ref 0.093 0.067 0.056 0.023

Mistral-7B-Instruct src -0.053 -0.005 0.008 -0.018
ref 0.097 0.055 -0.002 -0.040

Table 3: The Shapley values that quantify the impact of
the source and reference parts on the system-level accu-
racy and Kendall’s τ correlations in the score prediction
task across different language pairs.

calculate the Shapley values (Shapley, 1953) that
assess the contributions of the source and reference
part, as shown in Table 3. Higher number means
more positive influence, and vice versa. A positive
number means that the information has a positive
effect while a negative number means a negative
effect. The way to calculate Shapley Values can
be found in Appendix D. The reference parts con-
tribute more than the source parts, which can even
have negative impacts.

There is another unexpected observation that the
T mode can achieve much better performance than
a random guess. We posit that LLMs evaluate trans-
lations solely based on fluency, which is positively
correlated to the translation quality. Our further
analysis by log-probability in Appendix E supports
this hypothesis.

Compared to baseline metrics, our findings align
with those of Kocmi and Federmann (2023b).
LLMs are better at system-level evaluation but are
inferior at segment-level correlations than COMET-
22. Metrics based on strong LLMs outperform
both BLEU and chrF. COMET-22 is built upon the
pre-trained encoder language model XLM-R (Con-
neau et al., 2020) and it is an ensemble between
several models with different input. It’s sequence
tagger performs better with the S-R-T mode at
the segment level. We suspect that the underly-
ing mechanism of encoder-only models may differ
from decoder-only models. Moreover, COMET is
fine-tuned with a mount of task-specific data in-
cluding both the source and the reference. This
may also enhance the performance of COMET on
this task.
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Based on the given source and reference, identify the major and minor errors in
this translation. Note that Major errors refer to actual translation or grammatical
errors, and Minor errors refer to smaller imperfections, and purely subjective
opinions about the translation.

{src_lang} source: "{source}"

{tgt_lang} human reference: "{reference}"
{tgt_lang} translation: "{translation}"
Errors:

{src_lang} source: "{source_i}"

{tgt_lang} human reference: "{reference_i}"
{tgt_lang} translation: "{translation_i}"
Errors: {error_span1}-{error_category1}/{error_severity1}; {error_span2}-...

x N

Figure 2: The AutoMQM prompt template. The green parts and red parts are included according to whether the
related information is given. The yellow part is also determined by the input mode. The text in the shaded area is an
in-context demonstration, followed by the test sample. Detailed prompts can be found in Appendix B.

4 Fine-grained Error Detection

While coarse-grained scoring methods have demon-
strated their potential, recent innovations like Au-
toMQM and GEMBA-MQM are eliciting the ca-
pabilities of LLMs through the use of specialized
prompts, leading to more refined and interpretable
results. We further dive into studying how well
LLMs leverage the different information with fine-
grained methods.

We adopt the AutoMQM prompt template (Fer-
nandes et al., 2023), as illustrated in Figure 2. The
content in the yellow part varies depending on the
input mode. Our assessment encompasses three
perspectives: MQM scores, error spans, and error
categories, hence offering a comprehensive diagno-
sis of the model’s predictions.

4.1 Experimental Setup

Data. We sample a portion of the WMT22 test
set as our test set due to limited budgets (see Ap-
pendix F). Specifically, we uniformly sample 200
source sentences and all corresponding system out-
puts from the test set. There are 16 systems with
MQM scores in the En-De and Zh-En directions,
resulting in a total of 3200 samples for each di-
rection. Following Fernandes et al. (2023), the
in-context demonstrations are sampled from the
data in WMT21 Metric Shared Task (Freitag et al.,
2021b). The number of in-context demonstrations
is 4 and stratified sampling with a set of rejection
criteria is used.3 Since there are no MQM ratings
for the En-Ru direction in the WMT21 dataset, we

3These models have terrible performance using this prompt
without demonstrations, as shown in Fernandes et al. (2023)

only assess the other two directions.

Models. We evaluate the GPT-3.5-turbo and the
Llama2 base series. In our preliminary study, the
Llama2 chat models cannot follow the output for-
mat in this prompt. Therefore, we decide to assess
the base models only. All models in this experiment
generate text using greedy decoding.

Meta Evaluation. Based on the identified error
categories and severity, we compute an MQM score
for each sample according to Google’s MQM error
weighting (Freitag et al., 2021a). Since we do not
predict sub-categories, we only assign a score of
−5 for a major error and −1 for a minor error. We
adopt the previous metrics to evaluate the MQM
scores.

We also assess the quality of the identified error
spans. Similar to Fernandes et al. (2023), we calcu-
late the precision, recall, F1 score, and Matthews
Correlation Coefficient (MCC) for the predicted
error spans. In particular, given the gold error
spans S = {e1, . . . , en}, ej = {wi, wi+1, . . . } de-
notes each error span containing the wrong words,
where wi is the i-th word in the sentence. The
span of each error is P (ej) = {i|wi ∈ ej}.
Then we count the span overlap based on the set
P (S) =

⋃n
j=1 P (ej). The span precision (SP) and

span recall (SR) of the predicted error spans Ŝ are
defined as follows:

SP =
|P (S) ∩ P (Ŝ)|

|P (Ŝ)|
(1)

SR =
|P (S) ∩ P (Ŝ)|

|P (S)| (2)
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Model Mode 2 LPs En-De Zh-En

Acc. τ ρ τ ρ

AutoMQM

GPT-3.5-turbo

T 0.757 0.221 0.283 0.264 0.353
S-T 0.751 0.150 0.222 0.289 0.394
R-T 0.858 0.275 0.331 0.359 0.479

S-R-T 0.769 0.284 0.349 0.353 0.460

Llama2-7B

T 0.556 0.077 0.111 0.106 0.216
S-T 0.592 0.071 0.073 0.074 0.119
R-T 0.527 0.077 0.102 0.106 0.146

S-R-T 0.533 0.063 0.075 0.086 0.133

Llama2-13B

T 0.544 0.078 0.110 0.130 0.220
S-T 0.515 0.063 0.060 0.108 0.214
R-T 0.533 0.083 0.086 0.108 0.178

S-R-T 0.562 0.049 0.036 0.110 0.212

Llama2-70B

T 0.586 0.134 0.182 0.128 0.202
S-T 0.633 0.135 0.206 0.169 0.236
R-T 0.627 0.200 0.270 0.225 0.266

S-R-T 0.669 0.200 0.237 0.248 0.315

Mistral-7B

T 0.444 0.109 0.136 0.118 0.203
S-T 0.538 0.088 0.102 0.107 0.176
R-T 0.604 0.143 0.185 0.116 0.190

S-R-T 0.586 0.108 0.112 0.121 0.212

GEMBA

GPT-3.5-turbo

T 0.728 0.264 0.272 0.229 0.223
S-T 0.852 0.247 0.226 0.188 0.211
R-T 0.852 0.273 0.290 0.281 0.231

S-R-T 0.828 0.284 0.299 0.239 0.209

Llama2-70B-Chat

T 0.698 0.150 0.114 0.226 0.269
S-T 0.775 0.161 0.117 0.219 0.221
R-T 0.828 0.262 0.222 0.271 0.220

S-R-T 0.769 0.198 0.194 0.241 0.196

COMET-22 / 0.852 0.398 0.515 0.447 0.594
BLEU / 0.556 0.167 0.212 0.077 0.123
chrF / 0.592 0.217 0.267 0.098 0.099

Table 4: The system-level accuracy and segment-level
Kendall’s τ and Pearson ρ correlations of AutoMQM
with different models. All of the models use the Au-
toMQM prompt except the last five. The highest scores
of different input modes of each model are in bold.

The span F1 score (SF1) is the harmonic mean of
SP and SR. Since major errors contribute most to
the quality score, we calculate the major precision
(MP) and major recall (MR) as follows:

MP =
|P (Smaj) ∩ P (Ŝmaj)|

|P (Ŝmaj)|
(3)

MR =
|P (Smaj) ∩ P (Ŝmaj)|

|P (Smaj)|
(4)

where Smaj ⊆ S is the subset only containing
major errors, and major F1 (MF1) score is the har-
monic mean. Note that our MR is slightly different
from Fernandes et al.’s (2023) MR, which takes

into account both minor and major prediction er-
rors. In this way, we can better evaluate the perfor-
mance of predicting the major errors.

In addition, we calculate the precision, recall,
and F1 score for the error category. Specifically,
let Cat(e) denote the error category, and Cat(S) =
(Cat(e1), . . . ,Cat(en)) denote the gold labels. The
function Count(S, c) calculates the count of occur-
rences of category c within Cat(S). The precision
and recall of the category c are defined as:

Pc =
min(Count(S, c),Count(Ŝ, c))

Count(Ŝ, c)
(5)

Rc =
min(Count(S, c),Count(Ŝ, c))

Count(S, c)
(6)

And the F1c score is the harmonic mean of the pre-
cision and recall. Here we ignore the sub-categories
since AutoMQM does not predict sub-categories.
Note that these three scores only consider the er-
ror categories and do not necessitate the correct
identification of error positions for simplicity.

4.2 Results

Score Meta-evaluation. Table 4 shows that GPT-
3.5, Llama2-70B, and Mistral-7B achieve the best
or second-best score with the R-T mode, suggesting
a limitation in their ability to employ cross-lingual
capabilities for this task. However, while the T
mode appears to yield the strong results for weak
models such as Llama2-13B and Llama2-7B, it is
important to note that their overall performance
remains substantially low. This leads to the hypoth-
esis that these weak models may not fully under-
stand the task, thereby failing to effectively identify
errors. Nevertheless, the contribution of the refer-
ence is much larger than that of the source in most
cases, as shown in Table 6. These results also indi-
cate the limitation of cross-lingual capabilities of
LLMs to evaluate translations.

Besides, we also find something different with
the conclusions of Fernandes et al. (2023). The Au-
toMQM prompt outperforms the GEMBA-SQM
prompt when using GPT-3.5-Turbo, which is con-
sistent with the previous work using PaLM2 (Anil
et al., 2023), but this trend does not extend to the
Llama2 series (the 7B and 13B models have a simi-
lar phenomenon). Due to the lack of training details
on PaLM2, we speculate that PaLM2 may have a
larger model scale and enhanced multilingual capa-
bilities than the Llama2 series.
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Model Mode SP / SR / SF1 MP / MR / MF1 MCC

GPT-3.5-turbo

T 0.162 / 0.375 / 0.227 0.122 / 0.155 / 0.136 0.153
S-T 0.237 / 0.207 / 0.221 0.192 / 0.192 / 0.192 0.150
R-T 0.239 / 0.378 / 0.293 0.202 / 0.344 / 0.254 0.208

S-R-T 0.214 / 0.354 / 0.267 0.179 / 0.348 / 0.236 0.180

Llama2-7B

T 0.110 / 0.520 / 0.181 0.056 / 0.414 / 0.098 0.057
S-T 0.085 / 0.329 / 0.135 0.041 / 0.243 / 0.070 0.061
R-T 0.112 / 0.309 / 0.165 0.056 / 0.219 / 0.090 0.045

S-R-T 0.092 / 0.260 / 0.136 0.048 / 0.201 / 0.077 0.056

Llama2-13B

T 0.113 / 0.604 / 0.191 0.055 / 0.503 / 0.100 0.079
S-T 0.084 / 0.448 / 0.141 0.037 / 0.351 / 0.067 0.051
R-T 0.119 / 0.433 / 0.186 0.064 / 0.391 / 0.110 0.071

S-R-T 0.098 / 0.405 / 0.158 0.049 / 0.360 / 0.086 0.053

Llama2-70B

T 0.107 / 0.665 / 0.185 0.056 / 0.646 / 0.106 0.065
S-T 0.104 / 0.592 / 0.177 0.058 / 0.541 / 0.101 0.072
R-T 0.124 / 0.631 / 0.207 0.071 / 0.576 / 0.127 0.109

S-R-T 0.121 / 0.659 / 0.204 0.072 / 0.577 / 0.128 0.111

Mistral-7B

T 0.108 / 0.679 / 0.186 0.054 / 0.639 / 0.099 0.069
S-T 0.101 / 0.569 / 0.171 0.051 / 0.546 / 0.094 0.056
R-T 0.108 / 0.537 / 0.179 0.056 / 0.524 / 0.101 0.058

S-R-T 0.105 / 0.545 / 0.177 0.052 / 0.520 / 0.094 0.055

Table 5: The results of span meta-evaluation. All of the scores are micro-averaged across two language directions.
The highest F1 scores and MCC are in bold.

Model Part Acc. En-De τ Zh-En τ

GPT-3.5-turbo src -0.047 -0.031 0.009
ref 0.059 0.094 0.079

Llama2-7B src 0.021 -0.010 -0.026
ref -0.044 -0.004 0.006

Llama2-13B src 0.000 -0.025 -0.010
ref 0.018 -0.004 -0.010

Llama2-70B src 0.045 0.001 0.032
ref 0.039 0.066 0.088

Mistral-7B src 0.038 -0.028 -0.003
ref 0.104 0.027 0.006

Table 6: The Shapley values in the error detection task
across different language pairs.

Span Meta-evaluation. The results of the span
meta-evaluation presented in Table 5 demonstrate
a similar pattern to the score meta-evaluation. GPT-
3.5-Turbo and Llama2-70B have better perfor-
mance when using the R-T mode, while small mod-
els are not stable. Overall, the performance of the
R-T mode still surpasses that of both the S-T and
S-R-T modes. This suggests that the limitations in
the cross-lingual capabilities of LLMs also exist in
word-level translation evaluation tasks.

Unexpectedly, it appears that identifying major
errors poses a greater challenge. The MF1 scores
are consistently lower than the corresponding SF1
scores across all tested models. All of these models
exhibit an apparently low level of performance, sug-
gesting substantial room for progress in the error
span prediction.

Category Meta-evaluation. Table 7 presents the
outcomes of the category meta-evaluation. When
scrutinizing the F1 scores across the models for
each designated category, the overall performance
is very poor despite the simplification. Notably,
the scores of the Accuracy category surpass those
of other categories, with GPT-3.5 demonstrating a
relative advantage over the Llama2 models, partic-
ularly when provided with a reference.

The AutoMQM prompt lacks explicit definitions
for each category, requiring the models to infer the
meaning of each from the demonstrations. The Ac-
curacy category predominates all other categories
except the No-Error category. This prevalence
likely biases the model towards a more frequent
prediction of Accuracy errors. The remaining cate-
gories exhibit diminished F1 scores, which are at-
tributed to the models’ limited understanding of the
inherent semantics associated with each category
due to their low frequency. This pattern persists
irrespective of different models or input modes.

“No-Error” is a special category, as it is mutually
exclusive with other error categories. For analytical
simplicity, it is treated analogously to a category,
with F1 scores computed accordingly. In this re-
gard, GPT-3.5 exhibits a pronounced competence
in identifying error-free samples in stark contrast to
the Llama2 models. Weak models exhibit a propen-
sity for overestimating the presence of errors.
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Model Mode Accuracy Fluency Terminology Style Locale No-Error

GPT-3.5-turbo

T 0.31/0.25/0.28 0.21/0.14/0.17 0.03/0.05/0.04 0.13/0.29/0.18 0.00/0.00/0.00 0.57/0.80/0.67
S-T 0.45/0.19/0.26 0.27/0.06/0.10 0.04/0.02/0.02 0.15/0.05/0.07 0.00/0.00/0.00 0.54/0.94/0.69
R-T 0.43/0.41/0.42 0.27/0.09/0.13 0.03/0.04/0.03 0.17/0.17/0.17 0.00/0.00/0.00 0.60/0.84/0.70

S-R-T 0.43/0.41/0.42 0.25/0.08/0.13 0.04/0.05/0.05 0.18/0.17/0.18 0.00/0.00/0.00 0.61/0.81/0.69

Llama2-7B

T 0.20/0.66/0.31 0.16/0.09/0.12 0.01/0.11/0.03 0.12/0.12/0.12 0.05/0.04/0.05 0.57/0.04/0.08
S-T 0.21/0.65/0.32 0.16/0.08/0.10 0.01/0.11/0.02 0.12/0.12/0.12 0.02/0.04/0.03 0.54/0.06/0.10
R-T 0.24/0.50/0.32 0.19/0.08/0.12 0.01/0.08/0.02 0.12/0.10/0.11 0.03/0.02/0.02 0.56/0.22/0.32

S-R-T 0.22/0.52/0.31 0.16/0.06/0.08 0.02/0.11/0.03 0.10/0.08/0.09 0.02/0.02/0.02 0.54/0.21/0.30

Llama2-13B

T 0.20/0.34/0.25 0.13/0.47/0.20 0.01/0.04/0.01 0.09/0.20/0.12 0.00/0.00/0.00 0.61/0.03/0.05
S-T 0.20/0.39/0.27 0.12/0.40/0.19 0.01/0.06/0.02 0.08/0.14/0.11 0.00/0.00/0.00 0.51/0.03/0.05
R-T 0.25/0.34/0.29 0.16/0.39/0.22 0.02/0.06/0.03 0.11/0.15/0.13 0.00/0.00/0.00 0.55/0.14/0.22

S-R-T 0.24/0.37/0.29 0.15/0.37/0.21 0.01/0.05/0.02 0.10/0.10/0.10 0.00/0.00/0.00 0.53/0.13/0.20

Llama2-70B

T 0.17/0.49/0.26 0.12/0.36/0.18 0.01/0.08/0.02 0.08/0.08/0.08 0.00/0.00/0.00 0.65/0.03/0.05
S-T 0.19/0.53/0.28 0.12/0.34/0.18 0.01/0.08/0.02 0.09/0.11/0.10 0.02/0.04/0.03 0.70/0.08/0.15
R-T 0.22/0.56/0.32 0.13/0.30/0.18 0.02/0.06/0.03 0.11/0.13/0.12 0.05/0.02/0.03 0.70/0.14/0.23

S-R-T 0.23/0.54/0.32 0.12/0.36/0.18 0.01/0.04/0.01 0.10/0.13/0.11 0.02/0.02/0.02 0.74/0.13/0.22

Mistral-7B

T 0.16/0.48/0.24 0.11/0.38/0.17 0.02/0.03/0.02 0.08/0.13/0.10 0.05/0.04/0.04 0.63/0.03/0.06
S-T 0.17/0.56/0.26 0.12/0.31/0.17 0.00/0.00/0.00 0.07/0.12/0.09 0.04/0.02/0.03 0.54/0.04/0.07
R-T 0.20/0.52/0.29 0.14/0.34/0.20 0.00/0.00/0.00 0.08/0.10/0.09 0.04/0.02/0.03 0.58/0.10/0.16

S-R-T 0.20/0.53/0.29 0.14/0.32/0.20 0.00/0.00/0.00 0.09/0.09/0.09 0.05/0.02/0.03 0.60/0.09/0.16

Table 7: The results of the category evaluation. The numbers in each cell are in the format of Pc/Rc/F1c, where c
is the category in the column header. Locale stands for the Locale Convention error category.

Model SP SR SF1 accuracy

GPT-3.5-turbo 0.186 0.626 0.287 0.553
Llama2-7B 0.109 0.296 0.160 0.293
Llama2-13B 0.137 0.500 0.215 0.513
Llama2-70B 0.147 0.836 0.250 0.753

Table 8: The results of critical error detection. Each
experiment is run with three different random seeds.

4.3 Critical Error Detection

To better understand the cross-lingual ability of
LLMs, we investigate whether they can detect
the critical translation errors that are easy to dis-
cover. We extract 50 samples from the test set
of WMT22’s Critical Error Detection Task (Zerva
et al., 2022). Specifically, we only use the “BAD”
samples from the En-De subset and manually label
one critical error span for each sample. The sam-
ples with omission errors are excluded, keeping
the addition errors, named entity errors, negation
errors and number errors. We use the AutoMQM
prompt with the S-T mode to determine whether
LLMs can utilize the source information to identify
the critical error spans. SP, SR, SF1 and accuracy
are used to measure the performance. The accuracy
here is calculated as the ratio of how many critical
error spans are completely identified.

The results are demonstrated in Table 8. Strong
models like GPT-3.5 and Llama2-70B can identify
most errors. However, the precision is very low,

indicating that they tend to over-predict errors. On
the other hand, there remains a noticeable probabil-
ity, exceeding 25%, that they may overlook crucial
information in the source. This suggests that LLMs
cannot fully utilize the source information, leading
to the failure of error detection. There some cases
shown in Figure 3.

Direction #S-T #R-T #S-R-T Total No-error%

En-De 2940 2993 3026 8959 58.7%
Zh-En 3342 3204 3204 9750 29.3%
En-De† 1712 1736 1812 5260 29.7%

Table 9: The statistics of the training set. #S-T/#R-T/#S-
R-T is the number of samples in this mode after random
assignment. No-error% is the No-error rate of samples.
En-De† is the down-sampled subset.

5 Fine-tuning LLMs with MQM data

We further investigate the effect of fine-tuning an
open LLM with task-specific data to determine if it
can eliminate the above limitation.

5.1 Experimental Setup
In this experiment, we integrate the En-De and Zh-
En samples from the WMT21 dataset to form the
supervised training set, and employ the WMT22
dataset as the test set. The organization of the train-
ing samples adheres to the Alpaca (Taori et al.,
2023) instruction template, where the instruction
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Model Mode All LPs En-De Zh-En En-Ru

Acc. τ ρ τ ρ τ ρ

Fine-tuned Llama2-7B
S-T 0.832 0.072 0.080 0.368 0.453 0.181 0.221
R-T 0.847 0.139* 0.199* 0.407 0.492 0.259* 0.319*

S-R-T 0.847 0.114 0.145 0.401 0.488 0.228 0.289

Fine-tuned Llama2-7B†
S-T 0.828 0.153 0.161 0.366 0.455 0.208 0.236
R-T 0.818 0.229* 0.218* 0.412* 0.506 0.278* 0.300

S-R-T 0.828 0.199 0.201 0.403 0.503 0.242 0.285

GEMBA-Llama2-7B-Chat R-T 0.788 0.217 0.200 0.284 0.260 0.213 0.177
GEMBA-GPT-3.5-turbo R-T 0.891 0.284 0.280 0.286 0.230 0.253 0.217

Table 10: The system-level accuracy and segment-level Kendall’s τ and Pearson ρ correlations of the fine-tuned
Llama2. Fine-tuned Llama2-7B† uses the down-sampled training set. Starred values are significantly better than
those of the other two input modes.

and the input parts are identical with the AutoMQM
prompt. Regarding the output part, our format mir-
rors that of InstructScore (Xu et al., 2023), with
the exception of the explanation component.4 Note
that we also ignore the error sub-category here. To
accommodate the three input modes, i.e. the S-T,
R-T and S-R-T mode, each training sample is ran-
domly assigned with one mode. The statistics of
the training set in can be found in Table 9. We
fine-tune the Llama2-7B base model for 3 epochs,
using a decayed learning rate of 2e-5 and a batch
size of 128.

5.2 Results
We have some interesting findings in Table 10.
Firstly, the performance of the R-T mode remains
significantly superior to that of the other two modes,
indicating that the model still cannot make full use
of the source information after naive fine-tuning.
Secondly, The overall performance of the fine-
tuned Llama2 is stronger than GEMBA-Llama2-
7B-Chat, proving the effectiveness of further fine-
tuning for this task. However, the distribution of the
training data is crucial. The fine-tuned model out-
performs GPT-3.5-turbo on Zh-En segment-level
correlations with the proper data distribution. On
the contrary, the performance on En-De direction
degrades due to the extremely imbalanced En-De
training data, where samples with No-error domi-
nates, as shown in Table 9. To mitigate the problem
of unbalanced distribution, we down-sample the
No-error samples in the En-De corpus and keep
about 30% No-error samples. The Zh-En sam-
ples remain unchanged. Fine-tuning with more
balanced data can effectively enhance the En-De
segment-level correlations, as shown in Table 10.

4In our preliminary experiments, we used the output format
of AutoMQM, but the results were terrible.

The change of En-De data also brings benefits to
other directions. Lastly, it is noteworthy that the
evaluation capability, to some extent, can be trans-
ferred to the language pair not encountered in the
fine-tuning stage. The fine-tuned model achieves
even higher correlations without seeing any En-Ru
samples, compared to GEMBA-Llama2-7B-Chat.

6 Conclusion

We empirically analyze how well LLMs incorpo-
rate the source and reference information for trans-
lation evaluation, comparing the effectiveness of
open and closed LLMs through prompting and fine-
tuning. Our results reveal their limitations in fully
exploiting the cross-lingual capability for the task,
with the inclusion of source information even occa-
sionally proving detrimental to performance. Fur-
thermore, our work contributes a detailed meta-
evaluation of spans and categories with the fine-
grained evaluation method, along with the criti-
cal error detection task. These findings not only
furnish insights into the current capabilities and
limitations of LLMs in translation evaluation, but
also establish a foundational basis for subsequent
scholarly endeavors. In the future, we would like
to extend these analyses to other NLG evaluation
tasks.

7 Limitations

We discuss the limitations and future research di-
rections of our work in this section.

• In experiments, we mainly use the prompts
from the previous works (Fernandes et al.,
2023; Kocmi and Federmann, 2023b). These
prompts are may not the best prompt that can
fully elicit the ability of LLMs on this task.
It’s important to note that our conclusion may
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not apply to all prompts. However, the cur-
rent popular prompts that simply ask LLMs
to predict scores or fine-grained errors can be
negatively affected by the source. Designing
prompts that can better elicit the cross-lingual
capability of LLMs is a topic for future re-
search.

• We do not evaluate other closed LLMs like
GPT-4 due to the limited resources. The
tokens consumed in our experiments are
recorded in the Appendix F. We leave assess-
ing additional LLMs with more test data as
future work.

• We do not dive into how to better fine-tune the
open model. More carefully designed training
data or pipelines may bring greater improve-
ment for this task.

• In this work, we only focus on the translation
evaluation task which is a sub-field of NLG
evaluation tasks. Future research should fo-
cus on extending these analyses to other NLG
evaluation tasks.
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A GEMBA-SQM Prompts with Four
Input Modes

T mode

Score the following translation from
{src_lang} to {tgt_lang} on a continuous
scale from 0 to 100 that starts on “No
meaning preserved”, goes through “Some
meaning preserved”, then “Most meaning
preserved and few grammar mistakes”, up
to “Perfect meaning and grammar”.

{tgt_lang} translation: “{translation}”
Score (0-100):

S-T mode

Score the following translation from
{src_lang} to {tgt_lang} on a continuous
scale from 0 to 100 that starts on “No
meaning preserved”, goes through “Some
meaning preserved”, then “Most meaning
preserved and few grammar mistakes”, up
to “Perfect meaning and grammar”.

{src_lang} source: “{source}”
{tgt_lang} translation: “{translation}”
Score (0-100):

R-T mode

Score the following translation from
{src_lang} to {tgt_lang} with respect
to the human reference on a continuous
scale from 0 to 100 that starts on “No
meaning preserved”, goes through “Some

meaning preserved”, then “Most meaning
preserved and few grammar mistakes”, up
to “Perfect meaning and grammar”.

{tgt_lang} human reference:
“{reference}”
{tgt_lang} translation: “{translation}”
Score (0-100):

S-R-T mode

Score the following translation from
{src_lang} to {tgt_lang} with respect
to the human reference on a continuous
scale from 0 to 100 that starts on “No
meaning preserved”, goes through “Some
meaning preserved”, then “Most meaning
preserved and few grammar mistakes”, up
to “Perfect meaning and grammar”.

{src_lang} source: “{source}”
{tgt_lang} human reference:
“{reference}”
{tgt_lang} translation: “{translation}”
Score (0-100):

B AutoMQM Prompts with Four Input
Modes

T mode

Identify the major and minor errors
in this translation. Note that Major
errors refer to actual translation or
grammatical errors, and Minor errors
refer to smaller imperfections, and
purely subjective opinions about the
translation.

{tgt_lang} translation: “{translationi}”
Errors: ...

{tgt_lang} translation: “{translation}”
Errors:

S-T mode

Based on the given source, identify
the major and minor errors in
this translation. Note that Major
errors refer to actual translation or
grammatical errors, and Minor errors
refer to smaller imperfections, and
purely subjective opinions about the
translation.

{src_lang} source: “{sourcei}”
{tgt_lang} translation: “{translationi}”
Errors: ...

{src_lang} source: “{source}”
{tgt_lang} translation: “{translation}”
Errors:

R-T mode

Based on the given reference, identify
the major and minor errors in
this translation. Note that Major
errors refer to actual translation or
grammatical errors, and Minor errors
refer to smaller imperfections, and
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purely subjective opinions about the
translation.

{tgt_lang} human reference:
“{referencei}”
{tgt_lang} translation: “{translationi}”
Errors: ...

{tgt_lang} human reference:
“{reference}”
{tgt_lang} translation: “{translation}”
Errors:

S-R-T mode

Based on the given source and reference,
identify the major and minor errors
in this translation. Note that Major
errors refer to actual translation or
grammatical errors, and Minor errors
refer to smaller imperfections, and
purely subjective opinions about the
translation.

{src_lang} source: “{sourcei}”
{tgt_lang} human reference:
“{referencei}”
{tgt_lang} translation: “{translationi}”
Errors: ...

{src_lang} source: “{source}”
{tgt_lang} human reference:
“{reference}”
{tgt_lang} translation: “{translation}”
Errors:

C Effects of Reference Quality

According to the results of WMT23 Metrics Shared
Task (Freitag et al., 2023), poor human-generated
reference translations can dramatically hurt the per-
formance and reliability of the reference-based met-
rics. Here we perform a simple experiment to con-
firm this conclusion. We extract all of the samples
whose MQM score of refA is less than or equal to -
2.0 from the WMT22 Zh-En test set, and finally get
5488 samples with 343 different sources Then we
evaluate the performance of GEMBA-SQM-GPT-
3.5-turbo and GEMBA-SQM-Llama2-70B-Chat on
this test set. The results are shown in Table 11.
The gap between S-T and R-T/S-R-T gets much
smaller. Sometimes S-T is even better than R-T.
Consequently, we believe that the low-quality ref-
erences have a negative impact on reference-based
methods.

D Shapley Values Calculation

We denote the meta-evaluation scores of each input
mode as ST , SST , SRT and SSRT . The Shapley
Value of the source part is

Shapleysrc =
(SST − ST ) + (SSRT − SRT )

2
.

Model Mode Acc. τ ρ

GPT-3.5-turbo

T 0.879 0.196 0.129
S-T 0.890 0.142 0.149
R-T 0.879 0.169 0.142

S-R-T 0.789 0.187 0.183

Llama2-70B-Chat

T 0.879 0.188 0.189
S-T 0.802 0.144 0.102
R-T 0.824 0.179 0.147

S-R-T 0.802 0.135 0.108

Table 11: The performance of different models using
different input modes on the test set with inaccurate
references.

Similarly, the Shapley Value of the reference is

Shapleyref =
(SRT − ST ) + (SSRT − SST )

2
.

E Analysis by Log-Probability

We hypothesize that the non-trivial outcomes ob-
served when employing the T mode may be at-
tributed to the LLMs basing their scoring on the
quality of the translation sentence provided that
the translation is semantically similar to the source.
We measure the quality of a sentence using log-
probability. Moreover, drawing inspiration from
generation-based methods, we also calculate the
log-probability of the translation as a scoring met-
ric when providing either the source, the reference,
or a combination of both.

In this experiment, we only test the open mod-
els including both chat and base versions since the
log-probability of ChatGPT is inaccessible at that
time. We adopt the same prompt as above (Fig-
ure 1) for the chat models and just compute the
vanilla log-probability of the translation part. As
for the base models, considering they may be con-
fused about the instruction, we only use the equal
sign “=” to concatenate the source, reference, and
translation sentences. For example, the prompt
template of the S-R-T mode is “{source} = {ref-
erence} = {translation}”, and that of the T mode
is simply the translation sentence “{translation}”.
The log-probability of the translation sentence is
computed as follows:

P (t) =
N∑

i=1

log p(ti|c, t<i) (7)

where t is the tokens in the translation sentence of
length N , and c is the context before the translation
in the prompt, such as the instruction, the source,
and reference information.
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The test set, models, and metrics are identical to
those used in the coarse-grained score prediction
experiments, except that we add the base models.

E.1 Results
As presented in Table 13, we have similar observa-
tions to the previous experiment. The superiority
of the R-T mode is more prominent in this experi-
ment, irrespective of the model type and size. This
also corroborates that even powerful large language
models cannot utilize the source information effec-
tively in the translation evaluation task. The per-
formance of the T mode which only computes the
translation’s log-probability, remains significantly
higher than random guess. The system-level accu-
racy of the T mode even exceeds the S-T and S-R-T
mode by a large margin. These findings provide
strong support for our hypothesis, suggesting that it
is plausible for models to offer a relatively accurate
score solely based on the quality of the translation
sentence.

In this table, we also observe that the perfor-
mance of each metric does not scale up well with
the model size, regardless of further alignment.
The system-level accuracy of models within the
same base or chat series is comparable, with the 7B
model even slightly outperforming the 70B model.
Meanwhile, some of the segment-level correlations,
like the correlations of T and S-T mode, are slightly
increasing as the model size up. However, the slope
is very gradual. We speculate that scaling may
bring little benefit to the inherently deficient dis-
criminate capability of auto-regressive language
models, which is pertinent to the Generative AI
Paradox (West et al., 2023).

When comparing Table 2 and Table 13, a pecu-
liar phenomenon is observed that the segment-level
correlations of log-probability are much higher
than those of the score prediction method, whereas
the system-level accuracy is significantly lower. We
leave the reason behind as future work.

F ChatGPT Token Usage

We record the ChatGPT token usage and cost in
Table 12.

Prompt Input Mode LP Samples Tokens Cost($)

GEMBA

S-T
En-De 22725 2860k 5.72
Zh-En 26340 4030k 8.06
En-Ru 23326 3340k 6.68

S-R-T
En-De 22847 3970k 7.94
Zh-En 26399 5280k 10.56
En-Ru 24058 5010k 10.02

R-T
En-De 22738 3340k 6.68
Zh-En 26676 3830k 7.66
En-Ru 23841 4330k 8.66

T
En-De 22719 2240k 4.48
Zh-En 27454 2660k 5.32
En-Ru 23260 2700k 5.40

Total 292383 43590k 87.18

AutoMQM

S-T
En-De 3200 2450k 4.90
Zh-En 3200 2700k 5.40

S-R-T
En-De 3200 3470k 6.94
Zh-En 3200 3520k 7.04

R-T
En-De 3200 2810k 5.62
Zh-En 3200 2360k 4.72

T
En-De 3200 1800k 3.60
Zh-En 3200 1550k 3.10

Total 25600 20660k 41.32

Table 12: ChatGPT token usage in the experiments.
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Model Mode All LPs En-De Zh-En En-Ru

Acc. τ ρ τ ρ τ ρ

Llama2-70B-Chat

T 0.701 0.176 0.282 0.270 0.448 0.203 0.267
S-T 0.485 0.168 0.297 0.290 0.466 0.187 0.252
R-T 0.730 0.246 0.374 0.333 0.535 0.244 0.331

S-R-T 0.544 0.196 0.324 0.299 0.490 0.217 0.294

Llama2-13B-Chat

T 0.693 0.172 0.276 0.269 0.444 0.199 0.262
S-T 0.471 0.157 0.274 0.287 0.459 0.179 0.233
R-T 0.726 0.238 0.369 0.328 0.531 0.239 0.317

S-R-T 0.620 0.200 0.331 0.293 0.486 0.215 0.283

Llama2-7B-Chat

T 0.675 0.168 0.271 0.269 0.444 0.196 0.253
S-T 0.412 0.153 0.266 0.277 0.445 0.164 0.221
R-T 0.752 0.223 0.350 0.327 0.522 0.231 0.310

S-R-T 0.569 0.191 0.320 0.302 0.481 0.212 0.278

Mistral-7B-Instruct

T 0.646 0.165 0.279 0.267 0.448 0.197 0.260
S-T 0.434 0.152 0.279 0.283 0.448 0.187 0.258
R-T 0.730 0.239 0.374 0.337 0.539 0.243 0.331

S-R-T 0.617 0.212 0.344 0.320 0.504 0.229 0.316

Llama2-70B

T 0.708 0.185 0.295 0.284 0.458 0.219 0.282
S-T 0.507 0.200 0.315 0.335 0.503 0.240 0.258
R-T 0.723 0.256 0.397 0.348 0.548 0.256 0.328

S-R-T 0.591 0.221 0.352 0.348 0.524 0.244 0.279

Llama2-13B

T 0.693 0.179 0.291 0.275 0.459 0.210 0.272
S-T 0.460 0.188 0.297 0.327 0.496 0.224 0.242
R-T 0.726 0.254 0.390 0.349 0.551 0.246 0.319

S-R-T 0.620 0.224 0.356 0.337 0.525 0.238 0.276

Llama2-7B

T 0.693 0.175 0.288 0.275 0.458 0.203 0.264
S-T 0.427 0.184 0.290 0.314 0.484 0.219 0.255
R-T 0.730 0.247 0.377 0.348 0.549 0.244 0.322

S-R-T 0.639 0.223 0.357 0.338 0.520 0.236 0.282

Mistral-7B

T 0.682 0.179 0.285 0.278 0.462 0.211 0.267
S-T 0.464 0.189 0.298 0.324 0.495 0.229 0.249
R-T 0.730 0.252 0.387 0.349 0.551 0.251 0.333

S-R-T 0.664 0.223 0.359 0.341 0.533 0.245 0.296

COMET-22 / 0.839 0.368 0.512 0.428 0.585 0.400 0.469
BLEU / 0.708 0.169 0.193 0.145 0.175 0.140 0.160

Table 13: Results of log-probability as a metric on WMT22 test set.
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Source:
The authorities, particularly in Europe, have lost control of the situation.

Reference:

Die Regierungen haben die Kontrolle über die Lage verloren, insbesondere in Europa.

Translation:

Die Regierungen haben die Kontrolle über die Lage verloren, insbesondere in Griechenland.

'insbesondere in Griechenland' - major/accuracy

Output:

Source:
The absence of an effective soft power component undercut the strategic response to terrorism.

Reference:
Das Fehlen einer effektiven Komponente von Soft Power unterhöhlte die strategische Reaktion gegenüber dem
Terrorismus.
Translation:
Das Fehlen einer effektiven Komponente von Soft Power unterhöhlte die strategische und operative Ausrichtung
Reaktion gegenüber dem Terrorismus.

No error

Output:

Source:
This led to what the scholar Moncef Djaziri described as a division of formal and informal authority.

Reference:
Das führte zu dem, was der Gelehrte Moncef Djaziri als Trennung der formalen und der nicht formalen Autorität
bezeichnete.
Translation:
Das führte zu dem, was der Gelehrte Heino Barth als Trennung der formalen und der nicht formalen Autorität
bezeichnete.

No error

Output:

Figure 3: Cases of GPT-3.5’s outputs. The texts in red are critical errors. Up: The model identifies the named entity
error successfully. Middle: The model fails to detect the addition error. Bottom: The model fails to detect the named
entity error.
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