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Abstract

Though Large Language Models (LLMs) have
demonstrated the powerful capabilities of few-
shot learning through prompting methods, su-
pervised training is still necessary for com-
plex reasoning tasks. Because of their ex-
tensive parameters and memory consumption,
both Parameter-Efficient Fine-Tuning (PEFT)
methods and Memory-Efficient Fine-Tuning
methods have been proposed for LLMs. Nev-
ertheless, the issue of large annotated data
consumption, the aim of Data-Efficient Fine-
Tuning, remains unexplored. One obvious way
is to combine the PEFT method with active
learning. However, the experimental results
show that such a combination is not trivial and
yields inferior results. Through probe experi-
ments, such observation might be explained by
two main reasons: uncertainty gap and poor
model calibration. Therefore, in this paper,
we propose a novel approach to effectively in-
tegrate uncertainty-based active learning and
Low-Rank Adaptation (LoRA). Specifically,
for the uncertainty gap, we introduce a dynamic
uncertainty measurement that combines the un-
certainty of the base model and the uncertainty
of the full model during the iteration of active
learning. For poor model calibration, we incor-
porate the regularization method during LoRA
training to keep the model from being over-
confident, and the Monte-Carlo dropout mech-
anism is employed to enhance the uncertainty
estimation. Experimental results show that the
proposed approach outperforms existing base-
line models on three complex reasoning tasks.1

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Wei et al., 2021; OpenAI, 2022; Touvron
et al., 2023a,b; Zhao et al., 2023) have demon-
strated the powerful capabilities of zero/few-shot

∗Equal Contribution.
†Corresponding Author.

1Our code and results will be available at https://
github.com/callanwu/STAR.
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Figure 1: (a) Active learning combined with LoRA com-
pared to passive learning. (b) Active learning combined
with full parameter tuning compared to passive learning.

learning with prompting techniques, including In-
Context Learning (Dong et al., 2022) and Chain-
of-Thought (Wei et al., 2022), where no param-
eter update is required. However, previous stud-
ies (Hendrycks et al., 2020; Yuan et al., 2023; Bai
et al., 2023; Isik et al., 2024) have shown that
further fine-tuning is still crucial for tasks involv-
ing complex reasoning such as arithmetic reason-
ing (Roy and Roth, 2016; Cobbe et al., 2021) and
commonsense reasoning (Mihaylov et al., 2018;
Clark et al., 2019), etc.

Fine-tuning LLMs requires updating a large
number of parameters, which takes a lot of time and
consumes considerable memory. Taking LLaMA-
7B (Touvron et al., 2023a) as an example, fine-
tuning it on a dataset of 52k instances takes over
12 hours on 4 A100 80G GPUs (Bommasani et al.,
2021; Taori et al., 2023). Therefore, Parameter
Efficient Fine-Tuning (PEFT) methods (Houlsby
et al., 2019; Lester et al., 2021; Li and Liang, 2021;
Hu et al., 2021; Ding et al., 2023) and Memory Ef-
ficient Fine-Tuning (MEFT) methods (Liao et al.,
2023) have been proposed. In addition to updat-
ing a vast number of parameters and consuming
substantial memory, a neglected factor in LLMs
fine-tuning is the extensive consumption of annota-
tion data. Moreover, due to the inherent complexity
of tasks, the human annotation resources required
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for fine-tuning LLMs are also significant (Ouyang
et al., 2022).

Therefore, it is important to develop the Data-
Efficient Fine-Tuning (DEFT) method for LLMs.
A common practice to improve data efficiency is
active learning (Cohn et al., 1996; Settles, 2009),
while it has been shown that the PEFT methods
can alleviate the reliance on annotated data to some
extent (Ding et al., 2023). A straightforward idea
for DEFT is to combine the PEFT method with
active learning. However, such a combination is
not trivial. As shown in Figure 1 (a), simply fine-
tuning an LLM with LoRA (Hu et al., 2021) un-
der an uncertainty-based active learning framework
yields consistently inferior performances compared
to passive learning (random selection of data in ac-
tive learning) on the OpenBookQA dataset, while
as shown in Figure 1 (b), fine-tuning LLM with
full parameter under active learning yields perfor-
mances better than passive learning.

To investigate the mechanism behind this un-
common phenomenon, probe experiments are
conducted by investigating the prediction confi-
dence and entropy of the LLM with LoRA during
uncertainty-based active learning. Based on the ex-
perimental results, we deduce two potential reasons
for this phenomenon. The first issue is uncertainty
gap. To be more specific, the uncertainty calculated
for selecting data during active learning comes
from the full parameters, while only partial parame-
ters remain tuned during PEFT. It suggests that the
conventional way of calculating uncertainty may
not reflect the knowledge required by the PEFT pa-
rameters and therefore undermines the performance
of active learning. The second issue is poor model
calibration which becomes particularly significant
when using the PEFT method (Wang et al., 2023).
It further indicates that the uncertainty calculated
in the conventional way is not well-calibrated, and
the data selected for active learning becomes sub-
optimal.

To address the aforementioned issues, we pro-
pose conStrainT LoRA with dynamic Active
leaRning (STAR), a novel approach to effectively
integrate uncertainty-based active learning and
LoRA. Specifically, for the uncertainty gap, we
introduce a dynamic uncertainty measurement that
combines the uncertainty of the base model and
the uncertainty of the full model during the itera-
tion of active learning. For poor model calibration,
we incorporate the regularization method during

LoRA training to keep the model from being over-
confident, and the Monte-Carlo dropout mecha-
nism (Gal and Ghahramani, 2016) is employed to
enhance the uncertainty estimation. Experimental
results show that the proposed approach outper-
forms existing baseline models on three complex
reasoning tasks. The above issues are partially re-
solved.

In conclusion, our contributions are three-fold:

• As far as we know, we are the first to inves-
tigate and uncover the reasons why directly
combining active learning with LoRA fails to
achieve comparable performance with passive
learning through probe experiments.

• A novel DEFT method, STAR, is proposed to
effectively combine PEFT with active learning
through criterion revision and model regular-
ization.

• Extensive experimental results show that the
proposed method addresses the issues and out-
performs other baselines.

2 Related Work

2.1 Efficient Fine-tuning Methods
As LLMs continue to expand in size, the com-
putational and financial resources required for
fine-tuning these models become increasingly pro-
hibitive. To address this challenge, Efficient Fine-
Tuning has emerged as an essential area of re-
search (Wan et al., 2023). The methods can be clas-
sified into PEFT and MEFT (Wan et al., 2023; Liao
et al., 2023). PEFT, in particular, aims to adjust
a minimal subset of the model’s parameters, thus
conserving computational resources while main-
taining or enhancing model performance (Hu et al.,
2023). We classify PEFT methods into four cat-
egories: Prompt Tuning (Lester et al., 2021; Liu
et al., 2023b) only allow an additional k tunable
tokens per downstream task to be prepended to
the input text. Prefix Tuning (Li and Liang, 2021;
Liu et al., 2022) keeps language model parame-
ters frozen but optimizes a small continuous task-
specific vector that pretends to be key-value pairs.
Adapter (Houlsby et al., 2019; He et al., 2021)
is a new module added between layers of a pre-
trained network, which is a bottleneck architec-
ture. Low-Rank Adaptation (LoRA) (Aghajanyan
et al., 2021; Hu et al., 2021) reduces the parame-
ters and enhances computational efficiency by ap-
plying low-rank matrices. Moreover, minimizing
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memory usage in fine-tuning for improving effi-
ciency has also emerged as a critical topic (Liao
et al., 2023), with several innovative solutions be-
ing proposed. Among these, techniques such as
QLoRA (Dettmers et al., 2023), QA-LoRA (Xu
et al., 2023), and LoftQ (Li et al., 2023) stand out
for their ability to significantly reduce memory re-
quirements without compromising model perfor-
mance. In this paper, we focus on the application
of LoRA.

2.2 Active Learning with LLMs

Active Learning (AL) has been extensively investi-
gated across a multitude of NLP tasks, encompass-
ing machine translation (Miura et al., 2016; Zhao
et al., 2020), natural language inference (Snijders
et al., 2023), named entity recognition (Shen et al.,
2017) and text classification (Ein-Dor et al., 2020;
Margatina et al., 2022; Schröder et al., 2023). In the
era of LLMs, active learning is primarily employed
in the selection of prompts and the annotation of
data (Zhang et al., 2023b; Liu et al., 2023a; Xiao
et al., 2023). For instance, Margatina et al. (2023)
explores various active learning strategies for se-
lecting the most relevant examples for in-context
learning with LLMs. Diao et al. (2023) introduces
an active prompting method that leverages uncer-
tainty metrics to select questions for annotation. In
the domain of integrating PEFT with AL, Jukić
and Snajder (2023a) explored PEFT methods with
different active learning in Pre-trained language
models (PLMs) such as BERT (Devlin et al., 2019),
demonstrating that the integration of PEFT with
active learning can offer substantial performance
gains. Different from Jukić and Snajder (2023a),
we apply decoder-only generative LLMs as the
backbones, to our knowledge, we are the first to
integrate LLMs combined PEFT with AL within
the realm of reasoning tasks.

3 Preliminaries

3.1 Parameter Efficient Fine-tuning

Parameter-Efficient Fine-Tuning (PEFT) methods
aim to fine-tune only a small set of external pa-
rameters while keeping the backbone model frozen
and achieving comparable or even superior per-
formance (Hu et al., 2023). The main-steam
PEFT methods include the adapter-based meth-
ods (Houlsby et al., 2019; He et al., 2021), pre-
fix tuning (Li and Liang, 2021), and LoRA (Hu
et al., 2021), among which LoRA is the most ef-

fective and widely used. In this paper, we mainly
implement PEFT with LoRA.

LoRA (Low-Rank Adaptation) assumes that the
updation of the model weight matrix during train-
ing is low-ranked, which can be decomposed as the
multiplication of two low-rank matrices.

∆W = αBA (1)

where ∆W is the updation of the model weight
matrix, B ∈ Rd×r and A ∈ Rr×k are matrices of
rank r, and α is constant scaling factor.

During training, the model weight matrix W
is fixed and only ∆W is optimized. It is worth
noticing that commonly A is randomly initialized
and B is zero-initialized. In this way, we have
W = W +∆W at the beginning of training and
the fine-tuned model is identical to the base model.

3.2 Active Learning

Active Learning (AL) methods aim to select infor-
mative examples from the data pool to maximize
the performance with the required data budget or
minimize the data budget to achieve the required
performance. The family of AL methods mainly
includes uncertainty-based methods (Lewis, 1995;
Gal and Ghahramani, 2016), diversity-based meth-
ods (Sener and Savarese, 2018), and discriminative-
based methods (Gissin and Shalev-Shwartz, 2019),
where uncertainty-based methods are widely used
and easy for implementation.

In our study, we mainly consider three AL strate-
gies, including RANDOM selection as a passive
learning baseline and two uncertainty-based crite-
ria. Maximum Entropy (Lewis, 1995) and Predic-
tive Entropy (Duan et al., 2023; Kadavath et al.,
2022) are both based on uncertainty, but the former
is label independent while the latter is label depen-
dent. The key idea behind uncertainty-based AL
methods is that models will learn more efficiently
from examples in which they are difficult to predict
and have high prediction uncertainty.

LLMs (Touvron et al., 2023b) inherently gen-
erate sentences in a free-form and auto-regressive
fashion. This process entails the sequential predic-
tion of the probability distribution for the subse-
quent token in a sentence. Let x represent the input
prompt, and s denote the sentence generated by
the LLM, comprising N tokens in total. For any
given LLM, the probability of producing a specific
token zi as the i-th element in the sentence can be
mathematically expressed as p(zi|s<i, x), where
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1 ≤ i ≤ N . Here, s<i symbolizes the sequence of
previously generated tokens {z1, z2, ..., zi−1}.
MAXIMUM ENTROPY(ME) is characterized by its in-
dependence from golden response. It quantitatively
evaluates the uncertainty in a model’s predictions
by computing the entropy across all possible out-
comes, formulated as:

ME(s, x) =

−
N∑

i=1

V∑

j=1

p(vij |s<i, x) log p(vij |s<i, x) (2)

where s is the generated response, p(vij |s<i, x) is
the probability of j-th token in vocabulary at i-th
element in s, V is the vocabulary size.
PREDICTIVE ENTROPY(PE) incorporates golden re-
sponse dependency, offering a measure of the ex-
pected information gain from the true label, given
the predictive distribution. It is formulated as:

PE(s, x) = − log p(s|x)

=
N∑

i=1

− log p(zi|s<i, x) (3)

where s is the golden response, p(zi|s<i, x) is the
probability of i-th token in the golden response.

4 Probing PEFT on Prediction
Uncertainty

In this section, we describe how to design probe
experiments to investigate the reason behind the
failure of LoRA combined with AL methods. We
will first introduce the experiment setup, and then
we will talk about how to prob LoRA under the
AL framework with prediction confidence and pre-
diction entropy. We also discuss how to conclude
from the experimental results.

4.1 Probe Experiment Design
As uncertainty-based AL methods mainly depend
on the confidence or uncertainty of model predic-
tions to select examples during each iteration, it is
straightforward to probe the confidence and uncer-
tainty of model predictions during AL iterations.

We mainly focus on two training variants of
LLMs. The first one, denoted as PEFT method, is
LLM finetuned with LoRA, which is shown to be
problematic under the AL framework. The second
one, denoted as Few-shot method, is untuned LLM,
which is taken as a control group. To enhance the
performance of untuned LLM on downstream tasks,
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Figure 2: Density plot of confidence for wrong predic-
tions.

we employ In-Context Learning (Dong et al., 2022)
prompting by adding demonstrations with the input
prompt. LLaMA-2 (Touvron et al., 2023b) serves
as the backbone LLM. Experiments are conducted
on the BoolQ dataset (Clark et al., 2019) because
its labels only include “true” and “false”, which
makes the prediction uncertainty and prediction
confidence easy to calculate.

4.2 Probing with Prediction Confidence

The first probe experiment is designed to explore
whether the model prediction confidence of the
PEFT method exhibits issues compared to Few-
shot methods. The prediction confidence CF is
measured by the maximum between the output
probability on token “true” and “false”.

CF = max(ptrue, pfalse) (4)

where ptrue and pfalse denotes the probabilities of
token “true” and “false”, respectively.

Then the prediction confidence of PEFT and
Few-shot are calculated and the density plot is
drawn to make a comparison between these two
methods as shown in Figure 2. To mitigate dif-
ferences in model accuracy, we only consider the
confidence of the model for the wrong predictions
on the test set of BoolQ. The intuition is that for
examples that the model is less likely to predict
right, they should be less confident.

The PEFT method achieves an accuracy of
73.36%, which is much higher than the Few-shot
method with an accuracy of 45.41%. As shown
in Figure 2, the PEFT method is overconfident
compared to the Few-shot method, where the con-
fidence of the wrong prediction is as high as 70%,
which indicates a model calibration issue.
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Figure 3: (a) Heatmap of correlation between prediction entropy across different iterations; (b) Scatter plot for
prediction entropy between base model (Iter0) and model after first iteration (Iter1); (c) Same as (b), except values
are taken from Iter5 and Iter6.

4.3 Probing with Prediction Entropy

The second probe experiment is designed to inves-
tigate the change of prediction entropy of PEFT
model during active learning iteration. The MAXI-

MUM ENTROPY(ME) is employed as the uncertainty
during active learning. Nine rounds of iteration
are performed with 500 examples selected during
each iteration. The PEFT model is trained with
500 examples at the beginning as a warm-up.

The correlation between examples with top 1000
entropy at the beginning is calculated and the
heatmap of the correlation is shown in Figure 3
(a). As we can observe in Figure 3 (a), the correla-
tion between the base model (model without PEFT
tuning) and models after AL iteration is close to
0, which indicates a clear gap between the base
model and PEFT model. This phenomenon is
even clear with the scatter plot in Figure 3, where
the dots in Figure 3 (b) should appear around the
red line but appear in the upper triangular region.
In Figure 3 (c), the correlation coefficients of en-
tropy between the two iterations become relatively
normal, which is consistent with Figure 3 (a), sug-
gesting that the gap between iterations has been
alleviated.

5 Methods

In this section, we introduce the proposed method
STAR in detail. We will first describe the overall
workflow of STAR, then we will discuss methods
to address the uncertainty gap issue and the model
calibration issue. Finally, we will conclude the
proposed method with a pseudocode.

5.1 LoRA under Active Learning Iteration

As shown in Figure 4, the k-th iteration of STAR
consists of the following steps.

1. Model Inference that employs the present
model Mk to make inference on unlabeled
dataset DU

k .

2. Data Querying that selects the most infor-
mative examples to form a subset SU

k with
the results of inference based on the dynamic
uncertainty estimation method.

3. Data Labeling that labels the unlabeled sub-
set SU

k to form the labeled subset SL
k .

4. Dataset Updating that updates the labeled
dataset DL

k by appending appending the la-
beled subset DL

k+1 = DL
k ∪ SL

k .

5. Model Training that updates the present
model with new labeled dataset DL

k+1 to get
model Mk+1 for next iteration.

5.2 Dynamic Uncertainty Measurement
To address the issue of uncertainty gap, we pro-
posed a dynamic uncertainty measurement to in-
tegrate the uncertainty of the frozen LLM (base
model) and the uncertainty of LLM fine-tuned with
LoRA (full model) dynamically based on the AL
iteration.

The key idea is that at the beginning of PEFT
training, the extra parameters are under-fitting,
where the uncertainty calculated is less reliable
than the frozen parameters. As the iteration of ac-
tive learning increases, the uncertainty of the full
model becomes more reliable, which is similar to
the zero-initialized attention weight in LLaMA-
adapater (Zhang et al., 2023a).

µ = λ(t)µb + (1− λ(t))µf (5)

where µb and µf denote the prediction uncertainty
of the base model and the full model respectively,

3523



Unlabeled

Dataset

Labeled

Dataset

Human 

Annotation

𝑢 = 𝜆 𝑡 𝑢𝑏+ 1 − 𝜆 𝑡 𝑢𝑓

𝑥

𝑊
𝐴

𝐵ℓ2 − 𝑛𝑜𝑟𝑚

∙ 2

Monte-Carlo 

Dropout

ℎ

Dynamic Uncertainty

Regularized LoRA

Data

Labeling

Dataset 

Updating

Figure 4: The framework of STAR. It primarily consists of five steps: Model Inference, Data Querying, Data
Labeling, Dataset Updating, and Model Training.

λ(t) ∈ [0, 1] is a monotone decreasing function
of AL iteration t. Note that, our measurement ap-
proach only requires one additional computation
of the base model at the beginning, which remains
constant throughout and does not significantly in-
crease the FLOPs.

5.3 Calibration with Hybrid Regularization

To address the issue of poor model calibration,
we propose a hybrid regularization method during
PEFT training. As discussed in Section 4.2, the
PEFT model demonstrates a pronounced tendency
toward over-confidence, which indicates that the
model is over-fitting.

Common approaches to prevent the model from
being over-fitting include early-stoping (Doan and
Liong, 2004), regularizations (Santos and Papa,
2022), and ensemble methods (Ganaie et al., 2022).
Considering the difference between LoRA parame-
ters A and B, we integrate two regularization meth-
ods into a hybrid regularization to keep LoRA from
being over-fitting.

For the B matrix, which is zero-initialized, a L2

norm weight decay is employed.

Bt ← Bt−1 − γ(gt−1 − βBt−1) (6)

where gt−1 denotes the normalized gradient ac-
quired from the standard Adam optimizer, and β
denotes the strength of regularization.

For the A matrix, which is randomly Gaus-
sian initialized N(0, 1), the Monte-Carlo dropout

(MC dropout) (Gal and Ghahramani, 2016) is
adopted for more robust uncertainty estimation.
MC dropout works by activating the dropout unit
both in the training and inference stages, which can
be regarded as an approximation to the Bayesian
Neural Network. With the dropout unit activated
during the inference stage, neural networks can gen-
erate different outputs with the same input, where
expectations can be taken for more robust estima-
tion.

µf =
1

K

∑

k

µ
(k)
f

µ
(k)
f = ME(LLM(x|Âk, B̂k))

(7)

where K denotes the number of feedforward prop-
agations during the inference stage, µ(k)

f denotes
the uncertainty estimated at k-th feedforward, Âk

and B̂k denote the LoRA matrices sampled from
A and B with dropout unit activated.

5.4 Overall Algorithm
The overall algorithm of STAR is shown in Algo-
rithm 1.

6 Experiments

6.1 Datasets
In our research, we employ three benchmark
datasets spanning two categories of reasoning
problems for AL evaluation:
Arithmetic Reasoning: the GSM8K
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Method GSM8K BoolQ OpenBookQA

AUC RIPL AUC RIPL AUC RIPL

RANDOM 27.37 - 60.46 - 63.44 -

PREDICTIVE ENTROPY 27.30 -0.09 58.39 -5.24 63.05 -1.07
w/ STAR 28.40 1.42 61.84 3.49 64.86 3.88

MAXIMUM ENTROPY 27.16 -0.28 60.65 0.48 63.36 -0.22
w/ STAR 28.83 2.01 61.91 3.67 66.17 7.47

Table 1: The performance of different methods in a passive learning setup in terms of the AUC and RIPL. The optimal
results among all methods are bolded and the second-best results are underlined.
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Figure 5: The Learning curves comparing the PREDICTIVE ENTROPY and MAXIMUM ENTROPY methods, and each w/
STAR, against the RANDOM baseline. The first column corresponds to the GSM8K dataset, the second column to
the BoolQ dataset, and the third column to the OpenBoolQA dataset.

dataset (Cobbe et al., 2021) comprises ap-
proximately 8.5K high-quality linguistically
diverse grade school math word problems created
by human problem writers.
Commonsense Reasoning: (1) the BoolQ
dataset (Clark et al., 2019) is a specialized
question-answering dataset designed for yes/no
questions; (2) the OpenBookQA dataset (Mihaylov
et al., 2018) is a four-way multiple-choice
question-answering dataset.

See Appendix A for more details about the
dataset.

6.2 Settings
Experimental setup In the experiment conducted
on the GSM8K and BoolQ datasets, we incremen-
tally selected 500 new instances in each step of
the AL experiment. The initial warm start for the
AL setting is established by randomly choosing
500 instances. Furthermore, we adhere to a label-

ing budget constraint of 5,000 instances for each
dataset. Considering the size of the training set
for OpenBookQA, we design the AL framework
to incrementally select 200 new instances during
each iteration. The labeling budget for this process
is set to 2,000 instances. The details regarding the
evaluation can be found in Appendix C.
Implementations In the empirical study, we uti-
lize the state-of-the-art openly accessible LLM,
LLaMA2-7B (Touvron et al., 2023b)2 as the base
model. For comprehensive details on the hyperpa-
rameters employed in our experiments, please refer
to Appendix B.

7 Result and analysis

7.1 Main Result
Table 1 presents a detailed comparison of differ-
ent methods’ performance, evaluated across three

2https://huggingface.co/meta-llama/Llama-2-7b
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Method GSM8K BoolQ OpenBookQA

AUC RIPL AUC RIPL AUC RIPL

PREDICTIVE ENTROPY 27.30 -0.09 58.39 -5.24 63.05 -1.07
+Dynamic 27.73 0.59 60.80 0.86 63.81 1.01

+Monte-Carlo dropout 28.04 1.02 61.30 2.12 64.16 1.97
+ L2 norm weight decay 27.93 0.87 60.99 1.34 64.13 1.89

MAXIMUM ENTROPY 27.16 -0.28 60.65 0.48 63.36 -0.22
+Dynamic 27.68 0.52 61.01 1.39 64.51 2.95

+Monte-Carlo dropout 28.03 1.00 61.72 3.19 65.17 4.73
+ L2 norm weight decay 27.82 0.72 61.29 2.10 64.72 3.50

Table 2: The ablation performance of different methods, AUC and RIPL are reported.

Algorithm 1 STAR
Input:unlabeled dataset DU , labeled dataset
DL, the LLM M , number of iteration
N , size of subdataset during iteration
m.

1: initialize DU
0 and DU

0

2: warm-up LLM M0

3: for k = 0 to N :
4: making inference with Mk on DU

k

5: querying subset SU
k from DU

k based on
Equation (2)

6: updating DU
k+1 ← DU

k \ SU
k

7: labeling SU
k to get SL

k

8: updating DL
k+1 ← DL

k ∪ SL
k

9: fine-tuning LLM Mk to get Mk+1 on DL
k+1

based on Equation (6) and Equation (7)
10: return LLM after fine-tuning MN

different datasets: GSM8K, BoolQ, and Open-
BookQA. RANDOM serves as a fundamental base-
line, with its AUC listed.

Both original PE and ME methods underperform
compared to RANDOM on these three datasets in
terms of AUC. The RIPL metric also hovers around
zero, indicating that the original AL strategy is
essentially ineffective.

After applying our proposed STAR method, PE

and ME exhibit superior performance across all
datasets and metrics. For instance, in the GSM8k
dataset, ME w/ STAR achieves an AUC of 28.83 and
a RIPL of 2.01, indicating a notable advancement
over the baseline RANDOM and ME. The improve-
ments are most pronounced in the OpenBookQA
dataset, where ME w/ STAR method achieves a re-
markable RIPL of 7.47. Furthermore, in the BoolQ
dataset, ME w/ STAR achieves higher performance
compared to the PE w/ STAR. This pattern of ME

w/ STAR outperforming PE w/ STAR is consistent

across the GSM8K and OpenBookQA datasets as
well. These results suggest that the ME w/ STAR is
more effective.

Then, we explore how the models’ performance
changes as the training set increases. Figure 5
shows the learning curves for corresponding AL
methods on GSM8K, BoolQ, and OpenBookQA
datasets, respectively. The RANDOM baseline and
the two original active learning approaches per-
form comparably, suggesting that the active learn-
ing methods appear to be ineffective. Notably, the
BoolQ dataset exhibits particularly high variability
in results when using the PE strategy, which may
be attributed to BoolQ’s binary output format of
“true” and “false”. The gap between the full model
and the base model could easily lead to skewed
predicting results in a single iteration.

It is evident that w/ STAR methods demonstrate
the most significant improvement on the Open-
BookQA dataset. After applying our method, the
model learned truly more useful samples. For in-
stance, as evidenced by the BoolQ dataset in Fig-
ure 5, the performance of the model reaches satura-
tion with just 1000 samples. This indicates that the
selected samples are sufficiently diverse and useful
for model learning.

7.2 Ablation Study

Since our methods have two main components,
which are dynamic uncertain measurement and cal-
ibration with hybrid regularization as described in
Sec 5. We conduct a detailed ablation study to as-
sess the effect of the two components. As shown
in Table 2, upon employing the dynamic uncertain
measurement, all AUC are improved, and the RIPL
turns positive. This indicates a significant gap be-
tween the full model and the base model in the
original strategies, which our dynamic indicator
effectively mitigated.
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Subsequently, building on this foundation and in-
dividually incorporating MC dropout and L2 norm
weight decay, it is observed that both constraint
methods enhance performance, with MC dropout
offering a more substantial improvement. The ad-
dition of calibration methods indeed effectively
mitigates the issue of model over-confidence and
improves model calibration.

8 Conclusion

In this paper, to improve the data efficiency of
Large Language Models (LLMs) during the fine-
tuning process, we propose a data-efficient parame-
ter tuning method by combining LoRA with active
learning. To address the issue that uncertainty-
based active learning fails to combine with LoRA,
we experimentally identify and summarize two pos-
sible reasons: uncertainty gap and poor model cal-
ibration. To resolve the uncertainty gap issue, we
propose a dynamic uncertainty calculation method,
and to address poor model calibration, we intro-
duce a regularization-based constraint method. By
integrating these two approaches, we partially solve
the aforementioned failure issues. Extensive exper-
iments show that our proposed method outperforms
baseline models on multiple reasoning datasets.

Limitations

Though achieving promising results in the experi-
ments, our work still has the following limitations.

• Due to constraints on computational resources,
we did not conduct experiments on larger ver-
sions of LLaMA2 from 13B to 70B, nor did we
experiment with other types of LLMs including
BLOOM, Falcon, etc.

• Due to limitations in computational resources
and time, we did not explore the combination
of other types of PEFT methods (series/parallel
adapters, prefix tuning) with different types of
active learning methods (diversity-based active
learning). Therefore, the validity of the methods
and conclusions in this paper for a wider com-
bination of PEFT and active learning remains
unexplored. Further work should include explor-
ing a more extensive combination of PEFT and
active learning.

• We only speculated on the reasons for the fail-
ure of combining LoRA with active learning

through simple probe experiments, without delv-
ing deeper into the underlying mechanisms. Fu-
ture work should involve exploring the deeper
mechanisms behind this phenomenon.
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Dataset #train #test Answer Format

GSM8K 7,473 1,319 Number
BoolQ 9,427 3,270 Letter
OpenBookQA 4,957 500 Letter

Table 3: Details of datasets being evaluated.

A Dataset

Table 3 shows the statistics of the dataset. In light
of the unique tasks associated with each dataset,
we implement a structured template approach. This
template tailors the content and responses to the
specificities of each dataset. We give the data tem-
plates for each dataset used to fine-tune LLM in
Table 4.

B Model Hyper Parameters

Following the prior works (Hu et al., 2021; Li
et al., 2023), we maintain the original weights
of the backbone architecture unchanged and in-
tegrate low-rank adapters into the Multi-Head At-
tention(MHA) and Feed-Forward Network(FFN)
components of all layers. These low-rank adapters
are configured with a rank of 64 and a factor of α
set to 16, alongside a dropout rate of 0.1 to mitigate
overfitting. The model parameters are optimized
by AdamW (Loshchilov and Hutter, 2018). We
use a batch size of 8 and a learning rate of 1.5e-4
for the GSM8K task and a batch size of 32 and a
learning rate of 3e-5 for the BoolQ task and the
OBQA task. In the AL setting, the model is trained
for a fixed number of epochs: 3 epochs for the
GSM8K task, and 15 epochs for both the BoolQ
and OBQA tasks. All reported results are averaged
over three runs. Our implementation leverages the
PyTorch3 framework and HuggingFace Transform-
ers4 library (Wolf et al., 2020). Our experiments
are carried out with an NVIDIA A100 80GB GPU.

C Evaluation

Following previous work (Schröder et al., 2022;
Jukić and Snajder, 2023b,a), our study utilizes the
Area Under the Curve (AUC) metric to assess the
comprehensive efficacy of the methods we propose.
The accuracy metric (Acc.) is employed for evalu-
ating the effectiveness at each individual AL step.

To ascertain the success of AL, we compute
the Relative Improvement over Passive Learning

3https://github.com/pytorch/pytorch
4https://github.com/huggingface/transformers
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Dataset Fine-tuning Data Template
GSM8K [QUESTION]

Answer the above question. First, think step by step and then answer the final number.
[ANSWER]

BoolQ [QUESTION]
The correct answer is
[ANSWER]

OpenBookQA [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer4: [ANSWER_4]
The correct answer is [ANSWER]

Table 4: The fine-tuning data template for each dataset.

(RIPL), delineated as follows:

RIPL(SAL, SPL) =
AUC(SAL)−AUC(SPL)

1−AUC(SPL)
(8)

where SAL and SPL denotes AL methods and RAN-

DOM method. RIPL serves as an estimator for the
quotient of the maximal attainable enhancement
that an AL approach can secure over the conven-
tional passive learning benchmark. A RIPL score of
1 signifies the epitome of theoretical enhancement,
equating to achieving an Acc. of 1 during the initial
sampling phase and maintaining this optimum per-
formance across all subsequent stages. In contrast,
a RIPL score below 0 suggests that the AL strategy
is outperformed by passive learning approaches.
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