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Abstract

Large Language Models (LLMs) have shown
remarkable comprehension abilities but face
challenges in GPU memory usage during in-
ference, hindering their scalability for real-
time applications like chatbots. To accelerate
inference, we store computed keys and values
(KV cache) in the GPU memory. Existing
methods study the KV cache compression to re-
duce memory by pruning the pre-computed KV
cache. However, they neglect the inter-layer
dependency between layers and huge memory
consumption in pre-computation. To explore
these deficiencies, we find that the number of
crucial keys and values that influence future
generations decreases layer by layer and we
can extract them by the consistency in attention
weights. Based on the findings, we propose
PyramidInfer, a method that compresses the
KV cache by layer-wise retaining crucial con-
text. PyramidInfer saves significant memory
by computing fewer keys and values without
sacrificing performance. Experimental results
show PyramidInfer improves 2.2x throughput
compared to Accelerate with over 54% GPU
memory reduction in KV cache. Our code is
available in https://github.com/mutonix/
pyramidinfer.

1 Introduction

Large Language Models (LLMs) (OpenAI, 2023;
Anthropic, 2023; Jiang et al., 2023) like GPT4
have demonstrated the unprecedented ability of
remarkable comprehension in human languages.
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However, these large models meet up with a
substantial challenge of immense GPU memory
usage in the inference, due to the model and
computational complexity. This hinders deploying
LLMs at scale to meet the thousands of demands
for chatting with chatbots.
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Figure 1: Inference in the prefill phase: all models
of different sizes have the prompts of 64 × 2k.
LLM consumes huge GPU memory in the KV cache
compared to the small model. PyramidInfer can reduce
over 54% GPU memory usage in the KV cache while
having more than 2x throughput.

Different from training, models in the infer-
ence do not need to record the optimizer states,
activations, or gradients. As LLMs are mostly
Transformer-based auto-regressive models, the
GPU memory usage mainly consists of two parts:
model parameters and KV cache. KV cache
presents the keys and values previously computed
in the attention. We store the KV cache in the
GPU memory and reuse it in future generations to
avoid re-computation. The KV cache mechanism
has been widely used to improve the inference
speed (Touvron et al., 2023; Zhang et al., 2022).
However, the KV cache consumes huge GPU
memory, especially for LLMs. For example, in
Figure 1, for a model with 7 billion parameters,
the parameters only consume 14 GB of memory

3258

https://github.com/mutonix/pyramidinfer
https://github.com/mutonix/pyramidinfer


but the KV cache requires around 72 GB. The KV
cache has the potential to consume memory several
times the size of the model. It demonstrates a great
challenge that the throughput of LLM inference is
constrained by how much data (KV cache) we can
put in the GPU besides the model.

We break down LLM inference into two phases:
prefill phase and generation phase (Brown et al.,
2020; Radford et al., 2019). In the prefill phase,
the prompt is computed in parallel to generate the
first token, and the initial KV cache is pre-filled.
In the generation phase, the model decodes the
next token one by one and appends the keys and
values of the newly decoded token to the old KV
cache. Recent studies (Zhang et al., 2023; Liu
et al., 2023; Ge et al., 2023) compress the KV
cache to reduce GPU memory usage. However,
as shown in Figure 2, they all only reduce the KV
cache that has been already computed rather than
reducing the KV cache to be computed. They have
to prefill the initial KV cache before they can start
to compress, which neglects the great GPU memory
consumption of computing the initial KV cache,
especially for longer prompts and larger models. If
the model can not process the prompt in the prefill
phase, these methods are no longer applicable as
their compression starts in the generation phase. In
this paper, we focus on how to further compress
the KV cache in the prefill phase besides the
generation phase. We give out our findings and
then propose our method PyramidInfer inspired by
these findings.

During the training, all input tokens predict
the tokens next to themselves in an one-to-one
teacher-forcing way (Lamb et al., 2016). During
the inference, the tokens except for the last token
no longer need to predict the next tokens but
they still record this redundant information in
keys and values. We call this Inference Context
Redundancy (ICR) hypothesis. It inspires us to
compress the KV cache by only computing the keys
and values that record the context information.

Another challenge arises as the initial KV cache
is reused multiple times for generating future
tokens, necessitating careful retention of context
information during compression. Inspired by the
work (Liu et al., 2023), we further explore what
parts of the KV cache are always crucial for future
generations. We observe that queries of recent
tokens closer to the last token are more consistent
in attending to the same context keys and values,
denoted as the Pivotal Context (PvC). We call this

phenomenon as Recent Attention Consistency
(RAC). The consistency of attention weights in
recent tokens indicates that we can leverage it as
the oracle to select the crucial KV cache for future
generations in advance.

Based on our observations, we propose the
PyramidInfer, an effective method of reducing the
KV cache both in the prefill and generation phase
by layer-wise selecting the PvCs. In PyramidInfer,
the PvCs are gradually reduced as the layers get
deeper where the KV cache is like a pyramid. We
showcase the capability of PyramidInfer on a wide
range of tasks using OpenCompass (Contributors,
2023) on models of different types and sizes.
The results show that PyramidInfer has higher
throughput than the full cache method Accelerate
and Deepspeed by 2.2x and 1.4x, KV cache
compression method H2O by 2.4x with over 54%
less GPU memory in KV cache.

2 Related Work

Due to the increasing demands for chatting with
chatbots, efficient strategies are required to process
thousands of queries to maximize the throughput.
The fundamental way to improve the throughput
is to put more data (larger batch) into the GPU
memory to utilize the GPU parallelism better.

Inference Parallelism One way is to enlarge the
GPU memory. We can borrow the techniques used
in training to accelerate the inference, e.g., pipeline
parallelism (Huang et al., 2019), KV cache offload
(Sheng et al., 2023), etc. These methods leverage
multiple GPUs or even RAM to make up bigger
space for input data.

KV Cache Reduction However, if we have
limited GPU memory, another way is to reduce
the KV cache. For optimization in the CUDA,
FlashAttention 2 (Dao, 2023) reduces the number
of reads/writes between GPU HBM and GPU on-
chip SRAM. PagedAttention (Kwon et al., 2023)
borrows the virtual memory techniques to achieve
near-zero waste in KV cache memory.

Besides CUDA methods, we can optimize the
KV cache from the model itself. From Figure 2,
StreamingLLM (Xiao et al., 2023) reserves the re-
cent context to enable unlimited input by sacrificing
memorization of the history. Other methods like
H2O (Zhang et al., 2023) and Scissorhands (Liu
et al., 2023) leverage the attention to compress the
KV cache. However, they treat the compression
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Figure 2: Comparison between PyramidInfer and other methods: (a) StreamingLLM only reserves the first and
recent tokens thus losing memorization of the previous context. (b) H2O/Scissorhands compress the KV cache
without difference for all the layers. They suffer great information loss by compressing too much in the shallow
layers. (c) Different from the above methods that can only compress after the KV cache has been computed,
PyramidInfer can compress the KV cache in the prefill phase. PyramidInfer only computes crucial keys and values
to do inference thus reducing more GPU memory and bringing higher throughput.

of different layers as the same thing and can
not compress in the prefill phase. Our method
PyramidInfer takes the difference in layers into
account and realizes the compression in both the
prefill and generation phases, thus better reducing
the KV cache while maintaining the generation
quality.

3 Observation and Insight

We verify the hypotheses of Inference Context Re-
dundancy and Recent Attention Consistency, which
inspire us to design the method PyramidInfer.

3.1 Inference Context Redundancy

Different from teacher-forcing in the training, only
the last token has to predict the next token in the
inference. We suppose there exist keys and values
of the context that record the redundant information
to predict the next token in the training but are not
useful for inference. We call this the Inference
Context Redundancy (ICR) hypothesis.

3.1.1 Pivotal Context

To verify the hypothesis, we design an experiment
based on 40-layer LLaMA 2-13B to find out if
this redundancy exists in the KV cache. In this
experiment, we only reserve a proportion of keys
and values of certain layers while other layers
remain fixed and see how the perplexity of model
output will change. This selected proportion
consists of the important keys and values with

the top-p attention weights, denoted as the Pivotal
Context (PvC).

As shown in Figure 3, we show that, for most of
the layers, as the retention ratio of PvC decreases,
the perplexity of the output will increase. However,
as the layer becomes deeper (larger index), we
find that the influence of shorter PvC tends to
be smaller. For example, after Layer 27, the
perplexity remains stable even with 80% keys
and values are evicted. In Figure 4, we compute
the standard deviations across the retention ratios
of all the layers and observe they obey a power
law distribution. It indicates most of the keys
and values should be retained as the layers are
shallow and the redundancy in the KV cache
sharply increases as the layers become deeper. This
growing redundancy guides us to minimize the KV
cache while maximizing the performance.

3.1.2 Discussion
How does the model gather information to
predict the next token? Generating the next
token can be considered as a process that the last
token gathers the information from the context
based on the attention weights. In Figure 3, we
observe from the view of the last token. In the
shallow layer, the information in the context is
distributed in most of the tokens in the context. As
the layer goes deeper, only limited keys and values
contribute to the next token prediction.

The inference process differs from training
because all the input tokens predict the next tokens.

3260



Figure 3: For each layer, we reserve the keys and values with top-p attention weights (PvC) while other layers
maintain the full length. We calculate the average perplexity across different retention ratios p.
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Figure 4: The perplexity standard deviations when only
PvCs are reserved at each layer.

At this time, keys and values store two kinds of
information: 1) the information to predict what
the token is next to it; 2) the context information
for future tokens to leverage. So far, we have
verified that PvCs are the crucial keys and values
that are useful for inference. On the other hand, we
want to verify the non-PvC that may play a more
important role in teacher-forcing prediction instead
of being the context. As non-PvCs are trivial in
PyramidInfer, we discuss it in the Appendix B.

3.2 Recent Attention Consistency

In the verification of ICR, we use the attention
weights to find PvCs. However, in an attention
layer, there are several attention weights for one
token xi as every subsequent token xt>i will attend
to it. Which attention weights should we choose
as the metric to find PvCs? Intuitively, the optimal
weights must be from the last token xn. However,

the PvCs selected by these weights are suitable for
predicting xn+1 but not always suitable for future
tokens xt>n+1. Our goal is to find if there exists
shared PvCs that can be used as a general oracle
to predict several future tokens xt>n+1 besides the
last token xn+1.

3.2.1 PvC Consistency

We convert this goal to finding if there exist
keys and values that are frequently attended by
subsequent tokens. First of all, we define a relative
distance of how far the context token xi is relative
to the last token xn, which is called the Recent
Ratio d = (n− i)/n× 100%. We divide the input
sequence into two parts where we denote the tokens
with 0 < d < 30% as the recent sequence Sr and
d ≥ 30% as the context sequence Sc. We only
compute the attention weights of Sr to Sc to check
if there are tokens in the Sc that are always attended
by the tokens in the Sr. For each token in Sr of
each layer, we select the keys and values with top-
80% attention weights as their PvCs. We set the
keys and values with top-80% attention weights of
the last token (d = 0) as the PvC selection baseline.

After the setup, we want to measure how much
the overlap will be that the PvCs of recent tokens
are consistent with the PvC of the last token. If
there is overlap, we can infer the intersection
should be the shared PvC where many subsequent
tokens are consistently interested. Thus for each
layer l, we calculate the overlap ratio C of PvCs as

3261



0% 4% 8% 12% 16% 20% 24% 28%
Recent Ratio

0
6

12
18

24
30

36
La

ye
r

0.80

0.85

0.90

0.95

1.00

(a) Separate PvC overlap ratios of recent tokens.
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(b) Ensemble PvC overlap ratios of recent tokens.

Figure 5: PvC overlap ratio heatmap.

follows:

Cl,i =
|{x|x ∈ PvCl,i} ∩ {x|x ∈ PvCl,last}|

|{x|x ∈ PvCl,last}|
.

(1)
From the results in Figure 5a, the recent tokens

in Sr have an average 86% overlap with the PvC
selected by the last token. It indicates there exists
shared PvCs that are always interested in by the
subsequent tokens. However, it is not enough
to be the oracle to predict future tokens. For
example, if we want to predict the xn+1 token
using only the PvC extracted from the token with
d = 25%, we only have about 83% PvC contributes
to the prediction, which suffers a great context
information loss.

Fortunately, the PvC selections from recent
tokens have high consistency and we can integrate
multiple tokens to select the shared ones. In Figure
5b, we integrate the attention weights by averaging
weights of subsequent [d, d + 10%] tokens as the
ensemble weights of the token with d. We select the
keys and values with top-80% ensemble weights
as PvCs. We observe that the average PvC overlap
ratios increase by a large margin to approximately
93%. The overlap ratios have hardly any drop with
d = 20%, which indicates we can leverage the
PvCs selected from ensemble tokens with d = 20%
as an oracle to predict the xn+1 which is 20%
ahead.

3.2.2 Discussion
Why do the deeper layers tend to have lower
PvC overlap ratios? If we check overlap ratios

along the layer axis, we find that only shallow
layers have relatively high ratios. It is because in
deeper layers there is context redundancy: Only
a small number of keys and values have high
weights that are always selected as PvCs; The
others have similar low weights so they are not
always selected, which results in lower overlap
ratios. This phenomenon is consistent with the
power law distribution observed in ICR, which is
further discussed later.

Context information is mostly stored in the
shared PvCs. In Figure 5b, the consistent PvC
overlap ratios from small d to large d show that
wherever recent tokens are, they only leverage
nearly the same number of keys and values in the
context. These keys and values, also known as
shared PvCs, store most of the context information.

4 Layer-wise PvC Selection

Based on the observations, we design the Pyramid-
Infer, a method to highly increase the inference
throughput by layer-wise selecting the PvCs to
compress the KV cache for each layer.

4.1 Method

As shown in Figure 2, PyramidInfer can not only
reduce the KV cache in the generation phase but
also in the prefill phase without computing the
complete keys and values of the prompt for all
the layers. Following the inference process, we
introduce the PyramidInfer in the prefill phase
and generation phase separately and see how
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Figure 6: The overview of the PyramidInfer.

Algorithm 1 One forward pass in PyramidInfer
Input: KV cache KV , recent window length L, min PvC

length N = {N0, . . . , Nl, . . . }
Output: updated KV cache KV

for layer l ∈ layers do
if KV is not None then

KV = cat([PvCpast,KV ])

A ← compute attention weights of KV
Ae ← weighted_avg(A[−L :, : −L], dim = −2)
if len(KV ) > Nl then

TopP_index← TopP(Ae, p = p)
PvC← Gather(KV, index = TopP_index)

KV ← PvC
Reduce p by multiplying a decay ratio

return KV

PyramidInfer can save lots of GPU memory by
carefully selecting the PvCs.

Prefill Phase In the prefill phase, we have to
process the prompt to prefill the initial KV cache.
Different from the common inference process
that reserves all keys and values of the prompt,
PyramidInfer only reserves the PvCs of each layer
as the initial KV cache.

Similarly, we divide the input sequence into
recent sequence Sr and context sequence Sc. As
shown in Algorithm 1, based on the RAC, we
first calculate the ensemble attention weights by
weightedly averaging the attention weights of Sr.
We assign larger weights for more recent tokens to
enlarge their impact on PvC selection. Based on the
ensemble attention weights, we layer-wise select
the keys and values with top-p weights as the PvC.
According to the conclusion of ICR, the increment
of redundancy obeys the power law distribution.
We choose a larger p to retain more tokens in the Sc

for not to lose the semantics in the shallow layers.
Then we gradually decrease the p to reduce the
length of PvCs in deeper layers. Therefore, the
PvCs of the deeper layers are shorter and the KV
cache becomes a "pyramid".

The layer-wise PvC selection saves much more
GPU memory than other methods computing the
whole prompt in the prefill phase. Besides the
prefill phase, PyramidInfer continues to boost
efficiency in the generation phase because LLMs
only need to reuse a smaller initial KV cache.

Generation Phase As we have reserved the
initial PvCs as the KV cache, what we should do
in the generation phase is to update these PvCs
according to the new recent tokens. As shown
in Figure 6, we maintain a sliding recent window
to update the newly generated token to be new
recent tokens. Based on the new Sr, we update the
PvCs of the KV cache where the operation is the
same as the prefill phase. By controlling the length
of the PvC of each layer, we can easily tune the
compression ratio and even support unlimited input
like StreamingLLM by maintaining a fixed number
of PvCs in the KV cache.

5 Evaluation

5.1 Basic Evaluation

We evaluate PyramidInfer on various tasks and
models to showcase that PyramidInfer can largely
reduce the GPU memory and increase the through-
put while maintaining the generation quality.

Experimental Setup We choose four kinds of
scenarios: 1) Language modeling: we measure
the perplexity on wikitext-v2 (Merity et al., 2016).
2) LLM benchmarks: we evaluate on MMLU
(Hendrycks et al., 2021) and BBH (Srivastava
et al., 2022) for language understanding, GSM8K
(Cobbe et al., 2021) for mathematical reasoning,
HumanEval (Chen et al., 2021) for coding. 3)
Conversation: We evaluate on MT-Bench (Zheng
et al., 2023) to see how PyramidInfer can handle
multi-turn conversation. 4) Long context: we
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Figure 7: Benchmark results of comparison between models with full cache, "local" strategy, and PyramidInfer.

evaluate on long text summarization of the LEval
(An et al., 2023) to see if PyramidInfer can
maintain the quality while accepting longer input.
We evaluate these tasks on LLaMA 2 (Touvron
et al., 2023), LLaMA 2-Chat, Vicuna 1.5-16k
(Zheng et al., 2023) and CodeLLaMA (Rozière
et al., 2023) with different sizes (7B, 13B, 34B and
70B) 1. We set the full KV cache method as the
baseline. Besides that, we also include the "local"
strategy as another baseline that reserves only the
recent KV cache.

In addition, we showcase how much Pyramid-
Infer can save GPU memory and improve the
throughput. We compare the efficiency of Pyra-
midInfer with other full cache methods, including
Accelerate (HuggingFace, 2021), Deepspeed2 (Am-
inabadi et al., 2022). We also select H2O3 (Zhang
et al., 2023), a KV cache compression method, as
another baseline. It is noted that PyramidInfer is

1We quantize the 34B and 70B models to INT8 data type
to reduce the computational cost.

2https://github.com/microsoft/
DeepSpeedExamples/tree/master/inference

3https://github.com/FMInference/H2O

orthogonal to the non-KV-compression methods
like Deepspeed to improve efficiency further.

Benchmark Result In Figure 7, we evaluate the
LLMs with different compression ratios. We show
that PyramidInfer maintains the generation quality
with much less GPU memory compared with the
full cache baseline. PyramidInfer also outperforms
the "local" strategy with a large gap across different
types and sizes of models and tasks.

In the LEval that tests the long context ability,
we show that the "local" strategy that is similar to
the technique used in StreamingLLM causes a huge
decline in memorization of history. PyramidInfer
can accept longer input with less GPU memory
without sacrificing too much performance.

Efficiency Result In Table 1, we fix the input
length and the batch size. For LLaMA 2-13B,
PyramidInfer showcases 2.24x throughput than
full cache using Accelerate with 54.6% less GPU
memory in the KV cache. For LLaMA 2-70B,
PyramidInfer can still generate in the prefill phase
compared to other methods. Existing KV cache
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Table 1: The evaluation of inference methods using an A100 80GB GPU
on LLaMA 2-13B and 70B. Length: prefill length + generation length.
Bsz: batch size. KV mem.: GPU memory usage (GB) of the KV cache.
Thr.: throughput (token/s)

Model Bsz Length Method KV Mem. Thr.

13B 32 512+256

Accelerate 24.2 (100%) 621 (1.0x)
Deepspeed 24.2 (100%) 934 (1.5x)

H2O 21.6 (89.2%) 584 (0.9x)
PyramidInfer 11.0 (45.4%) 1389 (2.2x)

70B 8 256+128
Accelerate/

Deepspeed/H2O OOM -
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Figure 8: Sr ratio ablation study.

compression methods like H2O can not even
process the prompt and strike the OOM before the
start of compression.

In Table 2, we exhaust the memory of an 80GB
A100 GPU to test the maximum throughput by
maximizing the batch sizes. PyramidInfer enables
more than 2x batch size than others and has higher
throughput than full cache methods Accelerate
and Deepspeed by 2.8x and 1.7x, KV cache
compression method H2O by 2.1x. PyramidInfer
can also be utilized to enhance Deepspeed by
increasing the throughput by 1.9x.

Table 2: We exhaust the memory of an A100 80GB GPU
to find out the maximum throughput of these methods
on LLaMA 2-13B. We set the input length to 512+256.
Lat.: latency to generate one token (ms/token).

Method Max Bsz Lat. Thr.

Accelerate 42 1.72 (100%) 581 (1.0x)
Deepspeed 40 1.03 (59.8%) 972 (1.6x)
H2O 48 1.39 (80.8%) 769 (1.3x)
PyramidInfer 88 0.59 (34.3%) 1678 (2.8x)
PyramidInfer
+Deepspeed 86 0.53 (30.8%) 1887 (3.2x)

5.2 Ablation Study
We conduct the ablation studies using the LLaMA
2-13B model to explore the PyramidInfer by
answering the following questions: 1) Which
way should we choose to gradually reduce the
PvC length as the layer becomes deeper without
sacrificing too much performance? 2) What
proportion of the input should we partition as the
recent sequence Sr?

PvC Length Decay Based on ICR, we gradually
reduce the length of PvCs for each layer as the layer
becomes deeper to maximize efficiency. However,

Table 3: PvC length decay ablation study.

Strategy PPL GSM8K MMLU

Reduce more 4.93 26.82 53.1
Reduce uniformly 4.55 28.32 54.8
Reduce less (PyramidInfer) 4.20 29.56 55.7
Reduce None (Full cache) 4.42 28.58 55.4

excessive reduction of PvC length in shallow layers
may lead to the loss of context information. We
try to find out which way is the best to reduce the
PvC length. Under the same compression ratio of
60%, we compare three patterns: 1) reduce more
PvC length in shallow layers but less in the deeper
layers (reduce 15% cache in the first 50% layers).
2) uniformly reduce the PvC length (reduce 10%
cache in the first 50% layers); 3) obey the power
law pattern based on ICR to reduce less at first
(reduce 7% cache in the first 50% layers).

The result in Table 3 demonstrates that following
the power law pattern is the best way to reduce the
PvC length and even slightly improve performance
on downstream tasks.

Recent Sequence Ratio In PyramidInfer, we
select the recent tokens of the input as the recent
sequence Sr. The Sr is not only leveraged as the
context but also the criteria to select the PvC from
the context sequence Sc. If the Sr ratio increases,
Sc will be shorter thus fewer tokens in Sc will be
compressed. Therefore, we need to find a balance
to decide how large the Sr ratio should be.

In Figure 8, we set the GPU memory usage of
the KV cache of the full cache method as the 100%
baseline and test how the perplexity will change
with different Sr ratios. As the Sr ratio increases,
we observe a decline in the GPU memory usage
but a trough in the perplexity at 40-60% Sr ratio.
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Thus we can choose 40% as a trade-off between
performance and GPU memory usage.

6 Conclusion

We alleviate the difficulty of deploying LLMs at
scale by introducing PyramidInfer, a novel method
that efficiently compresses the KV cache during
both prefill and generation phases. Inspired by ICR
and RAC, PyramidInfer significantly reduces GPU
memory usage without compromising model per-
formance. Experimental results present Pyramid-
Infer is a promising solution for optimizing LLM
deployment in resource-constrained environments.

Limitations

Despite the effective strategy to reduce the keys and
values to be computed by selecting the PvCs, Pyra-
midInfer has to bring in additional computation so
that it has limited speedup with a small batch size,
as discussed in Appendix A.1.

Besides that, we are the pioneers in compressing
the KV cache in the prefill phase, which is an area
not fully explored. PyramidInfer is not a method
to compress the KV cache losslessly in the prefill
stage and more effective methods can be explored
in future works.
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A Extended Experiments and Details

A.1 Additional Computational Cost in
PyramidInfer
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Figure 9: Comparison between PyramidInfer and full
cache baseline with different batch sizes on the LLaMA
2-7B model with input length of 512+256.

In Section 4, we introduce how PyramidInfer
improves the inference throughput by selecting
the PvCs based on the attention of Sr. However,
the process of selecting PvC introduces additional
computation in each layer. As shown in Algorithm
1, the additional cost is mainly caused by the sort
operation in top-p while others can be neglected.

To evaluate the influence of the additional cost,
we gradually increase the batch size of the models
and compare the throughput between PyramidInfer
and the full cache baseline. As shown in Figure 9,
PyramidInfer has limited acceleration with a small
batch size because the additional computation
offsets the acceleration from the reduced KV cache.
As the batch size increases, this cost becomes
trivial compared to the acceleration brought by the
PyramidInfer.

A.2 Position Encoding

As we reduce the number of keys and values of
each layer, some positions of keys and values
are missing. There are two choices to obtain the
new position encoding: 1) re-encode the positions
from position 0 in order; 2) gather the scattered
original position encodings of the keys and values.
As shown in Table 4, we experiment on these
two choices on LLaMA 2-13B and find that the
latter one has a slightly better performance in the
downstream tasks.

Table 4: Position encoding comparison.

Strategy GSM8K MMLU

Re-encode 29.12 55.5
Gather 29.56 55.7

B Extended Discussions

The Association between ICR and RAC In
Section 3.2.2, we mention the phenomenon that
deeper layers have lower PvC overlap ratios is
consistent with the power law distribution observed
in Figure 4. This is because, as we observe alone
the layer index of the heatmap, we find that the
color quickly deepens by a large gap where the
depth change is approximate to the power law
distribution.

The insight behind these two power law distribu-
tions is the same. The high redundancy in deeper
layers indicates that most of the keys and values
are useless for inference. These non-PvCs all have
similarly low attention weights, resulting in limited
influence on the perplexity and few opportunities
to be selected as PvCs.

Further Verification of ICR about the Role of
Non-PvCs To complete the verification of ICR,
we have to verify the non-PvCs are redundant
because they carry the information of predicting
the tokens next to themselves instead of context
information. In Figure 10, to better illustrate, we
divide the keys and values of one layer into two
main parts, PvCs and non-PvCs. For the PvCs,
we further divide them into shared PvCs and non-
shared PvCs.

Shared PvCs (overlapped) Non-shared 
PvCs Non-PvCs

Keys and values of one layer

Figure 10: The composition of the keys and values of
one layer.

In Figure 5a, we demonstrate that there is an
87% overlap between tokens and the last token
in terms of PvC, as denoted as shared PvC. We
first identify the role of the remaining 13% of keys
and values where these non-shared PvCs are not
used in PyramidInfer. The non-shared PvCs are
also assigned high attention weights by the current
token, which means they are useful for predicting
the token next to the current token. It is interesting
to see what these non-shared PvCs are from the
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perspective of the subsequent tokens: Will they
also consider these keys and values important?

We use the recent sequence ratio of 20% to select
the shared PvCs. We extract non-shared PvCs from
the tokens with 10% < d < 20%. We want to
find these non-shared PvCs belong to which parts
of keys and values of the subsequent tokens with
d < 10%.

From Figure 11, we can draw conclusions for
these three parts of the KV cache:

1. The shared PvCs are the keys and values that
subsequent tokens collectively pay attention
to.

2. The non-shared PvCs seldom appear in non-
shared PvCs of other tokens. It means that
non-shared PvCs are mostly highly interested
in by the current token, with less attention
from subsequent tokens. They are mainly
used to predict the token next to themself
in a teacher-forcing way, which is especially
useful in training.

3. Among the non-PvCs, a significant portion is
occupied by non-shared PvCs of other tokens.

So far, we have completely verified the Inference
Context Redundancy hypothesis that the tokens
except for the last token no longer need to predict
the next tokens but they still record this redundant
information to predict the next tokens in keys and
values.
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Figure 11: The overlap ratios between non-shared PvCs and non-shared PvCs of other tokens (blue) and the overlap
ratios between non-shared PvCs and non-PvCs of other tokens (orange).
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