
Findings of the Association for Computational Linguistics: ACL 2024, pages 3237–3245
August 11-16, 2024 ©2024 Association for Computational Linguistics

Likelihood-based Mitigation of Evaluation Bias in Large Language Models

Masanari Ohi 1 Masahiro Kaneko 2,1 Ryuto Koike 1 Mengsay Loem 1 Naoaki Okazaki 1

1 Tokyo Institute of Technology 2 MBZUAI
{masanari.ohi@nlp., ryuto.koike@nlp., mengsay.loem@nlp., okazaki@}c.titech.ac.jp

masahiro.kaneko@mbzuai.ac.ae

Abstract

Large Language Models (LLMs) are widely
used to evaluate natural language generation
tasks as automated metrics. However, the like-
lihood, a measure of LLM’s plausibility for a
sentence, can vary due to superficial differences
in sentences, such as word order and sentence
structure. It is therefore possible that there
might be a likelihood bias if LLMs are used
for evaluation: they might overrate sentences
with higher likelihoods while underrating those
with lower likelihoods. In this paper, we in-
vestigate the presence and impact of likelihood
bias in LLM-based evaluators. We also pro-
pose a method to mitigate the likelihood bias.
Our method utilizes highly biased instances
as few-shot examples for in-context learning.
Our experiments in evaluating the data-to-text
and grammatical error correction tasks reveal
that several LLMs we test display a likelihood
bias. Furthermore, our proposed method suc-
cessfully mitigates this bias, also improving
evaluation performance (in terms of correlation
of models with human scores) significantly.

1 Introduction

Large Language Models (LLMs) exhibit robust lan-
guage comprehension and text generation capabili-
ties (Anil et al., 2023; OpenAI, 2023). Relying on
this ability, recent studies (Liu et al., 2023; Kocmi
and Federmann, 2023; Chiang and Lee, 2023)
have employed LLMs as evaluators for natural lan-
guage generation tasks, surpassing the performance
of existing automatic evaluation methods such as
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004). To assess the quality of a text, LLMs output
a comprehensive evaluation score based on criteria
such as fluency and meaning.

LLMs generate a text based on the likelihood
estimations derived from the training process that
aims to maximize the likelihood of their large-scale
training data. Consequently, it is intuitively pos-
sible that the likelihood of a text influences the

Figure 1: An example of likelihood bias. Correct, but
low-likelihood output (top) is scored low while high-
likelihood output (bottom) is scored high.

generation of its evaluation score. However, the
likelihood estimations by LLMs may not necessar-
ily align with the quality of the text. For instance,
the likelihood calculated by the LLM fluctuates due
to superficial differences in sentences, such as word
order and sentence structure, even for sentences
with identical meaning (Kuribayashi et al., 2020).
Such fluctuation of likelihood could negatively im-
pact the evaluation score based on meaning criteria.

In this paper, we introduce likelihood bias,
where LLM-based evaluators overrate high-
likelihood sentences and underrate low-likelihood
ones compared to human scores. Figure 1 shows
one example of likelihood bias. Here, a biased
evaluator gives a lower score of 3/5 to a correct but
low-likelihood output (top) while giving a higher
score of 5/5 to a high-likelihood output (bottom),
based on the criteria of data coverage. Addressing
this issue, we propose a method that a) quantifies
and b) mitigates likelihood bias. We quantify the
bias by using the correlation between the disparity
in evaluation scores generated by LLMs and those
provided by human evaluators, and the likelihood
of a target text. Our bias reduction method identi-
fies and utilizes highly biased instances as few-shot
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examples for in-context learning.
The extent of likelihood bias may vary with the

evaluation criteria used. For instance, likelihood
bias is anticipated to be more pronounced in crite-
ria like data coverage, which is less directly related
to likelihood. Conversely, the bias is expected to
be less significant in criteria like fluency, which is
closely related to likelihood. To verify this charac-
teristic of likelihood bias, we adopt two tasks: data-
to-text and Grammatical Error Correction (GEC).
We use these tasks because, unlike most existing
data (Freitag et al., 2021; Guan et al., 2021; Kamal-
loo et al., 2023), the evaluation data for these tasks
include multiple criteria such as fluency, grammar,
and data coverage.

Our experimental results show that both evalua-
tors based on GPT-3.5 and Llama2-13B (Touvron
et al., 2023) indeed suffer from likelihood bias.
Moreover, our bias reduction method mitigates like-
lihood bias, and improves evaluation performance
in many cases.

2 Method

Following a common methodology in LLM-based
evaluation (Liu et al., 2023; Chiang and Lee, 2023),
we calculate the LLM’s evaluation score Scorem
based on the models’ response to a prompt. Specif-
ically, we calculate Scorem as the expected value
over candidate scores (e.g. {1, 2, 3, 4, 5}) based on
the probability that models output these scores, fol-
lowing the setting of Liu et al. (2023). Our prompt
includes a task description and the evaluation cri-
teria, and several few-shot example instances for
in-context learning 1. The reason we use in-context
learning is that it is known to stabilize the model.
This puts us in a position to quantify the strength
of likelihood bias.

2.1 Measuring Likelihood Bias

We define likelihood bias in LLM-based evalu-
ators as the tendency to overrate high-likelihood
sentences and underrate low-likelihood ones, com-
pared to human ratings. First, we calculate LS,
the Likelihood Score, representing the likelihood
P calculated by LLM. Given an instance t with
input ti, output to, task description d, and model
parameters θ, LS is defined as follows:

LS(t) = logP (to | ti, d; θ) (1)

1The actual prompts and exact equation we use to calculate
the Scorem are provided in Appendix A.

Figure 2: Likelihood bias of hypothetical evaluators.
A: biased, B: unbiased with high performance, and C:
unbiased with low performance.

We next calculate US, Unfairness Score, which
represents the difference between scores by LLM
(Scorem) and scores by humans (Scoreh). To ac-
count for different scoring ranges between models
and humans, Scorem and Scoreh are normalized so
that they have the same mean and range.

US(t) = Scorem(t; θ)− Scoreh(t) (2)

When measuring the bias, we choose eight few-shot
example instances at random.

BiasScore is then our metric that measures likeli-
hood bias, which is calculated as the correlation in
terms of Spearman’s rank correlation coefficient ρ
between Likelihood Score and Unfairness Score
across a Dataset D = {t(1), t(2), . . . , t(n)}, using
each instance t(i):

LSD = [LS(t(1)),LS(t(2)), . . . ,LS(t(n))] (3)

USD = [US(t(1)),US(t(2)), . . . ,US(t(n))] (4)

BiasScore = ρ(LSD,USD) (5)

BiasScore ranges from -1 to 1, where 1 indicates
strong likelihood bias, -1 implies the opposite bias
from what we assume, and 0 suggests no bias.

2.2 Mitigating Likelihood Bias
Figure 2 plots LS against US in order to show
the likelihood bias of multiple hypothetical evalua-
tors 2. Each point represents a pair of scores for an
instance. The BiasScore corresponds to the slope
of the main cluster of instances.

Figure 2 (A) shows a middle-performing and
biased evaluator. It unfairly gives high ratings to
texts with high likelihood (points in the upper right)
and low ratings to texts with low likelihood (points
in the lower left). We assume that LLM-based
evaluators are in this state before bias mitigation.

2Please note that the figure is the pseudo-scatter plot that
represents hypothetical evaluators. We do not include concrete
values for LS and US in the figure since LS does not have the
lower bound, and the scale of US depends on the dataset.
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Figure 2 (B) shows the ideal outcome of mitigation:
the BiasScore is zero (i.e., there is no bias), and
the performance remains high. There is also no
bias in Figure 2 (C) (and thus BiasScore = 0), but
this evaluator is of no use as the output is random
(low-performance).

The target of our bias mitigation strategy is to
change situation (A) into (B), while avoiding low
evaluation performance as in (C). We concentrate
on highly biased instances (top-right and bottom-
left points in (A)) in our training data. For this, we
require an instance-based measure of bias, which
is provided by RS(t) as follows:

RS(t) = |LS∗(t) + US∗(t)| (6)

Here, LS∗ and US∗ are normalized so that they
both have an average of 0 and a range from -1 to
1 across a dataset D. RS(t) is high for instances t
that are closer to the top-right or bottom-left of the
scatter plot. For our mitigation strategy, we choose
instances with the highest RS(t) from the training
data, and use these instances as few-shot examples
for in-context learning, after replacing the LLM
scores with the human gold-standard scores.

3 Experiments

3.1 Settings
Datasets From a limited set of tasks with avail-
able datasets assessed by humans on multiple cri-
teria, we selected two for our experiments: a)
data-to-text, converting RDF data into English
sentences, and b) GEC. For data-to-text, we use
WebNLG+ (Castro Ferreira et al., 2020), which
contains 2846 instances. Scoreh is provided by
human judges, who rated each instance on five cri-
teria (text structure, relevance, fluency, correctness
and data coverage). For GEC, we use the TMU-
GFM-Dataset (Yoshimura et al., 2020), which con-
tains 4221 instances. Scoreh is provided by human
judges, who rated each instance on two criteria
(grammar and fluency 3). We split each dataset into
training and test data at a ratio of 4:1.

Models The LLMs used in our experiments
are GPT-3.5 provided via API by OpenAI 4 and
Llama2-13B (L-13B). For GPT-3.5, since it does

3All criteria and their definitions are given in Appendix
B. The original GEC dataset contains a third criterion, mean-
ing. However, we exclude this criterion because it does not
contribute to the overall evaluation (Yoshimura et al., 2020).

4We use gpt-3.5-turbo-instruct as the model in API
call.

not support the output of token generation likeli-
hood, we use Llama2-13B’s likelihood as an ap-
proximation. We first measure how well the LLMs
work as evaluators, using Spearman’s rank correla-
tion coefficient ρ between human and model scores.
The “Before” column of Evaluation Performance
in Table 1 shows these results. The ballpark figures
are that GPT-3.5 is the superior system for data-to-
text, while for GEC, it roughly performs on a par
with Llama2-13B.

3.2 Measuring Likelihood Bias

We use the method described in Section 2.1 for
likelihood bias measurement. We introduce a new
criterion representing the overall result, total, by
micro-averaging over the criteria 5.

Results for data-to-text The “Before” column
of the “D2T” row of BiasScores in Table 1 reveals
a bias for both models, with BiasScore for most
evaluation criteria exceeding 0.17. Across all cri-
teria (total), GPT-3.5 has the strongest bias (0.38),
followed by Llama2-13B (0.17). Relevance is the
criterion with the strongest bias in both models,
GPT-3.5 (0.43) and Llama2-13B (0.28).

Results for GEC The “Before” column of the
“GEC” row of BiasScores in Table 1 also shows bias
in both models and evaluation criteria: all BiasS-
cores exceed 0.16. As with data-to-text, GPT-3.5
overall displays a stronger bias across all criteria
(0.43) than Llama2-13B (0.21).

Intrinsic vs non-intrinsic evaluation criteria
Looking at the “Before” column of the “D2T” row
of BiasScores in Table 1, there are two evaluation
criteria which display relatively small likelihood
biases across both models, namely fluency and text
structure. These criteria are concerned with text
quality alone and they are intrinsic to the output
text. The criteria are true of the output text to a
higher or lesser degree, but this is independent of
what the input looked like. In contrast, relevance
and data coverage are dependent on external fac-
tors in the input. The quality definition for those
criteria is affected by the process that transforms
the input into the output. Therefore, such criteria
are not intrinsic. From our results, we see that there

5Please note that when micro-averaging, the BiasScores
reported in Table 1 is not an average of the BiasScores of the
individual evaluation criteria, since to calculate the total Bi-
asScore we first average over the human and LLM evaluation
scores and then apply Equation 5.
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BiasScore Evaluation Performance ρ

Before After Before After

Task Criterion GPT-3.5 L-13B GPT-3.5 L-13B GPT-3.5 L-13B GPT-3.5 L-13B

D2T

text structure .36 .17 .23 * .02 * .46 .34 .53 * .36
relevance .43 .28 .31 * .15 † .35 .25 .38 .23
fluency .26 .20 .29 .00 * .41 .33 .55 * .52 †

correctness .36 .21 .32 -.01 * .44 .37 .47 .43
data coverage .40 .24 .32 * .16 .20 .24 .30 † .25

total (micro) .38 .17 .32 † .02 † .48 .40 .58 * .46

GEC

grammar .46 .24 .37 † .24 .48 .45 .54 .46
fluency .36 .16 .29 .09 .40 .49 .47 .48

total (micro) .43 .21 .37 .18 .45 .48 .52 .52

Table 1: BiasScore and Evaluation performance before and after mitigating likelihood bias. Values affected
positively by our mitigation method appear boldfaced. * represents significant difference ( p < 0.05 ) between
before and after mitigation. † represents marginal significant difference ( p < 0.06 ).

is a marked difference in BiasScore between non-
intrinsic and intrinsic criteria: non-intrinsic criteria
are much more prone to bias. These results sug-
gest an intuitive interpretation: The effect of the
likelihood on the evaluation does not necessarily
cause a harmful bias on intrinsic criteria as much
as on non-intrinsic ones. This might be because
likelihood is intrinsic to the output text, and thus,
likelihood is strongly related to intrinsic criteria 6.

3.3 Mitigating Likelihood Bias

We now use the method described in Section 2.2,
with eight highly biased examples for mitigation.
Notably, as stated in Section 2.1, we also employ
eight randomly picked examples for in-context
learning when measuring bias, meaning the dif-
ference between before and after mitigation is only
how we choose few-shot example instances. In the
“After” columns of Table 1, we boldface the value
if our method brings a BiasScore close to zero or if
it improves evaluation performance. We test for the
significance of differences using the two-sided ran-
domized pair-wise permutation test with R=100000
and α=0.05. If a difference between unmitigated
and mitigated conditions is significant, we indi-
cate this with an asterisk (*); marginal significance
(p < 0.06) is indicated using a dagger (†).

Results in data-to-text The “After” column of
the “D2T” row of BiasScores and Evaluation per-
formance in Table 1 shows that our method brings
the BiasScore closer to zero and increases eval-

6We provide the reason we don’t focus on the criteria of
GEC and discuss the criterion of correctness in intrinsic /
non-intrinsic paradigm in Appendix E.

uation performance across the board. With our
method, the BiasScores decrease significantly for
Llama2-13B for text structure (-0.15), fluency (-
0.20), and correctness (-0.20). For GPT-3.5, results
are significantly decreased for text structure (-0.13),
relevance (-0.12), and data coverage (-0.08). At the
same time, the evaluation performance improves
significantly for GPT-3.5 by +0.10 for total, by
+0.14 for fluency, with marginally significant dif-
ferences for GPT-3.5 in text structure, data cover-
age. For Llama2-13B, the only criterion with a
marginally significant improvement is fluency. We
consider this an overall successful mitigation.

Results for GEC As with data-to-text, the “After”
column of the “GEC” row of BiasScores and Eval-
uation performance in Table 1 shows our method
brings the BiasScore closer to zero and improves
evaluation performance in many cases. Although
few criteria achieve significant differences either in
BiasScore or evaluation performance, our method
at least shows changes in the right direction.

In summary, the results for the data-to-text and
GEC tasks imply that our mitigation strategy can
decrease the likelihood bias of LLMs and improve
the evaluation performance simultaneously 7.

4 Related Work

LLM-based evaluator Kocmi and Federmann
(2023) employ nine GPT models to evaluate trans-
lation tasks and verify that GPT-3.5 and larger mod-
els possess sufficient capabilities for task evalua-
tion. Chiang and Lee (2023) show that several

7We conduct further experiments on visualization and case
study about the mitigation of bias in Appendix F.
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LLMs’ evaluation results are consistent with those
obtained by expert human evaluation in open-ended
story generation and adversarial attacks. They also
find that LLM-based evaluators are stable over dif-
ferent prompts and sampling algorithms. Zheng
et al. (2023) employ GPT-4 to evaluate the conver-
sation ability of LLMs on two benchmarks: MT-
bench and Chatbot Arena. Liu et al. (2023) propose
G-EVAL, a framework of LLM-based evaluation.
They incorporate chain-of-thoughts (CoT) (Wei
et al., 2023) and introduce a form-filling paradigm
and scoring method for stable and fine-grained eval-
uation. Although LLM-based evaluators have been
employed to evaluate several tasks, such as transla-
tion (Kocmi et al., 2021), summarization (Liu et al.,
2023), story generation (Chiang and Lee, 2023),
multi-turn conversation (Zheng et al., 2023), in this
work, we focus on two tasks, data-to-text and GEC,
to inspect likelihood bias on multiple criteria.

Biases in LLM-based evaluators Zheng et al.
(2023) define self-enhancement bias as the ten-
dency of LLM-based evaluators to favor the an-
swers generated by themselves. Their prelimi-
nary experiments indicate the existence of this bias.
A similar tendency is also reported by Liu et al.
(2023). Also, Zheng et al. (2023) introduce ver-
bosity bias, referring to the tendency of LLM-based
evaluators to favor longer, more verbose responses.
Saito et al. (2023) propose a metric to measure
verbosity bias and find both GPT-4 and GPT-3.5
exhibit this bias according to their metric. In con-
trast to these findings, we introduce likelihood
bias, where LLM-based evaluators evaluate high-
likelihood sentences and underrate low-likelihood
ones compared to human scores. Notably, this is
the first work simultaneously proposing methodolo-
gies to quantify and mitigate a bias in LLM-based
evaluators.

5 Conclusion

This paper identifies likelihood bias in LLMs as the
phenomenon of LLMs overrating high-likelihood
texts and underrating low-likelihood ones. We in-
troduce a method for quantifying bias and propose
a solution to the bias problem: using highly biased
instances as few-shot examples for in-context learn-
ing. Experiments with two tasks (data-to-text and
GEC) show that LLMs exhibit strong likelihood
bias, and that our method successfully mitigates it,
improving evaluation performance.

In future work, we aim to investigate the relation-

ship between other biases in LLM-based evaluators,
such as self-enhancement bias (Zheng et al., 2023)
and verbosity bias (Zheng et al., 2023; Saito et al.,
2023), and likelihood bias. For instance, we may be
able to explain self-enhancement bias through the
concept of likelihood bias, as the answers generated
by LLMs might have high likelihoods calculated
by the models themselves. Additionally, we plan
to examine the impact of instruction-tuning and
model size on likelihood bias.
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Limitations

Our work has several limitations. (i) Since our
method uses in-context learning, the number of to-
kens that can be used is limited. Therefore, our
method may not be suitable for tasks with long
input or output lengths, such as summarization, as
the amount of space that can be used is even more
limited. (ii) In-context learning also brings another
limitation. Since it increases the prompt length, the
computational (or API call) costs also go up com-
pared to a zero-shot setting. Again, please note that
these limitations are derived from in-context learn-
ing, and our method doesn’t increase prompt length
and degrade efficiency compared to the settings that
employ in-context learning. One solution to them
is fine-tuning the model instead of in-context learn-
ing. It is therefore necessary to explore whether
fine-tuning works better than in-context learning
and how much data we need.

Ethics Statement

While we do not foresee any ethical risks caused
by our research, LLMs not only exhibit biased like-
lihood based on surface-level information such as
words and sentence structure but also on informa-
tion like gender, religion, and race (Kaneko et al.,
2023; Oba et al., 2023; Anantaprayoon et al., 2023).
For instance, LLMs might assign a higher likeli-
hood to “She is a nurse” compared to “He is a
nurse”. Reducing likelihood bias could potentially
address social bias in evaluators. However, it is
worth noting that this work does not investigate
such aspects, and this remains a task for future
research.
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A LLM evaluation method

Calculation of likelihood As shown in Equa-
tion 1, we calculate the likelihood of task output
to based on task description d and task input ti.
This approach aims to obtain a more contextually
relevant likelihood, factoring in both the specifics
of the task and the input, rather than simply cal-
culating logP (to; θ). Specific examples of task
description d are indicated below.

• data-to-text: Please generate a description of
the following xml data

• GEC: Please modify the following English text
to make it grammatically correct

Calculation of Scorem As is common in LLM-
based evaluation (Liu et al., 2023; Chiang and Lee,
2023), the model is given a prompt I , which in-
cludes a task description, the evaluation criteria,
and an instance t, and then predicts score Scorem.
We also use in-context learning, with the inten-
tion of stabilizing the model. Examples are chosen
at random when measuring the bias, and are cho-
sen according to the method described in Section
2.2 when mitigating the bias. Finally, we calcu-
late Scorem as the expected score over scores. We
follow the setting of Liu et al. (2023), who have
observed that using the expected score, consider-
ing the model’s distribution over scores for each
instance, rather than always taking the most likely
score, leads to a more robust evaluation. Given
score candidates {1, 2, ..., n}, the probability of
each score Q(i | t, F, I; θ), Scorem is formulated
as follows:

Scorem(t; θ) =

∑n
i=1 i×Q(i | t, F, I; θ)∑n
j=1Q(j | t, F, I; θ) (7)

Example Prompts Here, we provide two exam-
ples of the prompts used for LLM-based evaluators.
Our prompts are inspired by the prompts Liu et al.
(2023) used.

Evaluate Correctness in data-to-text

You will be given an xml data and an En-
glish sentence that represents xml data.
Your task is to rate the sentence that rep-
resents xml data on one metric. Please
make sure you read and understand these
instructions carefully. Please keep this
document open while reviewing, and re-
fer to it as needed. Evaluation Criteria:

Correctness: (1-5) - does the text de-
scribe predicates with correct objects and
does it introduce the subject correctly? 1
is the lowest score, 5 is the highest.

Evaluate Fluency in GEC

You will be given an English sentence
that may have grammatical errors and a
sentence that is the corrected version of
the sentence. Your task is to rate the cor-
rected sentence on one metric. Please
make sure you read and understand these
instructions carefully. Please keep this
document open while reviewing, and re-
fer to it as needed. Evaluation Criteria:
Fluency: (0-4) - How natural the sen-
tence sounds for native speakers; 4: Ex-
tremely natural, 3: Somewhat natural, 2:
Somewhat unnatural, and 1: Extremely
unnatural, and 0: Other.

B Dataset

data-to-text We use WebNLG+ Dataset (CC BY-
NC-SA 4.0) (Castro Ferreira et al., 2020). Specifi-
cally, we collect instances that have human evalua-
tion scores from their dataset. The total number of
instances we use is 2846. We use them following
their license. There are five criteria in the original
dataset:

• text structure: whether the output is grammat-
ically correct and well-structured

• relevance: whether the output is based on the
input information

• fluency: whether the output is natural

• correctness: whether the output explains the
input data correctly and reasonably

• data coverage: whether the output includes all
the input data

Human annotators rate each instance on these cri-
teria using a 100-point scale from 0 to 100.

GEC We use the TMU-GFM-Dataset (CC BY
4.0) (Yoshimura et al., 2020), which contains 4221
instances. We use them following their license.
There are three criteria in the original dataset:

• grammar: whether the output is grammatically
correct
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• fluency: whether the output is natural

• meaning: whether the output has the same
meaning as the input

Human annotators rate each instance on these crite-
ria using a 5-point scale from 0 to 4. As mentioned
in the footnote, we exclude meaning because, ac-
cording to the original paper (Yoshimura et al.,
2020), it does not contribute to the overall evalua-
tion.

C Hyperparameters

To guarantee reproducibility as much as possible,
we set the hyperparameters on API calls to make
GPT-3.5 deterministic. We use temperature of 0,
top_p of 0.

As for the number of few-shot examples for in-
context learning, we use eight examples. This is
the reasonable value that models can learn several
pieces of information without violating the limit on
the number of input tokens.

D Computational Budget

We run all the experiments on ABCI (https://
abci.ai/), Compute Node(A), whose CPUs are
two Intel Xeon Platinum 8360Y, and GPUs are
eight NVIDIA A100 SXM4. The approximate total
processing time is 30 hours.

E Additional Discussion on
intrinsic/non-intrinsic evaluation
criteria

We do not focus on the criteria of GEC within the
intrinsic/non-intrinsic paradigm in Section 3.2, as
its criteria, fluency and grammar, are both intrinsic.
We also do not include a discussion of correctness
within the paradigm because it exhibits a relatively
medium level of bias, and our discussion aims to
explain why certain evaluation criteria have higher
or lower biases in relation to this paradigm. How-
ever, we can also explain the bias of correctness by
the paradigm. Correctness has the feature of extrin-
sic criteria since it assesses if the output sentence
explains the input correctly. At the same time, it
has the feature of intrinsic criteria since it also as-
sesses if the output sentence provides a reasonable
explanation. Thus, we can explain why correct-
ness has medium bias because it is the middle of
intrinsic and extrinsic criteria.

(a) Before bias mitigation (b) After bias mitigation

Figure 3: Visualization of the bias mitigation in Llama2-
13B with data-to-text, fluency

F Visualization and Case Study

Figures 3a and 3b show the visualization of like-
lihood bias before and after mitigation in Llama2
13B for data-to-text and fluency, respectively. We
can see that our method brings BiasScore closer
to zero (0.20 to 0.00), and points are gathered to
the line of US = 0, similar to (B) in Figure 2. This
indicates that our method successfully mitigates
likelihood bias as expected.

Below, we show an instance selected from the
scatterplot where the bias has been mitigated.

• Input (excerpt): (MotorSport_Vision, city,
Fawkham)

• Output: The Motor sport of Vision is in
Fawkham.

• The likelihood of the output: 541st out of 568
instances in our test data.

• Score by humans (Scoreh): 85 / 100

• Score by LLM (Scorem) before bias mitiga-
tion: 2.46 / 5

• Score by LLM (Scorem) after bias mitigation:
4.32 / 5

Its evaluation score by humans (Scoreh) is 85 out
of 100, probably caused by a minor problem: the
space between Motor and sport. However, LLM
before bias mitigation scores the instance 2.46 out
of 5, which is far from Scoreh. Considering this un-
derestimation and its low likelihood calculated by
LLM (541st out of 568 instances in our test data),
the score has been likely affected by likelihood bias.
After bias mitigation, LLM increased the evalua-
tion score to 4.32, which is closer to Scoreh. These
results indicate that our method successfully mit-
igates the bias in this instance, thus bringing the
score by LLM closer to that of humans.
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