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Abstract

Knowledge Graph (KG) embeddings are essen-
tial for link prediction over KGs. Compared
to triplets, hyper-relational facts consisting of
a base triplet and an arbitrary number of key-
value pairs, can better characterize real-world
facts and have aroused various hyper-relational
embedding techniques recently. Nevertheless,
existing works seldom consider the ontology
of KGs, which is beneficial to link prediction
tasks. A few studies attempt to incorporate the
ontology information, by either utilizing the
ontology as constraints on entity representa-
tions or jointly learning from hyper-relational
facts and the ontology. However, existing ap-
proaches mostly overlook the ontology hier-
archy and suffer from the dominance issue
of facts over ontology, resulting in subopti-
mal performance. Against this background,
we propose a universal contrastive learning
framework for hyper-relational KG embed-
dings (HyperCL), which is flexible to inte-
grate different hyper-relational KG embedding
methods and effectively boost their link predic-
tion performance. HyperCL designs relation-
aware Graph Attention Networks to capture
the hierarchical ontology and a concept-aware
contrastive loss to alleviate the dominance is-
sue. We evaluate HyperCL on three real-world
datasets in different link prediction tasks. Ex-
perimental results show that HyperCL consis-
tently boosts the performance of state-of-the-
art baselines with an average improvement of
3.1-7.4% across the three datasets.

1 Introduction

Knowledge Graphs (KGs) which represent a net-
work of real-world entities and exhibit the rela-
tionship between them, have empowered a wide
range of applications, such as question answering
(Yih et al., 2015) or recommender systems (Zhang
et al., 2016). KGs are generally expressed as a set

*Corresponding author.

of triplets; each triplet denoted by (head, relation,
tail), or (h, r, t) for short, encodes the connection
from a head entity to a tail entity, such as (Apple,
headquarters location, Cupertino) shown in Fig. 1.
To better illustrate real-world facts, hyper-relational
facts are developed in Freebase (Bollacker et al.,
2008) and Wikidata (Wikidata, 2022), which con-
sist of not only a base triplet (h, r, t), but also an
arbitrary number of key-value pairs (k, v) further
describing the base triplet, represented as (h, r, t,
k1, v1, ...). Fig. 1 presents an example of hyper-
relational facts on Wikidata (Apple, industry, soft-
ware industry, of, computer program, of, operating
system).

To effectively make use of hyper-relational facts,
recent studies have proposed various embedding
methods to solve link prediction tasks over KGs.
Most of them learn to capture the structural infor-
mation encoded in hyper-relational facts with Con-
volutional Neural Networks (CNNs) (Rosso et al.,
2020), Graph Neural Networks (GNNs) (Galkin
et al., 2020), or Transformer (Wang et al., 2021).
However, they often neglect the importance of mod-
eling ontology in KGs, which has shown to be sig-
nificantly useful (Rosso et al., 2021). For example,
the entities computer program and operating sys-
tem in Fig. 1 are hard to differentiate and tend to
have similar representations by current embedding
methods since they are affiliated to the same hyper-
relational fact and have a common key of. Never-
theless, they can be more distinguishable through
the ontology. As shown in Fig. 2, computer pro-
gram and operating system respectively belong to
different concepts program and system. Hence, it is
beneficial to incorporate the ontology information
into entity representations.

In this context, existing hyper-relational KG em-
bedding methods employ the ontology information
of KGs as type constraints or joint learning. Specif-
ically, most specific concepts for entities are con-
sidered as entity types and used to compute the
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Figure 1: A real-world example of (hyper-relational)
facts from Wikidata.

similarity between entities (Liu et al., 2021). The
most specific concepts for entities are identified by
the ontology relation instance_of in Fig. 2. For ex-
ample, enterprise and brand are two entity types for
the entity Apple. However, these existing methods
do not model the hierarchical structure of the ontol-
ogy and thus fail to capture the semantic relations
between entity types, which is a strong clue for
entity representations. For example, two specific
concepts program and system in Fig. 2 belong to a
common abstract concept software, which indicates
the semantic relatedness between entities computer
program and operating system. On the other hand,
joint learning methods combine hyper-relational
facts with the ontology of KGs, formulating a joint
model to learn the representations of both entities
and concepts (Lu et al., 2023b; Luo et al., 2023a).
Yet, they are either inflexible to accommodate the
hierarchical ontology as the type constraint meth-
ods or lack consideration of the dominance issue
of hyper-relational facts over the ontology. Specif-
ically, due to the highly imbalanced numbers of
entities and concepts (the latter is usually much
less than the former), the learning process is domi-
nated by learning from the facts rather than from
ontology (using GNNs for example), resulting in
the information of ontology barely encoded into en-
tities and thus causing the suboptimal performance
(as evidenced by our experiments below that ad-
dressing the dominance issue can boost the link
prediction performance by 2.5-5.8%).

Against this background, we propose a uni-
versal contrastive learning framework for hyper-
relational KG modeling (HyperCL), which is flex-
ible to integrate different hyper-relational KG em-
bedding methods. Specifically, we inherit the most

Figure 2: A hierarchical ontology of partial entities in
Fig. 1. Yello blocks denote concepts. There are two
kinds of ontology triplets, (entity, instance_of, concept)
and (concept, subclass_of, concept).

prominent encoder-decoder architecture (Galkin
et al., 2020; Luo et al., 2023b) as the backbone of
our framework and devise a Concept-aware Con-
trastive Learning (CCL) module to enhance hyper-
relational KG embedding methods of this architec-
ture (four state-of-the-art encoder-decoder models
are selected to verify the effectiveness of HyperCL
in the experiments). The CCL module first cap-
tures the hierarchical structure of ontology; we use
relation-aware Graph Attention Networks (GATs)
to encode the sophisticated concept information,
which accounts for the heterogeneous relationships
between concepts and incorporates the heterogene-
ity into entity and concept representations. After-
ward, it builds two views (i.e., an instance view for
hyper-relational facts and an ontology view for the
hierarchical ontology) of KGs. Finally, it develops
a concept-aware contrastive loss to enforce the rep-
resentations of the same entities across two views
to be close to each other while those of different
but semantically similar entities to be apart. This
design thereby alleviates the dominance issue of
hyper-relational facts by first decoupling the learn-
ing process from the facts and ontology and then
connecting them via our contrastive loss. HyperCL
is trained using a multi-task learning strategy, being
able to accelerate the optimization process. Our
contributions can be summarized as follows:

• We revisit the existing approaches that employ
the ontology of KGs for hyper-relational KG em-
beddings, and discover two key limitations: 1)
the ignorance of the ontology hierarchy; and 2)
the dominance issue of facts over ontology.

• We propose HyperCL framework to subtly model
both hyper-relational facts and the hierarchical
ontology of KGs. A CCL module is designed,
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where the relation-aware GATs are used to cap-
ture the hierarchical structure of ontology while
the concept-aware contrastive loss is employed
to alleviate the dominance issue, both of which
enhance the hyper-relational KG embeddings.

• We conduct a thorough evaluation of HyperCL to
demonstrate its effectiveness in boosting the link
prediction performance of four hyper-relational
KG embedding methods on three real-world KGs.
Results show that HyperCL can consistently
boost the performance of these methods with
an average improvement of 3.1-7.4% across the
three datasets.

2 Related Work

2.1 Hyper-Relational Facts Modeling
The triple representation of a KG oversimplifies the
intricate structure of information stored in the KG
(Rosso et al., 2020), especially for hyper-relational
facts where each fact is composed of multiple enti-
ties and relations. Some previous works employed
an n-ary representation for hyper-relational facts,
i.e., a set of relation-entity pairs (Wen et al., 2016;
Zhang et al., 2018; Guan et al., 2019; Fatemi et al.,
2021; Liu et al., 2021; Wang et al., 2023a). Upon
such n-ary representations, these approaches learn
either relatedness between relation-entity pairs or
relatedness among all entities in a fact. How-
ever, recent studies (Rosso et al., 2020) discov-
ered that the base triplet of a hyper-relational fact
preserves the essential information, and advised
directly learning from hyper-relational facts. Fol-
lowing this suggestion, HINGE (Rosso et al., 2020),
NeuInfer (Guan et al., 2020), and ShrinkE (Xiong
et al., 2023) separately model base triplets and
key-value pairs. GRAN (Wang et al., 2021) pro-
poses a heterogeneous graph to distinguish between
the relation-entity connections in base triplets and
those in key-value pairs. HyNT (Chung et al., 2023)
devises a context Transformer to learn the repre-
sentations of numeric literals in either triplets or
qualifiers. HyperFormer (Hu et al., 2023) encodes
the local-level sequential information in hyper-
relational facts with Transformers. MSeaHKG (Di
and Chen, 2021), StarE (Galkin et al., 2020), HyT
(Yu and Yang, 2021), QUAD (Shomer et al., 2022),
and HAHE (Luo et al., 2023b) design GNNs to
represent the base triplets together with key-value
pairs.

Our work focuses on a different perspective to
improve current hyper-relational KG embedding

methods by subtly incorporating the ontology of
KGs. To the best of our knowledge, this is the
first universal framework for modeling both hyper-
relational facts and ontology information.

2.2 Ontology of KGs

The ontology of a KG provides rich descriptions
of the semantics of entities, which promotes the
representation of the KG (Krompaß et al., 2015).
Some recent studies utilized the concepts in ontol-
ogy as entity types to constrain the representation
of entities (Krompaß et al., 2015; Xie et al., 2016;
Niu et al., 2020; Cui et al., 2021; Rosso et al., 2021;
Yang et al., 2023; Li et al., 2023). RAM (Liu et al.,
2021) extends the type-constraint mechanism to en-
compass hyper-relational facts, representing entity
types through linear combinations of latent vectors.
HELIOS (Lu et al., 2023a) investigates the prob-
lem of hyper-relational schema modeling with flat
entity ontology. However, these previous works
fail to accommodate the hierarchical structure of
ontology. To address the above limitations, JOIE
(Hao et al., 2019) and DGS (Iyer et al., 2022) de-
velop a joint learning architecture to learn from
both triplets and ontology. sHINGE (Lu et al.,
2023b), tNaLP (Guan et al., 2021), and DHGE
(Luo et al., 2023a) follow this fashion, using two
pipelines to represent hyper-relational facts and the
ontology, respectively. Nevertheless, sHINGE and
tNaLP parallelly learn from multiple types for an
entity, also neglecting the hierarchical nature of
ontology; DHGE overlooks the dominance issue
of facts over ontology, rendering the model train-
ing dominated by hyper-relational facts while the
ontology information is barely encoded into entity
representations.

We argue that the above concerns can be well
addressed by our HyperCL framework.

3 Preliminaries

In this section, we introduce some important no-
tions about the Hyper-relational Knowledge Graph
(HKG) and present the latest encoder-decoder ar-
chitecture for HKG embedding.

3.1 Hyper-Relational Knowledge Graphs

We formalize two views of the HKG and present
the definition of the link prediction task on it.

Instance view of the HKG. The instance view
of the HKG consists of an entity set E and an in-
stance relation set RI . A hyper-relational fact
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from the instance view can be represented as a
base triplet (h, rI , t) with a set of associated key-
value pairs {(ki, vi)}ni=1, where h, t, vi ∈ E and
rI , ki ∈ RI .

Ontology view of the HKG. The ontology view
of the HKG is comprised of the same entity set E ,
a concept set C and an ontology relation set RO.
The ontology relation set can be further divided
into two subsets ROe and ROc, representing entity-
concept relations and concept-concept relations,
respectively. Accordingly, there exist two kinds
of triplets in the ontology view, (e, rOe, c) ∈ E ×
ROe × C and (ci, rOc, cj) ∈ C ×ROc × C.

Link prediction on the HKG. The task of link
prediction on the HKG is to predict a missing el-
ement from hyper-relational facts in the instance
view. For a hyper-relational fact, the missing one
can be any entity in {h, t, v1, v2, . . . , vn} or any
relation in {rI , k1, k2, . . . , kn}.

Since the ontology view only contains triplets,
the term “hyper-relational fact” is specifically used
to denote the facts in the instance view throughout
this paper.

3.2 Encoder-Decoder Architecture for HKGs

The encoder-decoder architecture is the most preva-
lent and widely adopted framework for HKG em-
bedding, which proves to be effective in link pre-
diction (Galkin et al., 2020; Luo et al., 2023b). As
shown in Fig. 3, this architecture (the grey part)
is composed of an encoder (mostly GNNs) and a
decoder (mostly Transformers). Specifically, the
encoder captures the intricate relationship between
entities E and relations RI in the instance view, en-
coding the structural information to obtain the up-
dated embeddings Ê and R̂I . The decoder extends
the capabilities of the architecture by capturing the
semantic correlation between entities and relations
within each hyper-relational fact, generating the
final output for link prediction.

In this work, we inherit the encoder-decoder ar-
chitecture as the backbone of our framework, and
integrate multiple state-of-the-art HKG embedding
methods to validate the effectiveness of our frame-
work in the experiments.

4 Methodology

This section introduces our universal con-
trastive learning framework (HyperCL), for hyper-
relational KG embeddings. As shown in Fig. 3, our
Concept-aware Contrastive Learning (CCL) mod-

ule is proposed to be universally compatible with
any encoder-decoder architecture. Specifically, our
CCL consists of two key components: 1) relation-
aware graph attention networks to obtain the up-
dated entity embeddings in the ontology view Ẽ ;
2) a concept-aware contrastive loss function that
captures the shared information by both views to
get the final entity representations E . In the follow-
ing, we elaborate on the above two components and
present a multi-task learning approach for model
training.

4.1 Relation-Aware Graph Attention Layers

For the ontology view, we employ a graph encoder
to capture the sophisticated hierarchical concept in-
formation and encode it into high-order entity em-
beddings. Since the vanilla Graph Neural Networks
(GNNs) fail to accommodate the diverse ontology
relation types, we refine the original Graph At-
tention Networks (GATs) (Veličković et al., 2017)
with relation type embeddings to adaptively incor-
porate the heterogeneous relationships into node
representations.

Specifically, the ontology view can be regarded
as a graph GO, where each entity or concept is
associated with a node in GO. Without loss of
generality, we depict a single relation-aware graph
attention layer in the following. Given a node i, its
neighbors are denoted by Ni. The aggregation of
the first-hop structural information of i can be ex-
pressed as a linear combination of its neighboring
nodes’ representations:

hNi =
∑

j∈Ni

αijhj (1)

where hj refers to the representation of node j and
αij denotes the attention score from node i to node
j, which is computed by:

αij =
exp

(
a
[
WOhi∥WOhj∥Wbbr(i,j)

])
∑

k∈Ni
exp

(
a
[
WOhi∥WOhk∥Wbbr(i,k)

])

(2)
where a represents the attention mechanism that ap-
plies a single layer of feed-forward neural network
with the LeakyReLU activation function. WO and
Wb are learnable parameters. r(i, j) denotes the
relation type between node i and node j and br(i,j)

denotes the embedding of r(i, j). Then the repre-
sentation of node i is updated by:

h
(l)
i = σ

(
W

(l)
l

(
h
(l−1)
i + h

(l−1)
Ni

))
(3)
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Figure 3: Overview of our HyperCL framework. The grey box denotes the link prediction pipeline with the encoder-
decoder architecture while the yellow box represents the pipeline of our Concept-aware Contrastive Learning (CCL)
module. The details of the contrastive learning are depicted in the bottom right. In this framework, E is the input
entity embedding set, Ê is the updated entity embedding set in the instance view, Ẽ is the updated entity embedding
set in the ontology view, and E is the final entity embedding set updated by CCL module. Likewise, RI is the input
instance relation set, R̂I is the updated instance relation set, and RO is the input ontology relation set.

where W
(l)
l is the learnable parameter at the l-

th layer and σ refers to the activation function.
Through multi-layer message passing and infor-
mation aggregation, we can obtain the final embed-
dings of entities in the ontology view Ẽ .

4.2 Concept-Aware Contrastive Loss

After receiving the updated entity embeddings Ê
and Ẽ from the instance and ontology views respec-
tively, a concept-aware contrastive loss is devel-
oped to pull the representations of the same entity
across two views together while separates apart
those of different but semantically similar entities,
thereby strengthening the distinction between en-
tity representations and alleviating the dominance
of instance view information. Furthermore, the
concept-aware contrastive loss is developed to dis-
tinguish positive and hard-negative samples (enti-
ties under the same/similar concept). This design
is motivated by the fact that the easy-negative sam-
ples can be effectively distinguished by minimizing
the link prediction loss as existing approaches do
(e.g., StarE (Galkin et al., 2020), HyT (Yu and
Yang, 2021), QUAD (Shomer et al., 2022), and
HAHE (Luo et al., 2023b)), while our concept-
aware contrastive loss complementarily focuses on
the hard-negative samples. A similar idea has also
been adopted by (Yang et al., 2023), where a fast-
thinking process efficiently filters out easy-negative

samples, while a slow-thinking process focuses on
distinguishing hard-negative samples.

Specifically, a concept-aware batch selection
strategy is proposed, ensuring all entities in a batch
belong to a common concept. For a concept in the
ontology view, the Breadth-First Search (BFS) al-
gorithm is used to collect entities belonging to the
concept. As shown in Fig. 4, the BFS starts from
the three concepts ci, cj and ck, and attains their
corresponding entity sets {ei, ej}, {ek, em, ep} and
{ei, ej , ek, em, ep}, respectively. Then batches are
selected from these entity sets while meeting the
requirement that one batch can only be randomly
sampled from one entity set. To prevent overfitting,
we implement a size threshold to select batches
from entity sets whose sizes are larger than the
threshold. Compared to the traditional random
sampling-based batch selection, our strategy has
three advantages: 1) enforces contrastive learning
to focus on separating entities with similar seman-
tics (common concepts), thereby facilitating the
distinct representation of each entity; 2) sets up a
size threshold to concentrate on those hard to be
distinguished entities, thus improving the efficiency
of contrastive learning; 3) maintains inherent dis-
tribution biases of concepts while implementing
batch selection. For each entity ei in a batch, we
hold the two views of the same entity as a positive
pair (êi, ẽi). On the other hand, any other entity ej
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Figure 4: An example of the entity sets obtained by the
Breadth-First Search (BFS) algorithm. Different colors
indicate different concepts and their corresponding en-
tity sets.

in the same batch is deemed a negative entity and
is used to construct the negative pairs (êi, ẽj) and
(êj , ẽi). Finally, an extended InfoNCE loss (Wang
et al., 2023b) is utilized as the contrastive loss:

LCL(i) =

− log
exp

(
s(êi,ẽi)

τcl

)

∑
j∈Hi∪{i}

(
exp

(
s(êi,ẽj)

τcl

)
+ exp

(
s(êj ,ẽi)

τcl

))

(4)
where s(·) is a cosine similarity metric to measure
the similarity between two vectors, Hi is the set of
negative entities for ei and τcl is the temperature hy-
perparameter controlling the strength of penalties
on negative entities.

4.3 Multi-task Training

The CCL module subtly connects entity embed-
dings in both views in a self-supervised manner.
To ensure the separability and flexibility of CCL,
only the updated entity representations in the in-
stance view are fed into the subsequent modules
in HyperCL for link prediction, generating a link
prediction loss LLP , similar to previous HKG em-
bedding methods. Hence, the overall loss function
is defined as:

L = LLP + λLCL (5)

where λ is a hyperparameter trading off the two
losses.

Given the difficulty in identifying the most suit-
able λ, we employ a multi-task training strategy by
alternating the training procedures of link predic-
tion and contrastive learning. The corresponding
parameters in the two pipelines are updated alter-
natively until the link prediction pipeline reaches
convergence. Note that during the training phase of
the contrastive learning pipeline, any entity in the
same batch can be used as the negative entity for

others. The code of HyperCL is publicly available
online1.

5 Experiments

In this section, we present the experimental setup,
results, and discussion, answering the following
questions. RQ1: Can HyperCL consistently boost
the link prediction performance of different hyper-
relational KG embedding methods? RQ2: What’s
the impact of the concept-aware contrastive loss
on link prediction performance? RQ3: What’s the
impact of modeling the hierarchical structure of
ontology on link prediction performance?

5.1 Experimental Setup

5.1.1 Datasets
We conduct experiments on three commonly used
hyper-relational KG datasets JF17K (Wen et al.,
2016), WikiPeople (Guan et al., 2019), and
WD50K (Galkin et al., 2020), where the data
provider already splits the training and test datasets.
As these datasets do not contain ontology informa-
tion, we crawl concepts from their corresponding
data sources (Freebase and Wikidata). For Free-
base, we extract concepts directly from the entity
node depicted as "/type/object", where the hier-
archical concepts for an entity are also exhibited.
For Wikidata, we first collect concepts through
the property "instance_of" for each entity and then
extract deeper concepts through the property "sub-
class_of" for each concept, until no deeper con-
cepts are found. Table 1 shows the statistics of our
datasets.

5.1.2 Baselines
We consider a sizeable collection of state-of-the-art
techniques from two categories. The first category
includes model learning from hyper-relational facts
only: m-TransH (Wen et al., 2016); RAE (Zhang
et al., 2018); NaLP (Guan et al., 2019); NeuInfer
(Guan et al., 2020); HINGE (Rosso et al., 2020);
ShrinkE (Xiong et al., 2023); GRAN (Wang et al.,
2021); MSeaHKG (Di and Chen, 2021); HyNT
(Chung et al., 2023); HyperFormer (Hu et al.,
2023); StarE (Galkin et al., 2020); HyT (Yu and
Yang, 2021); QUAD (Shomer et al., 2022); HAHE
(Luo et al., 2023b). The second category includes
model learning from both hyper-relational facts and
ontology of KGs: RAM (Liu et al., 2021); tNaLP

1https://github.com/UM-Data-Intelligence-Lab/
HyperCL_code
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Dataset Entities Relations Concepts Training Test Facts (Hyper%) Arity
JF17K 28,645 501 748 76,379 24,568 100,947 (45.9%) 2-6
WikiPeople 34,839 178 5,396 294,439 37,712 332,151 (2.6%) 2-7
WD50K 47,156 532 9,370 166,435 46,159 212,594 (13.6%) 2-67

Table 1: Statistics of the datasets. The columns respectively denote the number of entities, relations, concepts,
training facts, test facts, all facts (the ratio of hyper-relational facts), and the range of arity.

Method
JF17K WikiPeople WD50K

All entities All relations All entities All relations All entities All relations
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

m-TransH 0.124 0.081 0.193 N/A 0.167 0.162 0.354 N/A 0.074 0.072 0.198 N/A
RAE 0.307 0.211 0.486 N/A 0.193 0.175 0.388 N/A 0.132 0.118 0.243 N/A
NaLP 0.364 0.287 0.519 0.827 0.729 0.896 0.327 0.265 0.449 0.875 0.838 0.929 0.223 0.162 0.337 0.775 0.702 0.896
NeuInfer 0.489 0.418 0.625 0.889 0.793 0.922 0.349 0.281 0.506 0.906 0.852 0.954 0.235 0.178 0.355 0.816 0.759 0.924
HINGE 0.519 0.445 0.682 0.903 0.865 0.959 0.367 0.305 0.488 0.935 0.895 0.976 0.245 0.181 0.362 0.878 0.812 0.963
ShrinkE 0.554 0.459 0.702 N/A 0.472 0.415 0.589 N/A 0.336 0.259 0.478 N/A
GRAN 0.652 0.579 0.798 0.996 0.993 0.999 0.496 0.426 0.619 0.959 0.944 0.976 0.361 0.287 0.504 0.945 0.917 0.983
MSeaHKG 0.579 0.481 0.718 0.932 0.887 0.979 0.393 0.301 0.562 0.836 0.792 0.953 0.324 0.239 0.481 0.825 0.778 0.917
HyNT 0.634 0.558 0.783 0.992 0.988 0.995 0.457 0.376 0.597 0.948 0.928 0.973 0.337 0.271 0.464 0.907 0.881 0.948
HyperFormer 0.651 0.587 0.784 N/A 0.471 0.356 0.645 N/A 0.365 0.285 0.514 N/A
StarE 0.584 0.504 0.741 N/A 0.394 0.290 0.593 N/A 0.315 0.240 0.458 N/A
HyT 0.592 0.513 0.750 N/A 0.399 0.298 0.588 N/A 0.314 0.241 0.453 N/A
QUAD 0.585 0.504 0.747 N/A 0.379 0.272 0.583 N/A 0.316 0.245 0.451 N/A
HAHE 0.657 0.585 0.798 0.996 0.994 0.999 0.495 0.421 0.623 0.959 0.944 0.977 0.379 0.305 0.521 0.940 0.914 0.977
RAM 0.394 0.328 0.572 N/A 0.461 0.402 0.569 N/A 0.287 0.226 0.425 N/A
tNaLP 0.370 0.292 0.528 0.834 0.733 0.906 0.333 0.272 0.457 0.886 0.842 0.937 0.230 0.169 0.344 0.789 0.715 0.912
sHINGE 0.528 0.459 0.701 0.918 0.876 0.973 0.372 0.312 0.499 0.947 0.905 0.984 0.248 0.185 0.370 0.885 0.819 0.971
DHGE 0.556 0.467 0.718 0.927 0.884 0.979 0.457 0.406 0.572 0.918 0.872 0.964 0.305 0.231 0.501 0.896 0.847 0.958
HyperCL+StarE 0.602 0.528 0.768 N/A 0.415 0.309 0.618 N/A 0.336 0.266 0.487 N/A
HyperCL+HyT 0.617 0.534 0.778 N/A 0.419 0.316 0.615 N/A 0.338 0.263 0.488 N/A
HyperCL+QUAD 0.605 0.529 0.776 N/A 0.396 0.288 0.605 N/A 0.339 0.268 0.498 N/A
HyperCL+HAHE 0.673 0.604 0.818 0.997 0.995 0.999 0.509 0.437 0.644 0.963 0.947 0.984 0.395 0.321 0.539 0.956 0.930 0.993

Table 2: Overall link prediction performance (All entities and All relations). "N/A" denotes the case that the method
cannot be applied to the task (namely m-TransH, RAE, ShrinkE, StarE, HyT, QUAD, and RAM are unable to predict
missing relations). "All entities" means the link prediction over all predictable positions of entities when applicable.
Thus, the reported results of StarE, HyT, and QUAD are head/tail predictions.
All baselines are implemented in our environment with their original hyperparameter settings.

(Guan et al., 2021); sHINGE (Lu et al., 2023b);
DHGE (Luo et al., 2023a). Detailed descriptions
of baselines are in Appendix A.

Among these baselines, we instantiate our Hy-
perCL with four state-of-the-art encoder-decoder
techniques StarE, HyT, QUAD, and HAHE to vali-
date its effectiveness.

5.1.3 Evaluation Metrics
Link prediction is a typical task for evaluating the
performance of KG embedding. For the missing
entity (or relation) in a test fact, a ranking list of
entities (or relations) is predicted. In this ranking
list, in addition to the ground truth from the test
fact, other entities (or relations) might also be true;
we thus adopt the filtered setting (Bordes et al.,
2013) to remove them from the ranking list. Mean
Reciprocal Rank (MRR), Hits@1, and Hits@10 are
used as evaluation metrics. We report the average
results in predicting all entities and all relations
separately.

5.1.4 Hyperparameters and Environment
Our HyperCL is trained for 300 epochs with
early stopping on the benchmark hardware (In-
tel Xeon5320@2.20GHz, 256GB RAM@3200Hz,

NVIDIA GeForce RTX 3090 24GB, Ubuntu 22.04).
The hyperparameter settings for each dataset are
shown in Appendix B and the training details are
presented in Appendix C. Note that HyperCL only
incurs a marginal computational overhead of up to
10.4% in the training time, compared to the base-
line models (see Appendix C for details).

5.2 Overall Performance (RQ1)

Table 2 shows the overall performance on all three
datasets and we highlight the best-performing re-
sult on each task and for each dataset. We observe
that HyperCL+HAHE consistently outperforms all
baselines, achieving 3.4% and 0.6% improvement
on average over the best-performing baselines in
predicting entities and relations, respectively.

Notably, we observe that our HyperCL frame-
work consistently improves the link prediction per-
formance of the corresponding base KG embed-
ding methods StarE, HyT, QUAD, and HAHE in
all tasks on all datasets, which demonstrates the
effectiveness of HyperCL. In particular, HyperCL
enhances the performance of the above four base-
lines with an average improvement of 3.1-7.4%
across different datasets in predicting entities. An-
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Method
JF17K WikiPeople WD50K

All entities All relations All entities All relations All entities All relations
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

HyperCL+StarE 0.602 0.528 0.768 N/A 0.415 0.309 0.618 N/A 0.336 0.266 0.487 N/A
w/o loss 0.589 0.510 0.750 N/A 0.401 0.295 0.607 N/A 0.322 0.246 0.467 N/A
w/o concept 0.595 0.519 0.761 N/A 0.409 0.305 0.614 N/A 0.331 0.262 0.475 N/A
w/o hierarchy 0.593 0.517 0.760 N/A 0.408 0.305 0.611 N/A 0.329 0.261 0.468 N/A
HyperCL+HyT 0.617 0.534 0.778 N/A 0.419 0.316 0.615 N/A 0.338 0.263 0.488 N/A
w/o loss 0.598 0.515 0.760 N/A 0.405 0.303 0.597 N/A 0.318 0.247 0.459 N/A
w/o concept 0.610 0.530 0.765 N/A 0.414 0.311 0.607 N/A 0.335 0.260 0.479 N/A
w/o hierarchy 0.612 0.531 0.771 N/A 0.415 0.313 0.608 N/A 0.335 0.261 0.477 N/A
HyperCL+QUAD 0.605 0.529 0.776 N/A 0.396 0.288 0.605 N/A 0.339 0.268 0.498 N/A
w/o loss 0.588 0.505 0.753 N/A 0.384 0.275 0.591 N/A 0.315 0.243 0.455 N/A
w/o concept 0.599 0.525 0.766 N/A 0.394 0.287 0.598 N/A 0.336 0.267 0.489 N/A
w/o hierarchy 0.596 0.520 0.764 N/A 0.395 0.288 0.601 N/A 0.334 0.258 0.494 N/A
HyperCL+HAHE 0.673 0.604 0.818 0.997 0.995 0.999 0.509 0.437 0.644 0.963 0.947 0.984 0.395 0.321 0.539 0.956 0.930 0.993
w/o loss 0.659 0.587 0.800 0.996 0.995 0.998 0.497 0.425 0.621 0.957 0.941 0.978 0.383 0.309 0.522 0.945 0.920 0.981
w/o concept 0.664 0.594 0.806 0.997 0.995 0.999 0.507 0.436 0.640 0.962 0.946 0.983 0.387 0.313 0.531 0.952 0.927 0.986
w/o hierarchy 0.663 0.592 0.803 0.997 0.995 0.999 0.507 0.436 0.639 0.963 0.947 0.983 0.390 0.317 0.531 0.953 0.928 0.988

Table 3: Ablation results. Three HyperCL variants are combined with four encoder-decoder architecture-based
baselines (namely StarE, HyT, QUAD, and HAHE).

other interesting observation is that while tNaLP
and sHINGE are extensions of NaLP and HINGE
with the consideration of the ontology of KGs, they
only achieve a little improvement since they neglect
the hierarchical structure of the ontology. More-
over, DHGE considers the hierarchical ontology
but still yields suboptimal performance compared
to HyperCL-enhanced baselines. This is attributed
to its joint modeling of hyper-relational facts and
the hierarchical ontology, which introduces the
dominance issue as illustrated in Section 1. The
above observation further verifies that properly in-
corporating ontology is critical for performance
improvement, which is the key merit of HyperCL.

5.3 Ablation Study
The concept-aware contrastive loss and relation-
aware GATs are two essential components of our
HyperCL. We consider three variants to quantify
their impact on link prediction performance and
demonstrate their utility. Each variant is tuned in-
dividually with different optimal hyperparameters
(see Appendix B for details) and the best prediction
results are reported.

5.3.1 Impact of the Concept-Aware
Contrastive Loss (RQ2)

We devise two variants of HyperCL to demonstrate
the effectiveness of the concept-aware contrastive
loss and its concept-aware batch selection strategy,
respectively. The first variant removes the whole
contrastive loss and directly integrates the ontol-
ogy into the original encoder with relation-aware
GATs, thus generating a joint model for knowl-
edge embedding while maintaining the hierarchical
structure of the ontology. This variant is denoted as
w/o loss. The second variant replaces the concept-

aware batch selection in the contrastive loss with
random sampling-based batch selection, denoted
as w/o concept.

Table 3 presents the results. We observe that
the concept-aware contrastive loss and the concept-
aware batch selection strategy both contribute to
the link prediction improvement. In particular, the
concept-aware contrastive loss enhances the per-
formance of four baselines with an average im-
provement of 2.5-5.8% across different datasets,
accounting for 75% performance improvement of
the complete HyperCL framework (compared to
the average improvement of 3.1-7.4% by the com-
plete HyperCL framework in Section 5.2). This
implies that the dominance issue is a key factor
resulting in the suboptimal performance of joint
learning models, which can be largely mitigated by
our HyperCL. In addition, the concept-aware batch
selection strategy also improves the performance
of baselines, implying that separating semantically
similar entities indeed benefits contrastive learning.

5.3.2 Impact of the Hierarchical Ontology
(RQ3)

We further devise a variant of HyperCL to ver-
ify the effectiveness of the hierarchical ontology,
where only the most specific concepts are reserved
while other deeper concepts are discarded. Thus,
the ontology of KGs loses its hierarchical informa-
tion, denoted by w/o hierarchy.

As shown in Table 3, the hierarchical structure of
ontology facilitates the hyper-relational knowledge
embedding of baselines and thus improves their
link prediction performance. Moreover, we have
further investigated the link prediction improve-
ments and found that entities with deeper concepts
benefit more from the hierarchical ontology. Specif-
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Figure 5: Case study on the importance of the hierar-
chical ontology on link prediction on a hyper-relational
fact. The question mark denotes the missing value (en-
tity). The lower part is a partial hierarchical ontology
related to this fact.

ically, entities with 3 or more layers of concepts
gain an average improvement of 5.7% across dif-
ferent datasets while entities with less than 3 layers
of concepts only earn an average improvement of
0.8%. To intuitively demonstrate the advantage
of modeling the hierarchical ontology, we conduct
a case study of predicting the missing value of a
hyper-relational fact in Fig. 5. The missing entity
should possess similar semantics with computer
program since they are affiliated with the same
base triplet (Apple, industry, software industry) and
have the common key of. The ground-truth entity
is operating system, which is correctly predicted
by HyperCL+HAHE. However, the w/o hierarchy
variant answers expert system since it belongs to
the same specific concept program with computer
program. This implies that the loss of the hierar-
chical ontology narrows the view of HyperCL and
makes it overlook possible candidates for link pre-
diction, such as the entity operating system that
belongs to the same high-level concept software as
computer program does.

6 Conclusion

In this paper, we propose HyperCL, a universal
contrastive learning framework for hyper-relational
knowledge graph embedding, which considers the
hierarchical structure of the ontology of KGs and
alleviates the dominance issue of hyper-relational
facts over the ontology. Experimental results
show that HyperCL consistently boosts the per-
formance of state-of-the-art baselines with an aver-
age improvement of 3.1-7.4% across three datasets,
demonstrating the effectiveness of HyperCL.

In the future, we plan to further extend HyperCL
to other KG embedding architectures and investi-
gate graph augmentation techniques for concept-
aware contrastive learning.

7 Limitations

As shown in the experiments, HyperCL is more
powerful in predicting entities than relations. Be-
sides the reason that the problem space of relations
is usually much smaller than that of entities, this
is also partially attributed to the current framework
not taking into account the contrastive learning of
relations. In the future, we will consider extending
our framework to contrastive relations as a unified
architecture.

8 Ethics Statement

This paper investigates the problem of knowledge
graph link prediction, aiming at hyper-relational
knowledge graph completion with ontology infor-
mation to empower a wide range of web applica-
tions, such as question answering, recommender
systems, and query expansion. The KG datasets
used in this paper are all publicly available. There-
fore, we believe it does not raise any ethical issues.
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Appendix
A Baseline Details

The first category includes model learning from
hyper-relational facts only: m-TransH (Wen et al.,
2016) models the interaction between entities in-
volved in each n-ary fact; RAE (Zhang et al.,
2018) extends m-TransH by explicitly consider-
ing the pairwise relatedness between entities in
n-ary facts; NaLP (Guan et al., 2019) learns the
relatedness between relation-entity pairs under
the n-ary representation of hyper-relational facts;
NeuInfer (Guan et al., 2020) models both primary

triplet and its associated key-value pairs; HINGE
(Rosso et al., 2020) captures both the triple-wise
and quintuple-wise relatedness between elements
in hyper-relational facts; ShrinkE (Xiong et al.,
2023) models the primary triplets as a spatial-
functional transformation from the head into a
relation-specific box; GRAN (Wang et al., 2021)
represents the hyper-relational facts as a hetero-
geneous graph and captures the inter-vertex inter-
actions via self-attention mechanism; MSeaHKG
(Di and Chen, 2021) develops a generic message-
passing function to encode hyper-relational facts;
HyNT (Chung et al., 2023) devises a context Trans-
former to learn the representations of numeric lit-
erals in either triplets or qualifiers; HyperFormer
(Hu et al., 2023) encodes the local-level sequential
information in hyper-relational facts with Trans-
formers; StarE (Galkin et al., 2020) transforms
a hyper-relational fact into a directed heteroge-
neous graph and extract the inter-vertex interac-
tion using a GNN encoder; HyT (Yu and Yang,
2021) extends StarE substituting the graph encoder
by a light-weight relation/entity embedding tech-
nique; QUAD (Shomer et al., 2022) also extends
StarE by adopting two separate aggregators to en-
code the primary triplets and associated key-value
pairs, respectively; HAHE (Luo et al., 2023b)
adopts global and local hypergraph attention to
represent hyper-relational facts. The second cat-
egory includes model learning from both hyper-
relational facts and ontology of KGs: RAM (Liu
et al., 2021) captures the latent compatibility be-
tween the meta-relation and all involved entities
by a pattern matrix; tNaLP (Guan et al., 2021)
extends NaLP with the consideration of schema in-
formation; sHINGE (Lu et al., 2023b) models the
hyper-relational schema information to enhance
link prediction performance; DHGE (Luo et al.,
2023a) jointly learns from hyper-relational facts
and the hierarchical ontology of KGs.

B Hyperparameter Settings

Three key hyperparameters of HyperCL are the
number of relation-aware graph attention layers L,
the threshold of concept-aware batch selection β,
and the temperature of contrastive loss τcl. We use
the grid search method to identify the optimal hy-
perparameter setting for each HyperCL-combined
model. The range of candidate values for hyperpa-
rameters L, β, and τcl are {1, 2, 3, 4, 5}, {1024,
2048, 4096, 8192, 12288}, and {0.5, 0.6, 0.7, 0.8,
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Method JF17K WikiPeople WD50K
L β τcl L β τcl L β τcl

HyperCL+StarE 2 4096 0.7 2 4096 0.7 2 4096 0.7
w/o loss 2 4096 0.7 2 4096 0.7 2 4096 0.7
w/o concept 2 4096 0.7 2 4096 0.7 2 4096 0.7
w/o hierarchy 2 4096 0.7 2 4096 0.7 2 4096 0.7
HyperCL+HyT 2 4096 0.7 2 8192 0.7 2 4096 0.7
w/o loss 2 4096 0.7 2 8192 0.7 2 4096 0.7
w/o concept 2 4096 0.7 2 8192 0.7 2 4096 0.7
w/o hierarchy 2 4096 0.7 2 8192 0.7 2 4096 0.7
HyperCL+QUAD 3 4096 0.6 3 8192 0.7 3 4096 0.6
w/o loss 3 4096 0.6 3 8192 0.7 3 4096 0.6
w/o concept 3 4096 0.6 3 8192 0.7 3 4096 0.6
w/o hierarchy 3 4096 0.6 3 8192 0.7 3 4096 0.6
HyperCL+HAHE 2 8192 0.7 2 8192 0.7 2 8192 0.7
w/o loss 2 8192 0.7 2 8192 0.7 2 8192 0.7
w/o concept 2 8192 0.8 2 8192 0.8 2 8192 0.7
w/o hierarchy 2 8192 0.8 2 8192 0.8 2 8192 0.7

Table 4: The optimal hyperparameter settings for all
HyperCL-combined baselines and their variants.

0.9}, respectively. Afterward, the optimal hyperpa-
rameter setting of a model is selected from exhaus-
tive hyperparameter combinations by comparing
the link prediction performance under the different
combinations. The final hyperparameter settings
for all models are shown in Table 4.

C Training Details

All models in Table 4 are trained 300 epochs with
early stopping on each dataset with their corre-
sponding optimal hyperparameter settings. The
average increased training time due to HyperCL
on three datasets JF17K, WikiPeople, and WD50K
is 1.2h, 2.9h, and 1.9h, respectively. In compar-
ison, the training time of the most efficient base-
line HAHE on JF17K, WikiPeople, and WD50K
is 11.5h, 28.4h, and 22.5h, respectively. Therefore,
HyperCL only incurs a marginal computational
overhead (up to 10.4% in training time).
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