
Findings of the Association for Computational Linguistics: ACL 2024, pages 2806–2813
August 11-16, 2024 ©2024 Association for Computational Linguistics

Selective Prefix Tuning for Pre-trained Language Models

Hongyi Zhang1†, Zuchao Li1*†, Ping Wang2,3, and Hai Zhao4

1National Engineering Research Center for Multimedia Software,
School of Computer Science, Wuhan University

2School of Information Management, Wuhan University
3Key Laboratory of Archival Intelligent Development and Service, NAAC

4Shanghai Jiao Tong University
{harryzhang,zcli-charlie,wangping}@whu.edu.cn, zhaohi@cs.sjtu.edu.cn

Abstract

The prevalent approach for optimizing pre-
trained language models in downstream tasks
is fine-tuning. However, it is both time-
consuming and memory-inefficient. In re-
sponse, a more efficient method called Prefix
Tuning, which inserts learnable vectors into
each Transformer layers, has been proposed
and proven effective. Recent investigations re-
veal that prefix tokens carry context-specific
information, prompting the hypothesis that en-
hancing their specialization can improve model
performance. To address this, we propose Se-
lective Prefix Tuning (SPT), integrating a se-
lective mechanism inspired by selective self-
attention. Additionally, we introduce Selective
Loss (SL) to encourage diversity in prefix to-
kens. Extensive experiments validate the effec-
tiveness of SPT in sentence and token classifi-
cation tasks. We contribute insight into under-
standing the role of prefix in model adaptation.

1 Introduction

Fine-tuning serves as a pivotal mechanism to adapt
large pre-trained models for downstream tasks by
adjusting all parameters but it is prohibitively ex-
pensive. Parameter-efficient learning is an emerg-
ing framework that freezes pre-trained models and
only tunes a few number of task-specific parame-
ters. An exemplary illustration of this paradigm is
Prefix Tuning and P-tuning-v2 (Li and Liang, 2021;
Liu et al., 2022a), wherein a fixed-length of learn-
able vectors is concatenated in the Transformer
layer. Studies have proven that Prefix Tuning can
achieve comparable performance or even outper-
forms fine-tuning (Liu et al., 2022b).
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Figure 1: An illustration of SPT where the left is Trans-
former architecture with prefix and the right is our pro-
posed SPT.

Recent investigations into soft tokens have un-
veiled that they harbor domain- or context-specific
words rather than a general instruction for certain
tasks (Lester et al., 2021). For instance, when tun-
ing model on BoolQ (Clark et al., 2019) bench-
mark, where approximately 20% of the questions in
the training dataset pertain to the "Nature/Science"
field, the learned prefix exhibits a notable frequency
of vectors whose nearest neighbors are words like
"science". Ju et al. (2023) assumes that a soft to-
ken is a combination of discrete tokens and sur-
prisingly finds that a lot of tokens in the prefix is
task-irrelevant, but serves to induce the model for
the correct output.

Although these studies are based on tuning only
the prefix tokens in the input layer, it is reasonable
to generalize this to methods that insert prefix to-
kens into multiple Transformer layers. It prompts
the reasonable assumption that the role of prefix
is to furnish the model with specific contextual
cues. Intuitively, making the prefix tokens more
"specialized" can help model focus on the useful
prefix cues and ignore unrelated ones. Besides, the
prefix should be diverse so as to provide the model
with a richer bank of context. However, previous
studies didn’t fully exploit these attributes. So in
this work, we posit that enhancing the specializa-
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tion of prefix tokens and forcing them to capture
diversified information can lead to improved model
performance.

To fulfill the first objective of refining the speci-
ficity of the prefix, we guide the model to select a
subset of useful prefix tokens. Inspired by Geng
et al. (2020), which employs an auxiliary network
to mask out less relevant tokens, we introduce a
selective mechanism into Prefix Tuning, presenting
our novel method called Selective Prefix Tuning
(SPT). We strive to avoid adding new parameters,
so we simplify the method by leveraging the origi-
nal attention scores to effectively mask out irrele-
vant tokens in the prefix.

The second objective is dedicated to augmenting
the diversity of the prefix through the incorpora-
tion of Selective Loss (SL) as a regularization term.
Drawing inspiration from Li et al. (2018), where ex-
plicit terms are introduced to foster diversity among
attention heads, our approach calculates the abso-
lute value of average cosine similarities between
prefix tokens to formulate the Selective Loss.

Through extensive experiments focusing on sen-
tence and token classification tasks under full
data settings, we validate our approach. Besides,
by adjusting newly introduced hyper-parameters,
we further study the effect of the Selective
Mask and find the Selective Loss can help the
model learn more features and sometimes even
achieve lower training loss. Our code is avail-
able at https://github.com/potter-Zhang/Selective-
Prefix-Tuning.

2 Related Works

Parameter Efficient Fine Tuning Since pre-
trained models are getting larger, fine-tuning is
prohibitively expensive. In response to this, the
framework of Parameter-efficient learning, which
freezes the pre-trained model and tunes a small
number of parameters, is proposed. For instance, P-
tuning (Liu et al., 2022a) and Prefix Tuning (Li and
Liang, 2021) are methods that insert soft prompts
in inputs or hidden states. P-Tuning v2 (Liu et al.,
2022b) extends Prefix Tuning to Natural Language
Understanding tasks. There are also methods based
on the gradient like SIFT (Song et al., 2024), which
uses sparse gradients to reduce memory consump-
tion.

Prompt-tuning methods Prompt-tuning-related
methods have achieved notable success. Some re-
searchers even use soft prompts for multi-modal

learning (Yang et al., 2024). In order to incor-
porate soft tokens, various approaches have been
explored. For instance, certain methods incorpo-
rate trainable tokens directly into the input layer
(Lester et al., 2021). Others add trainable bias to
the hidden states of corresponding prefix tokens
(Li et al., 2023), and some opt to train the entire
key-value (KV) cache of the Transformer model
(Liu et al., 2022b). The baseline method employed
in this paper is P-Tuning-v2 (Liu et al., 2022b),
which focuses on training the KV cache.

Selective self-attention network With an over-
lap of our motivation, SSAN(Geng et al., 2020)
uses a selector module to select a subset of tokens
and apply self-attention afterwards, so the model
can put more attention weight on the content words.
Hu et al. (2022) introduces adaptive threshold into
selective self-attention network when solving Chi-
nese NER problems. However, our method applies
selective mechanism only in learnable prefix and
it is used in every layer while SSAN only masks
out tokens in the first layer and introduces extra
parameters for selecting.

Disagreement regularization While the use of
multiple attention heads enables a distinct focus on
various segments of the sequence, there is no guar-
antee that different attention heads will learn differ-
ent features. Li et al. (2018) introduces three types
of disagreement terms to explicitly encourage the
model to attend to different features. Inspired by
this, our approach with Selective Loss is designed
to steer the prefix towards acquiring intricate and
diverse contextual information.

3 Methodology

3.1 Prefix Tuning

We first briefly recap the structure of Transformer
(Vaswani et al., 2023). A Transformer layer is a
block consisting of multi-head attention and a fully
connected feed-forward network. Formally speak-
ing, a Transformer block is calculated as follows:

Attn(Q,K, V ) = softmax(
QKT

√
d

)V (1)

FFN(x) = ReLU(xW1 + b1)W2 + b2 (2)

Prefix Tuning (Li and Liang, 2021) prepends
trainable tokens to each Transformer layer. Let
Pk, Pv ∈ Rlp×d be the keys and values prefix re-
spectively, where lp denotes the length of prefix
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and d is the dimension, the self-attention block can
be calculated as below:

Attn(Q,K ′, V ′) = softmax(
QK ′T
√
d

)V ′ (3)

Where K ′ = [Pk;K] and V ′ = [Pv;V ]. [;] de-
notes concatenation function.

3.2 Selective Prefix Tuning

Previous studies have shown that prefix can provide
certain context cues to the models but they haven’t
exploited this ability. So we introduce two novel
methods to improve the performance of Prefix Tun-
ing. In section 3.2.1 we introduce Selective Mask
to further ignore unrelated prefix. In section 3.2.2,
we show how we construct the Selective Loss to
improve diversity of prefix tokens so as to better
capture different context information.

3.2.1 Selective Mask
The core idea here is to generate a mask to ignore
prefix tokens unrelated to the current content. By
masking irrelevant tokens the model can pay more
attention to content words that contribute to the
meaning of the sentence and thereby improving its
performance.

Consider a token t in sequence, since the core
mechanism of self-attention layer consists of multi-
ple heads working in parallel, the head will calcu-
late similarities with prefix, i.e., any token r in the
prefix:

str =
xTt W

T
q (Pk)r√
d

(4)

where Wq is query matrix, (Pk)r is token r in keys
prefix and xt is the tth token. To ignore unimpor-
tant information in prefix, we apply a soft mask for
each head in the prefix. A soft masking function
is a non-decreasing function that maps attention
scores to a value in (0, 1). We take the following
masking function m(x):

m(x) = sigmoid(αx) (5)

where α is an amplifier factor greater than one
controlling the softness of the mask. The computed
mask is then applied to the attention weights of the
prefix:

atr =
m(str)exp(str)∑lp

q=1m(stq)exp(stq) +
∑ls

q=lp+1 exp(stq)

(6)

here, ls is the sequence length including the pre-
fix. The first sum of denominator is the attention
weights querying prefix, and the second one rep-
resents normal attention weights of tokens. The
mask function is only applied to the prefix tokens.
It should be noticed that here we apply the mask
head-wise.

3.2.2 Selective Loss
Although Selective Mask can ignore unrelated pre-
fix tokens, it does not guarantee prefix can learn
diverse features. Inspired by disagreement regular-
ization of attention heads(Li et al., 2018), which
uses extra regularization terms to force the model
to learn different features. We propose our Selec-
tive Loss to improve the expressive ability of prefix.
This term is designed to force the prefix tokens to
be orthogonal.

Specifically, for the prefix of keys, we first calcu-
late the cosine similarity between vector pair (Pk)

q
i

and (Pk)
q
j , where (Pk)

q
i represents the ith token

in keys prefix of qth layer, using dot product of
normalized vectors. In order to make vectors or-
thogonal, we then calculate the average absolute
value of cosine similarity. Formally speaking, the
regularization term in one Transformer layer can
be expressed as below:

KSLq =
2

lp(lp − 1)

lp∑

i=1

lp∑

j=i+1

|(Pk)
q
i · (Pk)

q
j |

||(Pk)
q
i ||||(Pk)

q
j ||
(7)

here lp is the length of prefix. Similarly, the regu-
larization term for values prefix can be defined as
below:

V SLq =
2

lp(lp − 1)

lp∑

i=1

lp∑

j=i+1

|(Pv)
q
i · (Pv)

q
j |

||(Pv)
q
i ||||(Pv)

q
j ||
(8)

where (Pv)
q
i represents the ith tokens in values

prefix of qth layer. Combining these two regular-
ization terms and consider all Transformer layers,
we get the Selective Loss:

SL =
1

2

L∑

q=1

(KSLq + V SLq) (9)

Where L is the number of Transformer layers. Fi-
nally, we combine Selective Loss with the original
training objective and get our revised version:

L = Lori + λ ∗ SL (10)
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Model SuperGLUE
BoolQ COPA RTE WiC WSC Avg

BERT-base
(110M)

FT 72.9 67.0 68.4 71.1 63.5 68.6
PT-2 72.5 67.4 71.3 69.5 65.4 69.2
SPT 72.5 70.0 74.3 70.7 65.4 70.6

BERT-large
(335M)

FT 77.7 69.0 70.4 74.9 68.3 72.1
PT-2 75.8 73.0 78.3 75.1 68.3 74.1
SPT 75.8 80.0 78.7 75.7 69.2 75.9

RoBERTa-large
(355M)

FT 86.9 94.0 86.6 75.6 63.5 81.3
PT-2 84.8 93.0 89.5 73.4 63.5 80.8
SPT 84.4 93.0 89.9 73.8 63.5 80.9

Table 1: The results on SuperGLUE development set. The metric is accuracy. Results for FT and PT-2 on
BERT-large and RoBERTa-large are taken from Liu et al. (2022b). Results for FT on BERT-base are from Liu et al.
(2022a), and results for PT-2 on BERT-base are from Zhang et al. (2023).(FT: vanilla fine-tuning; PT-2: P-Tuning
v2; SPT: Selective Prefix Tuning; bold: the best score; underline: the second best)

Model
NER

CoNLL03 CoNLL04
FT PT-2 SPT FT PT-2 SPT

BERT-base - 89.3 89.8 - 82.6 82.8
BERT-large 92.8 90.2 90.0 85.6 84.5 85.3

Table 2: The results for NER datasets including CoNLL03 and CoNLL04. Results for FT and PT-2 on BERT-large
are from Liu et al. (2022a). Results for PT-2 on BERT-base are from Zhang et al. (2023). The metric here is f1 score.

where λ is a hyper-parameter to control the ratio of
Selective Loss. Lori refers to the original loss in
different tasks settings.

4 Experiments

4.1 Experimental Setup
For Natural Language Understanding, we conduct
experiments on 5 tasks from SuperGLUE (Wang
et al., 2020) benchmark including BoolQ (Clark
et al., 2019), COPA (Gordon et al., 2012), RTE
(Wang et al., 2018), WiC (Pilehvar and Camacho-
Collados, 2019), WSC (Levesque et al., 2012)
using three models including BERT-base / large
(Devlin et al., 2019) and RoBERTa-large (Liu
et al., 2019) instantiated by HuggingFace Trans-
formers (Wolf et al., 2020). For Named Entity
Recognition(NER) tasks, we conduct experiments
on CoNLL03 (Tjong Kim Sang and De Meulder,
2003) and CoNLL04 (Carreras and Màrquez, 2004)
with BERT-base / large (Devlin et al., 2019).

4.2 Results
We report the main results in Table 1. We ob-
serve that SPT achieves 1.4% improvement over
P-Tuning v2 on SuperGLUE for BERT-base. For
BERT-large, SPT surpasses P-Tuning v2 on Su-

perGLUE by 1.8%. For RoBERTa-large, SPT out-
performs P-Tuning v2 on SuperGLUE by 0.1%.
We also report results on NER datasets in Table 2.
It can be seen that on CoNLL03 and CoNLL04,
SPT consistently outperforms P-Tuning v2 and
is even comparable to fine-tuning. Although on
CoNLL03 we oberve a slightly performance drop,
SPT achieves an average of at least 0.3 improve-
ment with BERT-base and BERT-large models, in-
dicating its superiority.

4.3 Ablation Studies

To further study the contribution of Selective Mask
and Selective Loss to the improvement of model
performance, We conduct experiments on 5 tasks
from SuperGLUE with BERT-base model. The
results are reported in Table 3.

Although on BoolQ dataset, Selective Mask and
Selective Loss alone leads to slight decrease in
performance, in most cases it can be seen that with
Selective Loss or Selective Mask individually, the
performance is improved. When combining the
two components, greater improvement is observed.
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Model BoolQ COPA RTE WiC WSC
PT-2 72.5 67.4 71.3 69.5 63.5

PT-2 + SM 72.1 68.0 73.2 70.8 65.4
PT-2 + SL 72.1 69.0 74.0 71.0 65.4

SPT 72.5 70.0 74.3 70.7 65.4

Table 3: Results for ablation studies. The model we use is BERT-base. The metric here is accuracy. Results for PT-2
are from Zhang et al. (2023).

Figure 2: Accuracy on development set(left) and train-
ing loss(right) of RTE using BERT-base model with
different values of α.

Figure 3: Accuracy on development set(left) and train-
ing loss(right) of RTE using BERT-base model using
different values of λ.

4.4 Intrinsic Evaluation

We study the influence of different hyper-
parameters in SPT. 4.4.1 studies the impact of am-
plifier factor α. 4.4.2 further probes into the influ-
ence of Selective Loss. We conducted experiments
with BERT-base model on RTE dataset. We run
totally 50 epochs with a learning rate of 1e-2 and
a prefix length of 8. We modify α and λ in the
following experiments to see the influence of these
key hyper-parameters.

4.4.1 Selective Mask
We first investigate the influence of Selective Mask.
With batch size of 8 and λ = 2e − 4, we train
our model with α = [1, 2, 4, 8, 16] and report the
results in figure 2. It is observed that combined
with SL, a proper α can improve the performance
a lot. When α is smaller, it will be easier for the
model to train since an α that is too large will
make the function sigmoid(αx) become steeper,
with a especially large gradient around the zero and

almost no gradient for other numbers, which might
lead to difficulties in optimization. But larger α can
help the model focus more on useful prefix tokens
by ignoring unrelated ones, bringing low training
loss and a good generalization ability. In practice,
a careful search of α is needed.

4.4.2 Selective Loss

With batch size of 16 and α = 8, the best accuracy
on development set and training loss on RTE with
different values of lambda is reported in figure 3. It
is observed that as λ increases, the accuracy shows
the trend of increasing, but if λ is too large, a perfor-
mance drop is observed, which is consistent with
our knowledge of regularization. Besides, we no-
tice that with the increase of lambda, training loss
is actually going down, which validates that Se-
lective Loss can help model learn more features.
However, large values of λ will lead to underfitting
of the model.

5 Conclusions

In this work, we propose a novel way to improve
the performance of Prefix Tuning. Without adding
extra parameters, significant improvements are ob-
served. Experiments on Natural Language Under-
standing (NLU) and Named Entity Recognition
(NER) tasks validate the effectiveness of our ap-
proach. In addition, Selective Prefix Tuning pro-
vide us with a new perspective of the role and at-
tributes of pseudo prefix. It can be served as a
promising method for Parameter-efficient learning.

Limitations

The proposed SPT is applicable to Large Language
Models just like Prefix Tuning. However, due to
limitation of computation resources, we only ap-
plied SPT to encoder-only models and didn’t con-
duct extensive experiments with LLM or encoder-
decoder models.
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A Prefix Length

We also conduct experiments to investigate the in-
fluence of prefix length. Here α is 8 and λ is 2e-4.
When prefix length increases, the final training loss
decreases as shown in figure 4. Performance on
validation set first increases as the prefix becomes
longer, but after it reaches a threshold, longer prefix
will lead to performance drop. Since the longer the
prefix, the more parameters can be tuned, this in-
dicates that overfitting occurs, which is consistent
with the finding in Li and Liang (2021).

Figure 4: Accuracy(left) on development set and train-
ing loss(right) of RTE using BERT-base model with
different values of prefix length. When prefix length
increases, the model shows performance gain. After it
reaches a threshold, increasing prefix length will lead to
drop of performance.

B Visualization of Selective Mask

We visualize the change after applying the Selective
Mask on the attention scores. From figure 5 we
can see that the mask will almost ignore the tokens
whose similarity is a negative value. The greater
the alpha is, the tighten the bound of ignorance. As
for the positive part, it is almost the same as the
original one when attention scores is sufficiently
large.

Figure 5: A visualization of the attention weight curve
with Selective Mask. The x-axis represents the attention
scores. The blue curve is the original calculation of
attention weight, i.e. the exp(x) function. The rest are
the calculation methods with Selective Mask of different
values of α.
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