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Abstract

A multitude of industries depend on accu-
rate and reasonable tabular data augmentation
for their business processes. Contemporary
methodologies in generating tabular data re-
volve around utilizing Generative Adversarial
Networks (GAN) or fine-tuning Large Lan-
guage Models (LLM). However, GAN-based
approaches are documented to produce sam-
ples with common-sense errors attributed to
the absence of external knowledge. On the
other hand, LLM-based methods exhibit a lim-
ited capacity to capture the disparities between
synthesized and actual data distribution due
to the absence of feedback from a discrimina-
tor during training. Furthermore, the decoding
of LLM-based generation introduces gradient
breakpoints, impeding the backpropagation of
loss from a discriminator, thereby complicat-
ing the integration of these two approaches. To
solve this challenge, we propose using proxi-
mal policy optimization (PPO) to apply GANs,
guiding LLMs to enhance the probability dis-
tribution of tabular features. This approach
enables the utilization of LLMs as generators
for GANs in synthesizing tabular data. Our
experiments demonstrate that PPO leads to an
approximately 4% improvement in the accu-
racy of models trained on synthetically gen-
erated data over state-of-the-art across three
real-world datasets.

1 Introduction

With the evolution of business processes that op-
erate on structured data, tabular data has emerged
as one of the most crucial data forms, owing to its
easily manageable structure and efficient retriev-
ability (Gilbert, 2022). Industries such as finance
and healthcare heavily rely on tabular data for its
clarity and ability to facilitate data analyses and
comparisons (Shwartz-Ziv and Armon, 2022).

However, in realistic applications, the availabil-
ity of high-quality tabular data is still an issue,
mainly due to high costs of data collection and

annotation and privacy policies (Jensen and Potts,
2004). Therefore, various data augmentation meth-
ods have been proposed to overcome the scarcity
of high-quality tabular data (Wen et al., 2022; Es-
maeilpour et al., 2022).

The contemporary augmentation methods pri-
marily revolve around rules, variational autoen-
coders (VAE), generative adversarial networks, and
LLMs (Wei and Zou, 2019; Kingma and Welling,
2014; Patki et al., 2016; Bao et al., 2019; Borisov
et al., 2023). However, these methods exhibit cru-
cial limitations: (1) Rule-based methods rely on
predefined constraints, which need manual effort
and might not capture the diversity of real-world
data (Wei and Zou, 2019). (2) The existing VAE-
based and GAN-based approaches primarily focus
on matching the distribution of table features rather
than whether they are logically coherent (Kingma
and Welling, 2014; Patki et al., 2016). For example,
they might synthesize a sample with an “Age” of
“16” and an “Occupation” of “Professor” (Good-
fellow et al., 2014), resulting in implausible in-
stances due to the lack of external knowledge (Bao
et al., 2019). (3) Fine-tuning a LLM on real-world
datasets may not capture the real-time differences
in the distribution of features between synthetic and
real-world data, thereby diminishing the quality of
synthesized data. Furthermore, the generation of
tabular features via LLMs is implemented through
random sampling of the logits of decoders. How-
ever, sampling operations are non-differentiable,
making it challenging to incorporate GAN-based
methods for optimizing a generator, i.e., the LLM,
based on the discriminator’s output.

To overcome all of these drawbacks, we propose
a method of training PPO-guided Language models
for Table Augmentation (P-TA). Specifically, we
first transform the tabular data into text using tem-
plates. After that, we fine-tune a LLM to generate
new data in textual form. Additionally, we train a
classifier to distinguish between actual and gener-
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ated data, utilizing the outputs of the classifier as
rewards for further optimizing the LLM through
the PPO algorithm (Schulman et al., 2017).

Our methodology offers a distinct advantage:
PPO-guided LMs can introduce external knowl-
edge, and extensively explore various potential fea-
ture combination strategies during training by incor-
porating GANs, consequently enhancing the likeli-
hood of producing high-quality synthetic data (Sut-
ton et al., 1999).

As an additional study for reasonability, we pro-
pose to clarify the rationale behind tabular features
to enhance the credibility of synthetic data by gen-
erating explanations. Explanations can serve as
a data auditing tool, specifically for assessing the
quality of synthesized data. The data auditing, in
turn, contributes to enhancing the accountability of
models trained using the synthesized data (Werder
et al., 2022). We found the textual explanations are
empirically more helpful for data auditors in assess-
ing data quality than plain tables (see user study in
our experiments). We are the first to integrate data
auditing into tabular augmentation, distinguishing
our work from previous efforts.

Our contributions are as follows:
• We propose P-TA, a novel framework to use

PPO-guided language models for tabular aug-
mentation, incorporating GANs to LLMs to
generate tabular rows.

• We benchmark our framework with state-of-
the-art (SOTA) methods on three realistic
datasets. Training with our synthesized data
improves the accuracy by 4% compared to
the SOTA baseline, highlighting the high qual-
ity and potential impact of our approach in
practical applications.

• We are the first to explain tabular data via
retrieval enhancement. Our user study empiri-
cally shows that our explanations successfully
assist users with auditing the generated data.

2 Related Work

With the development of databases, diverse sec-
tors widely use tabular data as an indispensable
data form (Gilbert, 2022). However, the accessi-
bility of high-quality tabular data remains a per-
sistent challenge, which is primarily attributed to
privacy constraints and the substantial costs in col-
lection (Jensen and Potts, 2004). These factors
reflect the critical need to propose reasonable tabu-
lar synthesizing and auditing technologies.

2.1 Tabular augmentation

In prior work, table augmentation is mainly based
on statistics (Kamthe et al., 2021), e.g., the Chow-
Liu approximation (Chow and Liu, 1968). Contem-
porary approaches leverage heuristic algorithms,
with methods based on VAEs (Ma et al., 2020;
Darabi and Elor, 2021) or GANs (Choi et al., 2017;
Park et al., 2018; Koivu et al., 2020). As rep-
resentative approaches, TVAE (Xu et al., 2019)
is optimized based on the evidence lower-bound
(ELBO). It maps tabular features into a Gaussian
distribution in the latent space and generates new
data through sampling; CTGAN (Xu et al., 2019)
adopts a GAN by conditioning the generation pro-
cess solely on a single discrete feature for tabu-
lar data; CopulaGAN (Kamthe et al., 2021), the
current state-of-the-art approach for GAN-based
methods, simplifies the underlying CTGAN by uti-
lizing Gaussian copulas. However, due to the lack
of external knowledge, these models may generate
tables with common-sense errors (Borisov et al.,
2022). Consequently, we use LLMs as a knowl-
edge base to introduce a PPO-guided table gener-
ator focusing on plausibility and common-sense
knowledge. This makes the advantages of LLMs
and GANs to be seamlessly integrated.

In the field of generative LLMs, prior to the inte-
gration of reinforcement learning, training methods
primarily relied on masks (Kenton and Toutanova,
2019; Liu et al., 2019; Lewis et al., 2020) and au-
toregressive learning (Raffel et al., 2020; Brown
et al., 2020). After that, the most advanced LLMs
such as InstructGPT (Ouyang et al., 2022) and the
family of LLaMA (Meta, 2023; Taori et al., 2023)
demonstrated the powerful capabilities of the PPO
algorithm mechanism.

2.2 Feature interpretation

Explainable Artificial Intelligence (XAI) methods
have demonstrated their effectiveness in data audit-
ing (Zhang et al., 2017). Shapley additive explana-
tions (SHAP) Lundberg and Lee (2017); Nohara
et al. (2019) quantify the impact of each feature
on the model’s output. Ribeiro et al. (2016) sim-
ulates complex models by training interpretable
models to generate local explanations for specific
data points. Gradient-based interpretability models,
such as Grad-CAM (Selvaraju et al., 2017), Inte-
gratedGrad (Sundararajan et al., 2017), generate
heatmaps as explanations by computing gradients.

However, these methods emphasize feature at-
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Figure 1: Training comprises two steps: 1) building an initial generative policy, 2) training a discriminator to
distinguish the generated samples from ground truth, and updating the generative policy via PPO.

tribution concerning predictive impact but do not
explain the meaningfulness or plausibility of fea-
tures in a given context. Therefore, we elucidate
the reasons behind inference results, aiming to en-
hance the credibility of our approach to generate
textual explanations.

3 Methodology
Given a table with N rows and M columns, where
each row represents a sample, and each column
represents a feature. We denote this table as
T = (s1, s2, ..., sN ), where the i-th sample row
is represented as si = (ai1, ai2, ..., aiM ), with aij
denoting the j-th feature column of this sample.

Regarding data augmentation, our target is
to generate a new table, denoted as T ′ =
(s′1, s

′
2, ..., s

′
K), which contains K synthetic sam-

ples. The synthetic dataset should exhibit a distri-
bution that resembles the original dataset T .

As for data auditing, our target is generating
textual explanations for the plausibility of a given
feature value a′ij in an arbitrary new sample s′i.

3.1 Tabular data augmentation
In the first step, we expand the tabular data by con-
verting it into text through a predefined template.
We then employ a LLM to generate new textual
samples. Finally, we transform the generated text
into tabular form via the same template. Figure 1
demonstrates the training pipeline.

Transforming tabular data into textual data.
We employed an effective transformation template
of “[Feature] is [Value]” (Borisov et al., 2023;
Zhang et al., 2023). Here, [Feature] represents
a specific feature name in a sample, and [Value] de-
notes the corresponding value. By connecting short

phrases associated with all features using commas,
we construct a sentence describing a sample.

Training We initiate fine-tuning a LLM ϕ on
these sentences. The LLM is treated as the gener-
ator of a GAN and a knowledge base to mitigate
the logical and semantic inconsistencies or con-
flicts among the generated features (Heinzerling
and Inui, 2021). Our objective is to enable the LLM
to emulate the underlying distribution patterns of
the feature values and minimize the generative per-
plexity, as shown in Eq. (1):

LLLM(ϕ) = −
∑

i

log p(wLLM
i = wi|ci;ϕ), (1)

where ci is the context of a target word wi. wLLM
i

is the corresponding prediction of the LLM.
We then generate new samples by sampling from

the logits of LLM ϕ. The probability of generat-
ing the i-th token wi as w ∈ V is then given by
Pϕ(w|w1:i), where V represents the vocabulary. To
encourage the LLM to generate diverse samples,
we utilize a temperature function (Ackley et al.,
1985) with a small τ :

P ′
ϕ(wi) =

Pϕ(w|w1:i)
1/τ

∑
w′∈V Pϕ(w′|w1:i)1/τ

. (2)

To prevent text degeneration, we employ the top-p
sampling (Holtzman et al., 2020) and sample token
wi according to probability distribution P ′′

ϕ :

P ′′
ϕ (wi) =

{
P ′
ϕ(wi)/

∑
w′∈Vp

P ′
ϕ(w

′) if wi ∈ Vp

0 otherwise,
(3)

where top-p vocabulary Vp is the smallest set such
that:

∑
wi∈vp P (wi|w1:i−1) ≥ p.
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Finally, we repeat the sampling and utilize the
mentioned template to transform generated sen-
tences back into tabular rows to obtain T ′.

However, the missing or complex irregular de-
pendencies between attributes in tables (Borisov
et al., 2022) can lead to model biases and re-
duced robustness. Since GAN-based methods have
proven to excel in generating text with given fea-
tures (Yu et al., 2017), we employ the PPO algo-
rithm to optimize the performance of the fine-tuned
LLM (Ouyang et al., 2022) by incorporating it as
the generator within a GAN.

In particular, we train a classifier θ to distin-
guish between synthetic data labeled as ys and real
data labeled as yr. Here, θ is trained using a focal
loss (Lin et al., 2020) to mitigate potential issues
related to class imbalance. Then, we calculate the
reward of a generated sample s′ via the classifier θ:

Rθ(s
′) = P (y′ = yr|s′; θ), (4)

where the reward value is the probability that y′ is
classified as actual data by the classifier θ.

We then employ PPO to increase the probabil-
ity of generating sentences with high reward val-
ues, which theoretically leads to a closer alignment
between generated and original data distributions.
The objective function for model output s′ consists
of two components: the score Rθ(s

′) computed by
the reward model and the KL divergence between
the generative policy and the sampling policy, i.e.,
an orininal copy of the generative policy (Ouyang
et al., 2022). Hence, the goal is to maximize:

Es′∈T ′ [Rθ(s
′)− β log(PRL(s′;ϕ)/P SFT(s′))],

(5)
β is the weight coefficient, PRL(s′) and P SFT(s′)
are the probability related to the generative policy
and the sampling policy for s′, respectively.

Here, we have two training objectives for the gen-
erator: (1) maximizing reward values by aligning
distributions of synthetic data and actual data, and
(2) minimizing the Kullback–Leibler divergence
between the generation policy and the sampling
policy.

Finally, we iterate through the training process
until the GAN, i.e., the generator ϕ and the classi-
fier θ, reaches a Nash equilibrium (Nash, 1950).

3.2 Data auditing
We aim to enhance the plausibility of our model

by explaining and providing reasons for the gener-
ated feature values. On the one hand, reading these

Algorithm 1 Feature Interpretation Algorithm.

1: Input: A generated tabular row s′ =
(a′1, a

′
2, ..., a

′
M ), with the j-th feature value

a′j to be explained; The original dataset T =
(s1, s2, ..., sN ).

2: Output: A textual explanation for why aij is
reasonable in context s′i.

3: # Generate textual descriptions.

4: Use prompt learning to transform s′ and all
si ∈ T into their textual descriptions d′ and
(d1, d2, ..., dN ).

5: # Retrieve descriptions using the augmented strategy.

6: Retrieve k most similar descriptions
(d1̂, ..., dk̂) to d′ from (d1, d2, ..., dN ).

7: # Generate explanations based on descriptions.

8: Generate explanation using (d1̂, ..., dk̂) and d′.

explanations can enhance the transparency of table
synthesis techniques for users. On the other hand,
when this technology is applied to real-world data,
it allows table users to assess the quality of tables
without direct access to the table contents, thus
ensuring data privacy in theory. We first describe
each tabular row as a paragraph that rephrases all its
features into text via a LLM. Then, the interpreter
reads and compares these textual descriptions of
the original samples to explain the reasons behind
the presence of a particular value for a given fea-
ture. Algorithm 1 presents the steps towards such a
plausibility-related interpretation.

Generation of textual descriptions. We first
convert a table row into a sentence using the tem-
plate described in Section 3.1, then fill it into a
prompt template, e.g., “Please describe a person
with the following features.” Following our instruc-
tions, the interpreter pre-processes the templates
into descriptions before generating the explanation.

Pre-processing tabular rows to descriptions for
explanation holds three theoretical advantages:
First, the LLM naturally incorporates additional
information. For instance, for an individual with
the job title “professor” age ranges between 0 and
25 years are less plausible, while a “busy schedule”
may be quite likely. Therefore, these supplemen-
tary details can aid the interpreter in inferring more
profound and intricate underlying reasons. Sec-
ondly, the tabular features always contain numer-
ous abbreviations, many needing to be more readily
understandable by language models and individu-
als who need domain expertise. By using a LLM
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Travel Customers https://www.kaggle.com/datasets/tejashvi14/tour-travels-customer-churn-prediction
Adult Income https://archive.ics.uci.edu/dataset/2/adult
HELOC https://kaggle.com/datasets/averkiyoliabev/home-equity-line-of-creditheloc

Table 1: The real-world datasets used in our study.

to convert them into text descriptions, they should
be more comprehensible. Thirdly, (Dai and Callan,
2019) has demonstrated that using descriptive text
outperforms using keywords (such as tabular fea-
ture values) in information retrieval tasks, which
serves as empirical support for our discussion in
the next paragraph.

Retrieval augmented generation. When ex-
plaining a generated feature value, we retrieve
similar samples corresponding to a target sample
as comparative data to our interpreter, an LLM.
The advantage of retrieval lies in providing the
interpreter model with comparative information,
thereby preventing incorrect or incomplete analy-
sis. For instance, if two individuals who are other-
wise identical except for age receive different levels
of “income”, the interpreter can theoretically infer
that age is the most significant factor causing the
disparity in the “income” feature.

To retrieve similar samples, we compare two
samples by comparing the semantic similarity of
their descriptive texts. Specifically, we employ a
LLM that has been fine-tuned on semantic simi-
larity tasks to embed the descriptive texts corre-
sponding to two samples separately. After that, we
calculate the cosine similarity between the embed-
dings as a measure of sample similarity. Finally,
the top k most similar samples retrieved are input
into the interpreter for explanation.

4 Experiments

4.1 Datasets
We use three real-world datasets for evaluation by
following (Borisov et al., 2023). The data we uti-
lize can be directly downloaded from the internet,
as shown in Table 1. The dataset Travel encom-
passes information about travel customers aimed at
aiding a travel company in computing its churn
rate. We utilize the “Target” feature, denoting
customer attrition, as both the classification label
and the feature to be audited. Adult Income con-
sists of records from the 1994 Census database. It
comprises 48,842 instances and 14 attributes. We
treated the “Income” feature, denoting the annual
income of specific individuals, as both the classifi-

cation label and the feature to be audited. HELOC
dataset comprises 10,460 samples, each with 24
features related to anonymized information about
home equity line of credit (HELOC) applications
made by real homeowners. We regard the “RiskPer-
formance” feature as the classification label and the
feature to be audited.

For evaluation, we generate 10,000 synthetic
samples from Adult Income and HELOC and 1,000
synthetic samples from Travel Customers due to
the relatively low data size and feature count in the
latter dataset.

4.2 Automatic metrics

Accuracy. Following prior work (Borisov et al.,
2023), we first conduct training using the origi-
nal data on three classifiers: logistic regression
(LR) (Cox, 1958), decision trees (DT) (Breiman
et al., 1984), and random forests (RF) (Liaw et al.,
2002). The training involve inputting the feature
vectors of original samples into these classifiers
and making predictions of the target feature. Sub-
sequently, we supply the feature vectors of the gen-
erated samples as test samples to these classifiers
and observe whether the predicted values by the
classifiers match the generated values of the tar-
get variable. The closer the predictive accuracy
remains to the original accuracy, i.e., accuracy on
the original dataset, the more similar the distribu-
tion of the test dataset, i.e., the generated data, is
to the distribution of the original dataset.

Discriminator measure. We use the accuracy of
a classifier trained to distinguish between original
and synthetic data to measure the performance of
our generation approach. High-quality synthetic
data should render the trained classifier incapable
of accurately categorizing whether the data is syn-
thetic or not.

To mitigate information leakage, we use a Kernel
Support Vector Machine (VN, 2005), contrasting to
the neural network-based classifier used in training.

Jaccard Coefficient. It is a statistical metric
employed to quantify the similarity between two
sets (Niwattanakul et al., 2013). We compute the
Jaccard coefficient between the feature sets of a
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Dataset Original TVAE CopulaGAN CTGAN Neo + GReaT GPT-2 + GReaT Neo + Ours GPT-2 + Ours

Travel

LR ↑ 84.29% 80.64% 74.23% 75.12% 74.82% 79.11% 80.95% 82.22%
DT ↑ 86.91% 80.90% 75.61% 73.30% 72.73% 74.68% 74.81% 80.14%
RF ↑ 87.43% 80.92% 74.23% 72.23% 75.04% 75.31% 69.05% 81.53%
Mean 86.21% 81.01% 74.69% 73.55% 74.19% 76.37% 74.94% 81.30%

Adult Income

LR ↑ 80.55% 77.45% 76.79% 79.58% 76.49% 75.69% 76.56% 76.27%
DT ↑ 82.36% 79.60% 72.44% 78.50% 73.10% 73.17% 79.67% 73.27%
RF ↑ 85.81% 79.60% 77.46% 79.63% 80.38% 79.79% 80.44% 79.82%
Mean 82.91% 78.88% 75.56% 79.24% 76.66% 76.22% 78.89% 76.45%

HELOC

LR ↑ 69.79% 61.04% 42.03% 57.72% 64.39% 52.44% 75.65% 51.64%
DT ↑ 62.00% 66.39% 42.36% 61.34% 60.16% 56.51% 55.03% 57.14%
RF ↑ 70.12% 67.24% 42.35% 62.35% 71.20% 62.80% 77.83% 66.70%
Mean 67.30% 64.89% 42.25% 60.47% 65.25% 57.25% 69.50% 58.49%

Table 2: Accuracy measure. LR, DT, and RF stand for Logistic Regression, Decision Tree, and Random Forest,
respectively. Bold indicates the best performance, and underline indicates the second best in terms of being closest
to the accuracy on the original data.

CopulaGAN CTGAN TVAE Neo + GReaT GPT-2 + GReaT Neo + Ours GPT-2 + Ours
Travel ↓ 97.58% 92.13% 91.26% 98.05% 98.04% 96.15% 96.26%
Adult Income ↓ 88.47% 87.65% 96.92% 82.98% 82.73% 82.51% 82.73%
HELOC ↓ 98.61% 100.00% 99.97% 92.79% 91.50% 86.80% 89.13%
Mean ↓ 94.89% 93.26% 95.85% 91.27% 90.76% 88.49% 89.37%

Table 3: Discriminator measure. We use decreased accuracy values to check whether the data generated cannot be
easily distinguished apart from the original data.

synthetic sample and the sample in the original
dataset with the maximum feature overlap for that
synthetic sample. A larger Jaccard coefficient indi-
cates a closer similarity between the feature value
distributions of synthetic data and the original data.

4.3 Human evaluation

We conduct data audits with human subjects by pre-
senting them explanations generated by our model.
Feedback from the pilot study indicates that audit-
ing the HELOC dataset requires strong financial
knowledge. Therefore, we conduct data audits on
two datasets, Adult Income and Travel, for high-
quality human evaluation. On each dataset, ten
randomly selected samples are shown. For expla-
nation quality assessment, human users rate the
quality regarding reasonableness, relevance, clar-
ity, and comprehensiveness within a 7-point Lik-
ert scale (Likert, 1932). Contrastively, we apply
SHAP to generate numerical explanations. We
asked all participants to indicate their preference
for encountering either textual or quantified numer-
ical explanations.

5 Results

5.1 Analysis for automatic evaluation

Table 2 illustrates the accuracy tests conducted
on data generated by our approach, where our
model outperforms baselines across three distinct

datasets. Specifically, on the Adult Income dataset,
our model achieves a considerable increase (of 4
percent points) in terms of accuracy, clearly sur-
passing the state-of-the-art methods. Similarly, our
approach surpasses the baseline by 2% points on
the HELOC dataset. In the case of the smaller-scale
Travel dataset, our PPO techniques lead to a re-
markable increase of 5% points. However, the per-
formance of all the models on the HELOC dataset
is lower. This should be attributed to the relatively
high number of features in HELOC, not all cor-
related with the target feature being predicted. A
substantial amount of redundant information from
the multitude of features can potentially interfere
with the predictions of these models.

In Table 3, it is observed that our method out-
performs the baselines in terms of decreasing a dis-
criminator’s ability to discriminate between real
and synthetic samples across all three datasets.
Even in comparison to the best performing baseline
(GPT-2 + GReaT), a reduction of over 2% points of
the mean discrimination measure can be observed.
In comparison with CopulaGAN or TVAE, the re-
duction is even more impressive (with over 6% and
7% points, respectively). This is an important ad-
vantage of our method, especially for practical ap-
plications, where a high reliability of synthesizers
is needed. We attribute this to the close resem-
blance of the data generated by our approach to the
original data distribution, rendering it challenging
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Ours SHAP
Dataset REA. COM. CLA. REL. Mean REA. COM. CLA. REL. Mean
Travel 4.29±0.19 4.32±0.19 4.87±0.18 4.37±0.20 4.46 3.69±0.21 3.93±0.21 3.11±0.24 4.26±0.22 3.75
Adult 4.26±0.20 4.00±0.22 5.10±0.17 4.22±0.20 4.40 3.64±0.20 4.17±0.21 3.14±0.23 3.74±0.20 3.67
Mean 4.28 4.27 4.99 4.19 4.43 3.67 3.84 3.13 4.22 3.71

Table 4: Human auditing results with 0.95 confidence interval, where “REA.” represents reasonableness, “COM.”
represents comprehensive, “CLA.” represents clarity, “REL.” represents relevance.

Figure 2: Jaccard Coefficient between generated and original samples in the training set. (Scaled by the factor of
100 for a clear view.)

for the discriminator to accurately distinguish be-
tween them. However, our method performs less
effectively than TVAE on the Travel dataset. We
hypothesize that when the number of tabular fea-
tures is limited, TVAE exhibits similar or more
effective data-fitting capabilities than LLMs.

5.2 Analysis for human evaluation
In the user study, we recruited 30 participants us-
ing online recruitment platform Prolific 1. We re-
quired the participants to be fluent in English. Each
participant was compensated with a payment of
£6 for participation in the user study (within 40
minutes). As shown in Table 4, we observe that
the explanations generated by our system receive
positive evaluations (scores > 3.5) across all eval-
uation dimensions for both datasets. Compared to
numerical SHAP explanations, our explanations
achieve higher scores in clarity (CLA), reasonable-
ness (REA) and comprehensiveness (COM), which
contributes to a 19.4% improvement in the mean
score. These results indicate the high quality of our
explanations. Notably, 80% and 77.33% of individ-
uals prefer our explanations for auditing the data to
numerical explanations of SHAP in the Adult and
Travel datasets, respectively.

When examining the REA score on each sample,
there are samples that are not reasonable. For in-
stance, in the Adult dataset, the example presented
in Table 6 receives the lowest REA score. The syn-
thetic data in this case indicates that corresponding
adults have an income of ”≥50K.” However, all
three binary classifiers trained for accuracy clas-

1https://www.prolific.com/

sify this example as ”<50K,” indicating that the
example is an erroneous synthetic sample. Our
users quickly identify logical errors by reading the
explanation we provide.

REA COM CLA REL
SVM. 0.64 0.63 0.49 0.5

Table 7: Pearson correlation coefficient between human
and automatic evaluation by an SVM model. All results
yield p-value < 0.05.

To confirm that humans can effectively utilize
our explanations to identify flaws in generated data
that could impact classifier training, we calculate
Pearson correlation coefficients among human eval-
uation metrics to the automatic evaluation by an
SVM, which is the probability of a given sample
being classified to that class. From Table. 7, we ob-
serve positive correlations, indicating that human
and automatic evaluation of data quality exhibit
consistency. This demonstrates that, by reading ex-
planations generated by LLMs, people can assess
the quality of tables without direct access to the
contents, effectively preserving privacy of critical,
person-related information. Notably, a robust corre-
lation is found between the REA and ACC metrics,
highlighting the power of our explanations.

5.3 Analysis for ablation experiment

In the augmentation task, as depicted in Fig. 2, we
observe that PPO can further enhance the similarity
of generated data to the original data distribution.
This optimization benefits training on relatively
large datasets, for instance, on the Adult and HE-
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Travel
Synthetic data age:49, workclass:Private, ... education:HS-grad, educational-num:9, marital-

status:Married-civ-spouse, occupation:Craft-repair, ..., income:>50K

User User’s question Explain the reason why the person has an income over 50K.

Ours Explanation ... his educational background may have contributed to his ability to negotiate
better pay and benefits packages ... given his marriage to someone with
similar socioeconomic characteristics, such as being HS-grad and married ...
increasing their joint income potential ...

Table 5: Data audit using our explanation on Adult Income Dataset. Blue text represents the main reason in the
explanation. Please refer to appendix D for the full explanation.

Travel
Synthetic data Age:30, ..., IncomeClass:Middle Income, ServicesOpted:2, AccountSynced-

ToSocialMedia:No, BookedHotel:Yes

User User’s question Explain the reason why the person hasn’t churned.

Baseline w/o. similar samples re-
trieved

... because they have booked a hotel, which indicates that they are still
interested in the services offered ... their age falls within the middle income
class ... It also does not appear that this customer is a frequent flyer or syncs
their account to social media, both of which could potentially indicate higher
levels of engagement with the company.

Ours with similar samples re-
trieved

... because they have engaged positively by choosing two services ... which
indicates some level of satisfaction ... despite not syncing their account with
social media platforms, they have still managed to book a hotel ... indicating
that the company’s offerings meet their needs satisfactorily.

Table 6: Comparison of generated explanation on the Travel Dataset. Blue text represents key-points in explanations.
Red text represents unreasonable explanations. Please refer to appendix D for more details.

LOC datasets, it improves the Jaccard similarity co-
efficient by 4% and 7%, respectively Additionally,
we observe consistency in the performance of the
two models in Fig. 2. Specifically, GPT-2 achieves
higher performance on the Travel dataset, while
GPT-Neo exhibites higher scores on the Adult and
HELOC datasets. We hypothesize that this might
be attributed to GPT-Neo’s superior aptitude in han-
dling longer tabular texts. The diversity in the train-
ing data for GPT-Neo may enhance its capability
to capture textual features in longer documents.

Table 6 demonstrates the advantage of our pro-
posed retrieval strategy. In this example, due to the
absence of comparative information, the baseline
confuses age and income in assessing the impact
on user retention. Furthermore, we observe logi-
cal errors in explanations, such as treating "not a
frequent flyer" as a positive factor. In contrast, our
model analyzes all potential factors.

6 Limitation

During the training phase, as PPO involves the
concurrent utilization of a discriminator and two
policies, the time complexity for a single epoch is
2∗O(k1n)+O(k2n), where k1 and k2 represent the
time complexity of the generation policy and dis-
criminator in training, respectively, and n denotes
the number of features in the tabular data. In con-

trast, the time complexity for baselines generated
based on language models is O(k1n). In inference,
our generation policy shares the same linear time
complexity as the table generator GReaT, which
is based on a language model. Utilizing a single
A100 GPU, generating 1,000 HELOC tabular sam-
ples, each consisting of 24 features, incurs an aver-
age per-sample generation time of only 19.31 mil-
liseconds. In summary, despite our model exhibit-
ing higher training time complexity, it adequately
meets the requirements of real-world applications.

7 Conclusion

Our research tackles critical challenges in tabular
data usage, focusing on integrating language mod-
els into generative adversarial networks for data
augmentation. Specifically, 1) Proximal Policy Op-
timization can leverage a discriminator’s outputs
to optimize a language model’s generation strategy,
thereby effectively leading to a substantial boost in
the plausibility of generated data. 2) We success-
fully generated explanations for synthetic tabular
features to assist data audits. Human evaluations
highlight the clarity and the power of our explana-
tions generated for data audits. These contributions
could transform how industries obtain and audit
tabular data, facilitating more informed decision-
making and refined data-driven processes.
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A Ethics Statement

In the human evaluation phase, the individuals par-
ticipating in the evaluation are anonymous to the
authors of this paper. We pay them with the lo-
cal standards and legal requirements. Furthermore,
participants will only receive information about
the data generated and the research questions men-
tioned above. We ensured that all participants com-
prehended the content of the task and agreed to
participate in the manual evaluation.

Regarding model usage, we have obtained offi-
cial approval from Meta to use LLaMA 2. Addition-
ally, the Vicuna-1.5 model is an open-source sup-
plementary model built upon the existing weights
of LLaMA 2.

B Additional Experiments and Results

We employ the following metrics for implement
additional experiments:

Average negative log-likelihood metric. The
generated data is expected to conform to the dis-
tribution of the training data. Following (Borisov
et al., 2023), we calculated the Log-likelihood of
synthetic data samples on a density model derived
from the original data (Lsyn) and of the original
test data on the model derived from the synthetic
data (Ltest) using a Gaussian Mixture Model for
10,000 samples generated on the Adult Income
and HELOC datasets. As depicted in Table 8, our
method demonstrates comparability with the state
of the art (SOTA). Furthermore, we observed su-
perior performance beyond the baseline concern-
ing Lsyn, although our approach exhibited slightly
inferior performance compared to the baseline in
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terms of Ltest. Our analysis indicates that the PPO
algorithm encounters challenges associated with
overfitting in more prevalent data modes. Nev-
ertheless, the adverse effects induced by PPO are
relatively constrained, given its potential for a more
pronounced enhancement in other utilized metrics.

Adult HELOC
Models Lsyn Ltest Lsyn Ltest

Identity -13.852 -13.852 -55.672 -55.672
CTGAN -11.221 -21.822 -62.584 -97.382
GReaT-2 -10.706 -23.684 -61.600 -127.006
GReaT-Neo -10.656 -26.054 -60.363 -134.411
Ours-2 -10.630 -24.095 -59.126 -135.449
Ours-Neo -10.484 -28.433 -58.260 -147.703

Table 8: Average log-likelihood of synthetic and orig-
inal data. We calculate them by using density models
obtained from the original data (Lsyn) and the synthetic
data (Ltest), respectively.

KL divergence. It quantifies the difference be-
tween two probability distributions (Kullback and
Leibler, 1951). As most of the feature values in
tabular data are not of numeric type and have rel-
atively small value ranges, making visualization
challenging, we select to visualize and calculate
the KL divergence only for the distributions of “ed-
ucation years”, “weekly working hours”, and “age”
in the Adult Income dataset.

Regarding consistency of our human evaluation,
we computed Fleiss’s Kappa for the scorings of
reasonableness, relevance, clarity, and comprehen-
siveness, resulting in values of 0.16, 0.16, 0.21, and
0.15, respectively. Furthermore, for the Travel and
Adult datasets, Fleiss’s Kappa yielded values of
0.18 and 0.17, respectively. Since all the values are
positive, we conclude that the participants exhib-
ited consistency in their evaluations, thus affirming
the reliability of human evaluation.

The Pearson correlation coefficient As a sup-
plementary description to the Table 7, we present
a heatmap illustrating the correlation coefficients
between human evaluations and automated assess-
ment metrics.

Repetition rate. It represents the proportion of
duplicated instances in the generated samples com-
pared to all generated samples. A well-performing
system should exhibit a lower degree of replication.

Area Under the Curve (AUC). AUC is the area
under the receiver operating characteristic curve.

Figure 3: The Pearson correlation coefficient between
manual and automatic metrics. "ACC." is the probability
of a given sample being classified as reasonable by an
SVM. The p-value of significance is 0.05.

We use it to evaluate our model and the baseline to
provide a comprehensive performance evaluation.

In terms of the performance of the binary clas-
sifier (less than 2%) trained on synthetic data, Ta-
ble 9 illustrates that the data generated by our pol-
icy is similar to that of the baseline. However, it
is worth noting that our model substantially im-
proved the AUC metric of LR by over 30% on the
Adult dataset, demonstrating the enhanced distri-
butional consistency of our synthetic data, thereby
enabling better applicability of the linear model.
Furthermore, as the number of tabular features in-
creased, the synthetic data generated by both meth-
ods tended to be more similar to the original data.
It implies that language model-based table gen-
eration methods can exhibit advanced simulating
capabilities when features are sufficient.

Considering the consistency of label distribu-
tions between synthetic and actual data, we first
computed the KL divergence between the label
distributions of synthetic data for testing and the
original dataset. For the Adult dataset, the mean
KL divergence was 0.01 ± 0.02 and a maximum
value of 0.04. For the Travel dataset, the mean KL
divergence was 0.02 ± 0.02 and a maximum value
of 0.03. For the HELOC dataset, the mean KL di-
vergence was 0.01 ± 0.01 and a maximum value
of 0.03. Since the KL divergences between the
label distributions of all synthetic datasets and the
original dataset were less than 0.05, we conclude
that the label distribution of the testing dataset is
similar to that of the actual data.

The results presented in Table 10 demonstrate
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Dataset Travel Adult Income HELOC
Model LR ↑ DT ↑ RF ↑ Mean ↑ LR ↑ DT ↑ RF ↑ Mean ↑ LR ↑ DT ↑ RF ↑ Mean ↑
Original 0.85 0.87 0.95 0.89 0.58 0.76 0.91 0.75 0.76 0.62 0.78 0.72
GPT-Neo + GReaT 0.76 0.68 0.72 0.72 0.54 0.70 0.86 0.70 0.66 0.60 0.78 0.68
GPT-2 + GReaT 0.69 0.65 0.68 0.67 0.54 0.70 0.86 0.70 0.54 0.57 0.68 0.60
GPT-Neo + Ours 0.61 0.79 0.66 0.69 0.87 0.71 0.87 0.82 0.64 0.57 0.77 0.66
GPT-2 + Ours 0.62 0.73 0.63 0.66 0.57 0.68 0.82 0.69 0.54 0.57 0.72 0.61

Table 9: AUC of classifiers trained with synthesized data using different models (listed on the left) on three datasets.

Datasets Travel Adult Income HELOC
Original 53.14% 0.11% 5.61%
Neo + GReaT 16.00% 0.01% 0.00%
GPT-2 + GReaT 22.25% 0.00% 0.00%
GPT-Neo + Ours 16.00% 0.01% 0.00%
GPT-2 + Ours 22.67% 0.00% 0.00%

Table 10: Repetition rate (with top-p of 0.9 and temper-
ature of 0.9 in decoding).

that PPO does not significantly increase the repli-
cation rate (less than 1%). We observed that for
Adult Income and HELOC datasets, our method
seldom generates results identical to those in the
original dataset. However, for the Travel dataset,
given its mere seven features, with four having a bi-
nary domain, replication in the generation process
unavoidably occurs.

C Implementation Details

Device Server A Server B
Memory 13G 1012G
CPU Intel Core AMD

i5-1135G7 EPYC 7763
2.40G Hz 2.45G Hz

GPU NVIDIA NVIDIA
Tesla T4 16G A100 80G

Operating Ubuntu Ubuntu
System 18.04.6 LTS 20.04.6 LTS

Table 12: Experimental hardware environment.

For the experimental setup, we utilized two servers.
All work related to the significant language model
mentioned in our paper was conducted on Server
B. Details of the experimental environment are pro-
vided in Table 12.

We employed the standard GPT-2 (Radford
et al., 2019) with 1.5 billion parameters and GPT-
Neo (Black et al., 2021) with 1.3 billion param-
eters models as generators and a self-attention-
based Convolutional Neural Network (CNN) (Le-
cun et al., 1998). The CNN has 32 convolutional

kernels, eight attention heads, and 512 neurons in
the attention layer (Vaswani et al., 2017).

For the interpretability task, we randomly se-
lected 100 samples from the test set for explana-
tion and human evaluation. The LLM and inter-
preter used for describing samples were Vicuna-
v1.5 (Zheng et al., 2023), fine-tuned on LLaMA
2 (Meta, 2023). The model used for computing
semantic similarity between descriptive texts was
Sentence-Bert (Reimers and Gurevych, 2019).

During training, we utilized the optimizer of
AdamW (Loshchilov and Hutter, 2018) with a
learning rate of 1e-4 and a batch size of 16. During
inference, the maximum generation length was 300,
top-p (Holtzman et al., 2020) was 0.9, temperature
was 0.7, and repetition penalty coefficient was 1.2.

The set of prompts we used for explanations is
presented in Table 11.

Regarding the questionnaires used, we posed the
following four statements for each sample evalu-
ated:

(reasonableness) The model explanation exhibits
minimal logical errors and represents rational in-
terpretations of the question.

(relevance) The model explanation does not in-
clude irrelevant content to the topic.

(clarity) The model explanation is easy for me to
understand.

(comprehensiveness) The model explanation cov-
ers all important features as I would expect.

To ensure the effectiveness of the feedback col-
lected, we established a gold question and provided
two options:

(gold question) Before getting started, let’s make
sure that you understand the task. Please choose
the task that you will do:

A. I will rate the quality of the decision provided
by the model.

B. I will rate the quality of the explanation pro-
vided by the model.

We will only consider feedback from respon-
dents who answered the gold question correctly
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with option A. Any feedback from respondents
who omitted answers will also be deemed invalid.

Furthermore, we randomly selected a sample
from the dataset, placing it at the beginning of the
questionnaire as a warm-up example to ensure the
respondents understood the task.

D Additional Case Study

To specifically illustrate the effectiveness of our ex-
planations, we conducted a case study by randomly
selecting samples from the three datasets.

The explanations generated are presented in Ta-
ble 6, Table 13 and Table 14. We observed that our
model precisely captured the underlying reasons
that could lead to specific features and provided
further implications based on these reasons. For
instance, the model realized that booking a hotel
room is a positive signal for customer retention. At
the same time, low activity on social media may be
a negative signal, while other features, such as age,
may not significantly impact the retention of the
target person. Additionally, through comparisons
with other samples, the model recognized the sig-
nificance of specific feature values. For instance, it
noted that working 35 hours per week falls under
the category of long working hours, and having an
educational duration of 13 years is higher than the
average level.
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Travel Customers Adult Income HELOC
Your task is to Core Part, re-
ferring to the following set
of 3 positive customers who
haven’t churned from a travel
company and 3 negative cus-
tomers who have churned
from a travel company:

Your task is to Core Part, re-
ferring to the following set
of 3 positive adults who earn
annual incomes which ex-
ceed $50K and 3 negative
adults who earn annual in-
comes which don’t exceed
$50K:

Your task is to Core Part, referring to
the following set of 3 positive individ-
uals who have never been late for pay-
ments by more than 90 days over a pe-
riod of 24 months since the account of
Home Equity Line of Credit (HELOC)
was opened and 3 negative individu-
als who have been late for payments at
least 90 days by at least once over a pe-
riod of 24 months since the account of
Home Equity Line of Credit (HELOC)
was opened:

---
POSITIVE CUSTOMERS
[1] FEATURES: ”Features
of customer 1”
DESCRIPTION: ”Descri-
ption of customer 1”
...
NEGATIVE CUSTOMERS
[1] FEATURES: ”Features
of customer 4”
DESCRIPTION: ”Descri-
ption of customer 4”
...
---
Your task is to Core Part.

---
POSITIVE ADULTS
[1] FEATURES: ”Features
of adult 1”
DESCRIPTION: ”Descri-
ption of adult 1”
...
NEGATIVE ADULTS
[1] FEATURES: ”Features
of adult 4”
DESCRIPTION: ”Descri-
ption of adult 4”
...
---
Your task is to Core Part.

---
POSITIVE INDIVIDUALS
[1] FEATURES: ”Features of individ-
ual 1”
DESCRIPTION: ”Description of indi-
vidual 1”
...
NEGATIVE INDIVIDUALS
[1] FEATURES: ”Features of individ-
ual 4”
DESCRIPTION: ”Description of indi-
vidual 4”
...
---
Your task is to Core Part.

Core Part: explain the reason
why the customer with the
FEATURES: ”Features” and
DESCRIPTION: ”Descrip-
tion” has (hasn’t) churned
from the travel company

Core Part: explain the rea-
son why the adult with the
FEATURES: ”Features” and
DESCRIPTION: ”Descrip-
tion” earns an annual in-
come which doesn’t exceed
(exceeds) $50K

Core Part: explain the reason why the
individual with the FEATURES: ”Fea-
tures” and DESCRIPTION: ”Descrip-
tion” has been late for payments at
least 90 days by at least once (never
been late for payments by more than
90 days) over a period of 24 months
since the account of Home Equity Line
of Credit (HELOC) was opened

Table 11: Prompts used to generate explanations. Red text represents the core part of a prompt; brown text represents
the features or description of a specific sample; orange text represents an alternate text determined by the target
value of a sample.
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Adult
Synthetic data age:54, workclass:Local-gov, fnlwgt:176977, educa-

tion:Bachelors, educational-num:13, marital-status:Married-
civ-spouse, occupation:Prof-specialty, relationship:Husband,
race:White, gender:Male, capital-gain:0, capital-loss:0, hours-
per-week:35, native-country:United-States, income:>50K

Description generated John Doe is a 54 year old male from the United States who
works as a professional specialist for local government. He has
a Bachelor’s degree and 13 years of formal education under
his belt. John is married to his civilian spouse and is white in
terms of both race and ethnicity. His weekly working hours are
35, with an annual income exceeding $50k.

User User’s question Explain the reason why the adult has an income over $50K.
Ours Explanation generated The reason he earns an annual income which exceeds $50K

is because he holds a position as a professional specialist for
local government, where his expertise and experience likely
command higher wages compared to other occupations within
the same work class. Additionally, his completion of a Bache-
lor’s degree and 13 years of formal education contribute to his
knowledge base and skillset, making him more valuable to his
employer. Furthermore, John’s marriage to someone outside
of the military may provide additional support and resources,
helping him maintain a comfortable standard of living despite
his relatively long working hours each week (35). Lastly, his
status as a white male in the United States could be advanta-
geous when negotiating salaries and benefits. Overall, these
factors combine to give John Doe access to better paying jobs
than those without similar qualifications, resulting in an annual
income above $50K.

Table 13: Case Study of the Adult Income Dataset. Blue text represents key-points in explanations.
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HELOC
Synthetic data RiskPerformance:Good, ExternalRiskEstimate:69,

MSinceOldestTradeOpen:184, MSinceMostRecent-
TradeOpen:5, AverageMInFile:74, NumSatisfacto-
ryTrades:31, NumTrades60Ever2DerogPubRec:0,
NumTrades90Ever2DerogPubRec:0, Percent-
TradesNeverDelq:100, MSinceMostRecentDelq:-7,
MaxDelq2PublicRecLast12M:7, MaxDelqEver:8, Num-
TotalTrades:31, NumTradesOpeninLast12M:0, PercentIn-
stallTrades:23, MSinceMostRecentInqexcl7days:-7, NumIn-
qLast6M:0, NumInqLast6Mexcl7days:0, NetFractionRevolv-
ingBurden:3, NetFractionInstallBurden:-8, NumRevolving-
TradesWBalance:1, NumInstallTradesWBalance:-8, Num-
Bank2NatlTradesWHighUtilization:0, PercentTradesWBal-
ance:33

Description generated With an external risk estimate of 69 and a minimum file score of
74, it appears that this HELOC may pose some level of risk but
is still within acceptable parameters. Additionally, there have
been no trades delinquent by more than 60 days or those ever
reported as public records in the last two years. Furthermore,
only one trade is considered ’́derogatory,’́ indicating that the
borrower’s credit history is generally positive. It’s worth noting
that this HELOC has had zero trades open within the past
year, which could suggest a low utilization rate. However, the
maximum delinquency recorded over the past twelve months
was seven, suggesting potential room for improvement.

User User’s question Explain the reason why the applicant will not have a 90-day or
more severe delinquency after opening a credit account.

Ours Explanation generated The explanation lies in the fact that the individual with the given
features has shown consistent and reliable repayment behavior
throughout their credit history. Despite being delinquent in the
past, they have since made up for it by demonstrating perfect
payment history in the subsequent periods. Moreover, their
current credit score indicates that they are likely to continue
making timely payments going forward. As a result, despite
the presence of certain risk factors like high revolving burden
and negative install burden, their overall creditworthiness is
deemed sufficient to justify the assigned risk estimate of 69.

Table 14: Case Study of the HELOC Dataset. Blue text represents key-points in explanations.
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