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Abstract

Large language models are limited by chal-
lenges in factuality and hallucinations to be
directly employed off-the-shelf for judging the
veracity of news articles, where factual accu-
racy is paramount. In this work, we propose
DELL that identifies three key stages in mis-
information detection where LLMs could be
incorporated as part of the pipeline: 1) LLMs
could generate news reactions to represent di-
verse perspectives and simulate user-news in-
teraction networks; 2) LLMs could generate
explanations for proxy tasks (e.g., sentiment,
stance) to enrich the contexts of news articles
and produce experts specializing in various as-
pects of news understanding; 3) LLMs could
merge task-specific experts and provide an over-
all prediction by incorporating the predictions
and confidence scores of varying experts. Ex-
tensive experiments on seven datasets with
three LLMs demonstrate that DELL outper-
forms state-of-the-art baselines by up to 16.8%
in macro f1-score. Further analysis reveals
that the generated reactions and explanations
are greatly helpful in misinformation detection,
while our proposed LLM-guided merging helps
produce better-calibrated predictions. 1

1 Introduction

Large language models (LLMs) have demon-
strated impressive capabilities to follow instruc-
tions (Ouyang et al., 2022), perform knowledge-
intensive tasks (Rubin et al., 2022; Shi et al.,
2023), and confront societal challenges (Jiang et al.,
2023c; Roy et al., 2023). However, LLMs are also
hindered by hallucinations (Kryściński et al., 2020;
Pagnoni et al., 2021; Dong et al., 2022), lack of fac-
tuality (Kandpal et al., 2023; Mallen et al., 2023),
and challenges to adapt to new knowledge (De Cao
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et al., 2021; Hase et al., 2021). Despite preliminary
efforts (Chen and Shu, 2023; Lucas et al., 2023),
LLMs cannot yet be employed off-the-shelf for an-
alyzing the veracity of news articles where factual
accuracy is paramount (Leite et al., 2023; Hu et al.,
2024). Together with emerging risks of generating
misinformation at scale (Chen and Shu, 2023; Wu
and Hooi, 2023b), these limitations call for new
solutions to leverage LLMs to counter online fake
news and misinformation campaigns.

While LLMs are not reliable in detecting misin-
formation directly, we propose DELL2, employing
three key stages where LLMs could be integrated to
provide more context and explanations for reliable
assessment of news veracity (Figure 1):

• Community reactions and comments to news arti-
cles have been shown to improve misinformation
detection systems (Grover et al., 2022). How-
ever, it is not always feasible to collect sufficient
volumes of real-time user interactions (He et al.,
2023a). Guided by LLMs’ potential in simulating
human samples and populations (Argyle et al.,
2023), we employ LLMs to generate synthetic
reactions and comments to news articles from
diverse perspectives, turning the news context
into a rich network of user-news interactions.

• Previous research shows that additional prag-
matic contexts such as sentiment and stance, as
well as external knowledge help aid misinforma-
tion detection (Zhang et al., 2021; Hu et al., 2021;
Sengan et al., 2023). To this end, we employ
LLMs for proxy tasks, i.e., tasks where predic-
tions and explanations could be helpful to better
understand the news article. For example, LLMs
evaluate the sentiment of news articles and gen-
erate both predictions and explanations: these
additional contexts are then encoded as initial

2DELL stands for Diverse Reaction Generation;
Explainable Proxy Tasks; and LLM-Based Expert Ensemble.
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Figure 1: Overview of DELL. We first employ LLMs to generate news reactions from diverse perspectives and form
user-news interaction networks. We then design six explainable proxy tasks to refine the feature embeddings with
LLM-generated explanations. We finally propose three LLM-based strategies to selectively merge the predictions of
task-specific experts and enhance calibration.

embeddings in the user-news interaction network
for classification based on graph neural networks
(GNNs). By employing six proxy tasks focusing
on the news article and generated reactions, we
obtain a suite of specialized predictors that spe-
cialize in various aspects of news understanding.

• Finally, we employ LLMs as judges to merge
the task-specific experts and predict the news
veracity. Since not all experts are equally help-
ful/confident for a given news article, we provide
LLMs with the predictions and confidence scores
of experts specializing in each proxy task: the
LLM is then instructed to selectively incorporate
the predictions of experts for an overall decision.

We conduct extensive experiments to evaluate
DELL and state-of-the-art baselines with three
LLMs on seven datasets spanning three tasks
related to news veracity, featuring both human-
written and machine-generated misinformation.
DELL outperforms the strongest baseline across
all datasets, achieving an improvement of up to
16.8% in macro f1-score. Further analysis reveals
that LLM-generated news reactions and explana-
tions to proxy tasks contribute greatly to model per-
formance, while the LLM-guided expert merging
results in better-calibrated misinformation detec-
tors for both human- and machine-generated news.

2 Methodology

We propose three strategies to integrate LLMs in
evaluating news veracity: (i) Diverse Reaction

Generation, leveraging LLMs to generate syn-
thetic news reactions from diverse perspectives and
forming networks of user-news interactions; (ii)
Explainable Proxy Tasks, enriching news con-
texts and refining node embeddings in user-news
interaction networks with LLM-generated task ex-
planations; (iii) LLM-Based Expert Ensemble,
adopting LLMs to selectively merge the predictions
of task-specific experts and enhance calibration.

2.1 Diverse Reaction Generation
Integrating the public discourse to evaluate news
veracity is widely employed to better ground news
articles and provide more context (Grover et al.,
2022; Sheng et al., 2022; Wu and Hooi, 2023a;
Shovon and Shin, 2023). However, real-world
comments and reactions are challenging to collect,
while malicious comments aiming to bolster mis-
information might be removed from social media
platforms and hinder reproducible research (Jung
et al., 2020; Grover et al., 2022; He et al., 2023a).
Motivated by LLMs’ successes in simulating hu-
man samples (Argyle et al., 2023) and reflecting
diverse perspectives (Sorensen et al., 2024), we pro-
pose to generate synthetic comments and reactions
by LLMs, simulating how populations from diverse
perspectives might respond to news articles.

Diverse User Attribute We first define the space
of social media user attributes to simulate. Specifi-
cally, each synthetic user is represented as an inter-
section of seven categories:3 gender, age, ethnicity,

3We select these categories and attributes from The Pew
Research Center’s American Trends Panel. Full list of poten-
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education, family income, political leaning, and
voter registration. Formally, for a user attribute P i

(1 ≤ i ≤ n, n = 7), its candidate set is {pji}ni
j=1

where ni denote the number of possibilities for a
given attribute category. We sample uniformly for
each user attribute to represent a social media user.
We then verbalize these attributes and concatenate
them as the prompt u for the synthetic user.

Generating User-News Networks Aside from
news content, the non-sequential propagation struc-
ture of news comments is shown to aid in evalu-
ating news veracity (Ma et al., 2018; Lu and Li,
2020; Ma et al., 2023a). Formally, given a news
article s, we aim to generate a user-news interac-
tion network G(V, E), where V and E denote the
node and edge sets. We develop three strategies for
LLMs to simulate the comment propagation pro-
cess: (i) generate a comment on the news article;
(ii) generate a comment on a given comment; and
(iii) select a comment to engage:

• Comment on news. We first generate a synthetic
user description u (§2.1) and append the follow-
ing prompt: “You view a piece of news with the
following content. News: s”. The LLM is then in-
structed to generate a comment representing the
user’s perspective, specifically with the prompt
“Please comment on this news on social media.”

• Comment on a comment. Similarly, we first
provide LLMs with the user description u and
news article s. We append a comment chain
C = [c1∥c2∥ . . . ∥cm], where ci is a comment
on ci−1. The LLM is then instructed to generate
a comment to the last comment with “Please
reply to the last comment.”

• Select a comment to comment. Social media
users would selectively engage with certain com-
ments informed by their perspectives. We em-
ploy LLMs to simulate this process by appending
u, s, and multiple comment chains C, while in-
structing the LLM with “Please select a comment
chain that you would most like to reply.”

We iteratively adopt these prompts to generate a
user-news interaction network for a given news ar-
ticle. Algorithm 1 in Appendix A.2 presents details
on the user-news network generation process.

tial attributes and example prompts in Appendix A.1.

2.2 Explainable Proxy Tasks
Integrating LLM-generated contexts about a given
document has proven effective in analyzing text-
attribute graphs such as scholarly networks (He
et al., 2023b; Chen et al., 2023c; Li et al., 2023a).
In the domain of misinformation detection, there is
often much implied context that goes beyond the
news text itself, such as author stances, sentiment,
external knowledge, and more. We propose to em-
ploy LLM-generated explanations for proxy tasks,
i.e., tasks that help evaluate news veracity, enrich-
ing news contexts and refining the feature embed-
dings of user-news interaction networks with the
generated explanations. Specifically, we propose
four proxy tasks to enhance news articles:

• Sentiment Analysis News articles often feature
sentiment signals that are indicative of their ve-
racity (Zhang et al., 2021). We employ six basic
emotions (Ekman et al., 1999) (e.g., anger and
surprise) and prompt LLMs to choose the three
most likely emotions and provide explanations.

• Framing Detection Framing is a strategic de-
vice in political communication (Entman, 1993)
and has been an integral part of evaluating news
veracity (Kwak et al., 2020; Mendelsohn et al.,
2021). Similarly, we follow the taxonomy of
14 media frames (Card et al., 2015a) (e.g., eco-
nomic) and prompt LLMs to choose the five most
likely media frames and provide explanations.

• Propaganda Tactics Detection Propaganda tac-
tics are employed to influence people’s mindsets
to advance a specific agenda (Glowacki et al.).
We follow the taxonomy of 19 propaganda tac-
tics (Piskorski et al., 2023) (e.g., doubt and red
herring) and employ LLMs to identify the under-
lying tactics in news articles with explanations.

• Knowledge Retrieval Retrieval-augmented lan-
guage models (Borgeaud et al., 2022; Shi et al.,
2023; Asai et al., 2023; Chen et al., 2023b) have
demonstrated impressive potential to expand the
knowledge access of LLMs. We employ LLMs
to identify key entities in a news article through
prompting and retrieve Wikipedia passages about
these entities4. We prepend the retrieved external
knowledge in the news article to facilitate better
contextual understanding.

Besides news content, we also propose two
proxy tasks to enhance the generated comments:

4We employ the Wikipedia API for retrieval.
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• Stance Detection Given two text nodes s1
and s2 (news or comments) that are connected
in the user-news interaction network G, we
employ LLMs to evaluate whether s1 and s2
are supportive, neutral, or opposed to each
other with explanations.

• Response Characterization Given two text
nodes s1 and s2 (news or comments) in G, we
employ LLMs to analyze whether one is in re-
sponse to another. The generated explanations
would help better understand the propagation
structure of news and comments.

By employing any of the six proxy tasks5, we
obtain an LLM-generated explanation paragraph
sext that analyzes the news article from one spe-
cialized aspect. We leverage the LLM-generated
explanations to refine the feature embeddings of
user-news interaction networks. Specifically, we
first adopt a separate encoder-based LM enc(·) to
encode the news article sori and the explanation
sext, i.e., hori(ext) = enc(sori(ext)), where we em-
ploy DeBERTa (He et al., 2021) in practice. We
then concatenate hori and hext and feed it into a
linear layer to obtain initial node features h(0).

We employ graph neural networks as the model
for downstream tasks, which conduct message pass-
ing over the user-news network. Formally, suppose
h
(ℓ)
vi is the representation of node vi at the ℓ-th GNN

layer, the feature update procedure is:

h(ℓ)
vi = Aggr

∀vj∈N (vi)
({Prop(h(ℓ−1)

vi ;h(ℓ−1)
vj )}),

where N (vi) denotes the set of neighbors of node
vi, Aggr(·) and Prop(·) are aggregation and prop-
agation functions, where GIN (Xu et al., 2019) is
employed in practice. To obtain the graph-level
representation of G, we employ the mean pooling
operator as the Readout(·) function, i.e.,

h = Readout({h(ℓ)
vi }vi∈V).

Given a user-news network G and a label y,
we compute the probability of y being the cor-
rect prediction as p(y | G) ∝ exp(MLP(h)),
where MLP(·) denotes an MLP layer. For bi-
nary classification, we optimize models using the
cross-entropy loss and predict the most plausible
label as argmaxy p(y | G). For multi-label clas-
sification, we optimize models using the ZLPR
(Su et al., 2022) loss and predict the label set as
{y : p(y | G) > λ}, where λ is a hyperparameter.

5We provide the prompts for proxy tasks in Appendix A.3.

2.3 LLM-Based Expert Ensemble

By adopting different proxy tasks and LLM-
generated explanations, we obtain a set of experts,
where each specializes in one proxy task and var-
ious aspects of news articles. To obtain an over-
all prediction, we propose an LLM-based expert
ensemble to selectively leverage experts, their pre-
dictions, and confidence scores. We first use one
sentence di to describe each expert, e.g., “This ex-
pert focuses on the emotion of news.” We then
propose three modes for LLMs to merge experts6:

Vanilla LLMs are first provided with news con-
tent and an instruction, i.e., “Some experts give
predictions about the news.” We then append the
description and prediction of each expert: for an ex-
pert ei with prediction ℓi and its description di, the
expert prompt is “Expert i: di. The expert predicts
the label of this news is ℓi.” Finally, the LLM is
instructed to reason and generate a final prediction
based on the experts’ feedback.

Confidence In Vanilla, we assume that all ex-
perts should be equally important. However, ex-
perts could have varying levels of confidence and
we take this into account by additionally provid-
ing the confidence scores. The confidence scores
are obtained from the classification layer of the
GNN-based model (§2.2). We aim to improve the
calibration of LLM-based expert ensemble by in-
corporating confidence scores of individual experts.

Selective In Vanilla and Confidence, we assume
that every news article would benefit from the input
of all experts. However, this could introduce noise
in the LLM reasoning process (Feng et al., 2023d;
Zhao et al., 2024). To this end, we propose the
Selective approach, putting LLMs in charge to se-
lectively activate experts. Specifically, we provide
news content and expert descriptions, then prompt
LLMs with “To understand this news, which ex-
pert knowledge do you need?” We ensemble the
selected experts with the Confidence strategy to
obtain the final predictions.

3 Experiment Settings

Models and Settings We leverage Mistral-7B
(Jiang et al., 2023a), LLaMA2-70B (Touvron et al.,
2023), and ChatGPT as the base LLMs. We mainly
employ Mistral-7B to generate comments and con-
duct proxy tasks, and ChatGPT to ensemble ex-

6We provide prompts in Appendix A.4.
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Method
Fake News Detection Framing Detection Propaganda Tactic Detection
Pheme LLM-mis MFC SemEval-23F Generated SemEval-20 SemEval-23P

MaF MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF MiF

ZERO-SHOT .459 .460 .597 .600 .332 .346 .381 .443 .223 .233 .304 .424 .228 .379
FEW-SHOT .490 .500 .565 .570 .350 .395 .457 .512 .344 .358 .359 .468 .266 .424
RETRIEVAL .464 .470 .624 .630 .278 .334 .397 .480 .262 .267 .292 .415 .187 .309
F3 Z-CoT .499 .500 .566 .570 .285 .314 .370 .470 .223 .203 .302 .418 .248 .423
F3 DeF-Gen .410 .410 .477 .480 .319 .354 .381 .468 .284 .290 .331 .508 .259 .396
TAPE W/O GRAPH .767 .770 .858 .860 .341 .482 .393 .631 .298 .326 .332 .565 .237 .583
DEBERTA .779 .780 .887 .890 .388 .543 .506 .672 .512 .516 .516 .609 .343 .558

K-HOPS .374 .490 .421 .470 .332 .407 .362 .466 .206 .193 .350 .448 .280 .393
K-ATTENTION .325 .450 .407 .450 .348 .418 .413 .496 .214 .211 .310 .409 .198 .318
TAPE W/ GRAPH .787 .790 .888 .890 .381 .515 .399 .623 .279 .306 .332 .598 .250 .581

GCN .790 .790 .854 .860 .447 .566 .499 .658 .504 .496 .517 .628 .358 .547
RVNN .790 .790 .888 .890 .428 .551 .494 .644 .494 .496 .462 .559 .363 .568
DEFEND .727 .730 .823 .840 .434 .607 .435 .557 .063 .099 .280 .576 .255 .601
HYPHEN .777 .780 .836 .840 .481 .634 .528 .714 .292 .327 .347 .508 .301 .488
GET .788 .790 .847 .850 .445 .566 .525 .649 .250 .227 .423 .561 .361 .617
WSDMS .799 .800 .860 .870 .434 .597 .526 .688 .376 .419 .509 .630 .333 .619

DELL Single .810 .810 .928 .930 .458 .598 .536 .684 .543 .556 .520 .613 .376 .631
DELL Vanilla .810 .810 .926 .930 .432 .591 .528 .689 .578 .566 .508 .611 .365 .634
DELL Confidence .810 .820 .917 .920 .509 .603 .572 .718 .579 .558 .523 .624 .386 .643
DELL Selective .820 .820 .897 .900 .488 .581 .554 .683 .598 .577 .525 .636 .362 .652

Table 1: Performance of DELL and baselines on seven datasets from three misinformation-related tasks. Single
indicates the best-performing single expert. “MaF” and “MiF” indicates macro- and micro-averaged f1-score. Bold
indicates the best performance and underline indicates the second best. DELL outperforms state-of-the-art baselines
by up to 16.8% in macro f1-score, indicating the success of our LLM integration strategies.

perts. We set the temperature τ = 0.6 for Mistral-
7B and τ = 0.1 for ChatGPT. We present more
results from other LLMs in Appendix C.

Baselines We compare DELL with three types
of state-of-the-art baselines: 1) LLM-only: ZERO-
SHOT, FEW-SHOT, RETRIEVAL-augmented gener-
ation, F3 Z-CoT (Lucas et al., 2023), F3 DeF-
Gen (Lucas et al., 2023), TAPE W/O GRAPH (He
et al., 2023b), and DEBERTA (He et al., 2021); 2)
LLM+Graph: K-HOPS (Huang et al., 2023a) and
K-ATTENTION (Huang et al., 2023a), and TAPE W/
GRAPH (He et al., 2023b); 3) Graph-based: GCN
(Kipf and Welling, 2017), RVNN (Ma et al., 2018),
DEFEND (Shu et al., 2019a), HYPEHN (Grover
et al., 2022), GET (Xu et al., 2022), and WSDMS
(Yang et al., 2023b). We provide more details about
baselines in Appendix B.2.

Tasks and Datasets We evaluate DELL and
baselines on three tasks related to chacterizing mis-
information, i.e., 1) fake news detection: Pheme
(Buntain and Golbeck, 2017) and LLM-mis (Chen
and Shu, 2023), which feature a binary classifi-
cation setting; 2) framing detection: MFC (Card
et al., 2015b) and SemEval-23F (Piskorski et al.,
2023), which feature a multi-label classification
setting; 3) propaganda tactic detection: Gener-

ated generated by ChatGPT, SemEval-20 (Mar-
tino et al., 2020), and SemEval-23P (Piskorski
et al., 2023), which feature a multi-label classifica-
tion setting. The datasets are all in English and we
provide more dataset details in Appendix B.1. To
evaluate the ability to evaluate machine-generated
news, LLM-mis is an extended version of Fak-
eNewsNet (Shu et al., 2020) and Generated is
generated by LLMs.

4 Results

We present the performance of DELL and state-
of-the-art baselines in Table 1. We present more
ablation study results in Table 6 in Appendix C.

DELL achieves state-of-the-art performance.
DELL outperforms the strongest baseline on all
seven benchmarks by 1.46% to 16.80% on macro
f1-score, indicating the success of integrating
LLMs in multiple stages of news veracity eval-
uation. We find that LLM-only in-context learning
approaches struggle in performance, indicating that
LLMs are limited by factuality challenges and hal-
lucinations to evaluate the veracity of news articles.

Generated news reactions help ground news arti-
cles. Compared to news-only approaches, models
enhanced with generated comments (both ours and
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Metric Real Networks Simulated Networks
Pheme Twitter15 Twitter16 More Pheme LLM-mis MFC SemEval-23F Generated SemEval-20P SemEval-23P

betweenness 0.255 0.191 0.234 0.208 0.293 0.291 0.291 0.287 0.291 0.286 0.288
shortest path 2.682 1.904 1.833 2.076 2.925 2.913 2.913 2.869 2.908 2.863 2.879

degree 0.764 0.945 0.962 0.821 0.400 0.399 0.399 0.408 0.402 0.416 0.410
diameter 5.477 2.848 2.605 3.281 6.006 5.942 5.951 5.793 5.929 5.792 5.840

Table 2: The graph indicators of the real and simulated networks. “More” denotes that networks are generated when
α = 0.8 and β = 0.05. Our generated networks are statistically similar to those in dataset Pheme as of network
structure, indicating our generation strategy could stimulate the network structures similar to the real situation.
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Figure 2: GPT-4 evaluation of whether the LLM-
generated comments are related to the news article and
match the user attributes, the higher the better from 1 to
5. We present the average value and standard deviation.
Compared with randomly paired news (“Random” in
the figure), user attributes, and comments, the generated
comments generally conform to the user attributes and
are relevant to the news articles.

graph-based baselines) achieve better performance.
The average performance on MFC of the comment-
enhanced models is 15.2% higher on MaF. It in-
dicates that LLM-generated diverse comments are
beneficial in characterizing misinformation.

Proxy tasks improve news understanding abil-
ity. DELL single denotes the performance of the
best single expert focusing on one proxy task. We
find that a single expert could already achieve a
substantial improvement in most cases: for ex-
ample, on benchmark Generated, it achieves a
6.16% improvement on the macro f1-score than
the strongest baseline. This indicates that our ex-
plainable proxy tasks are effective strategies for
incorporating LLMs for evaluating news veracity.

LLMs could ensemble expert predictions.
Compared to a single expert, the proposed LLM
ensemble strategies achieve improvements on six
out of seven datasets. In addition to simple aggre-
gation (Vanilla), Confidence and Selective improve
the ensemble by accessing the confidence scores
and selectively incorporating certain experts, indi-
cating that LLMs have preliminary capabilities of
understanding verbalized confidence scores (Tian
et al., 2023; Feng et al., 2024). We further investi-
gate if LLM-based ensembling could lead to better-
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Figure 3: Performance of DELL and baselines on LLM-
mis when the comments are gradually removed. DELL
shows great robustness to the availability of comments.

calibrated misinformation detectors in Section 5.

5 Analysis

Quality of Generated Comments We verify the
quality of LLM-generated comments on whether it
matches the user attributes and whether it is related
to the news article. We conduct a human evaluation
with four annotators to manually evaluate 50 gen-
erated comments from two datasets on a five-point
Likert scale, where the higher scores mean better
quality. The average score is 4.52, the standard
deviation is 0.69 and the annotator agreement in
Fleiss’ Kappa is 0.216, which indicates that annota-
tors generally agree that the LLM-generated com-
ments are related and on-brand for user attributes.

We additionally employ GPT-4 evaluation (Chi-
ang and Lee, 2023; Kim et al., 2023b) for quanti-
tative evaluation, where we randomly sample 700
generated comments and prompt GPT-4 with “Does
the user’s comment on the news match the profile?”
and “Does the comment relate to the news?” to so-
licit a response on a five-point Likert scale. Figure
2 demonstrates that the automatic evaluation also
finds that the generated comments are consistent
with the user attributes and relevant to the news.

We conduct an additional evaluation to “put a
more challenging control group of comments gen-
erated by the same framework but with a different
demographic”: we sample comments from users
with other attributes, and then employ GPT-4 eval-
uation to check whether the generated comments
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Figure 4: GPT-4 evaluation of the matching degree be-
tween different user groups. “CG” denotes “college
grad”, “non-CG” denotes “haven’t graduated from col-
lege”, and “HSD” denotes “have a high school diploma
or less”. The diagonal numbers are the highest both
row-wise and column-wise, indicating that the gener-
ated comments are consistent with the user attributes.

match each attribute. For example, we sample 100
synthetic comments (50 with the attribute Demo-
crat and 50 with the attribute Republican), and
then we employ GPT4 to evaluate to what ex-
tent, on a scale of 1-5, do these comments match
Democrats and Republicans. Then we could ob-
tain 200 scores and draw a heat map. We similarly
experiment with the education attribute, spanning
“college grad”, “haven’t graduated from college”,
and “have a high school diploma or less”. In Fig-
ure 4, we find that the diagonal numbers, where the
user attribute matches what GPT-4 evaluates, are
the highest both row-wise and column-wise, indi-
cating that the generated comments are consistent
with the user attributes.

Network Generation Ability To establish that
the generated interaction networks resemble real-
world networks, we compare our generated net-
works with the real networks in datasets Pheme
(Buntain and Golbeck, 2017), Twitter-15 (Ma
et al., 2018), and Twitter-16 (Ma et al., 2018).
Specifically, we calculate the average edge be-
tweenness of each edge, the average shortest path
length, the ratio of maximum degree to number
of nodes, and the diameter of each graph. Then
we average the value over the whole dataset to
compare in Table 2. The results show that our gen-
erated networks are statistically similar to those in
dataset Pheme as for network structure, indicating
our generation strategy could stimulate the network
structures similar to the real situation. In addition,
hyperparameters in Algorithm 1 enable the control
of generating user reaction networks. For exam-
ple, by setting α = 0.8 and β = 0.05, generated
networks resemble those in datasets Twitter-15
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Figure 5: Performance of DELL and baselines when the
comments are generated from only one partisan perspec-
tive. Models trained on comments from one perspective
generally perform worse than diverse comments.

and Twitter-16. As a result, DELL could reliably
simulate real-world user interaction networks and
structures through those control measures.

Model Robustness to Comments Since com-
ments are usually hard to collect and generating
comments using LLM could be computationally ex-
pensive, detectors should be robust to the amount
of comments. We evaluate approaches on the test
sets where LLM-generated comments are gradu-
ally removed. As demonstrated in Figure 3, DELL
drops the least in performance with reduced com-
ments and on dataset LLM-mis our performance is
almost unchanged. This indicates that DELL bene-
fits greatly from as few as 10% of news comments.

Comment Diversity We propose to generate di-
verse comments by employing LLMs to simulate di-
verse user attributes. To validate this design choice,
we re-generate news comments solely with syn-
thetic Republican or Democratic users and evalu-
ate model performance on the fake news detection
benchmarks. Figure 5 demonstrates that only con-
sidering reactions from a single partisan viewpoint
is generally worse, supporting our proposal of inte-
grating diverse comments in fake news detection.

Expert Ablation Experts are specialized with
two types of proxy tasks, focusing on either news
content or comments. We conduct ablation studies
to examine the impact of different types of proxy
tasks. Table 6 demonstrates that: 1) integrating
both types of experts leads to better performance,
where the performance of a single category drops
by up to 15.8%; and 2) experts focusing on proxy
tasks of news content generally outperform experts
who focus solely on comments, while the two types
of proxy tasks are complementary.
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Strategy Variants Fake News Detection Framing Detection Propaganda Tactic Detection
Pheme LLM-mis MFC semeval-23F Generated semeval-20 semeval-23P

Vanilla
Original .810 .926 .432 .528 .578 .508 .365
Only Content .799 (-1.3%) .885 (-4.4%) .446 (+3.2%) .537 (+1.7%) .570 (-1.3%) .520 (+2.4%) .397 (+8.8%)
Only Comments .780 (-3.7%) .927 (+0.1%) .449 (+4.0%) .533 (+1.0%) .436 (-24.6%) .526 (+3.6%) .345 (-5.5%)

Confidence
Original .820 .917 .509 .572 .579 .523 .386
Only Content .820 (+0.0%) .907 (-1.1%) .458 (-9.9%) .578 (+1.1%) .556 (-3.9%) .515 (-1.4%) .404 (+4.6%)
Only Comments .769 (-6.1%) .907 (-1.0%) .428 (-15.8%) .534 (-6.7%) .548 (-5.4%) .470 (-10.1%) .386 (-0.1%)

Select
Original .820 .897 .488 .554 .598 .525 .362
Only Content .800 (-2.4%) .907 (+1.1%) .477 (-2.2%) .540 (-2.5%) .579 (-3.2%) .526 (+0.1%) .360 (-0.4%)
Only Comments .770 (-6.1%) .917 (+2.2%) .426 (-12.7%) .547 (-1.4%) .529 (-11.5%) .507 (-3.4%) .394 (+8.9%)

Table 3: Ablation study of expert ensemble, where only experts of proxy tasks focusing on either news content
or comments are retained. We present the macro f1-score for each variant and performance changes compared to
the original setup. Diverse experts generally outperform a single type of expert, while experts who focus on news
content are generally better than those who focus on comments.
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Figure 6: The frequency of expert selections and perfor-
mance on Pheme when a particular expert is selected in
the Selective approach. Experts who have been selected
more times tend to perform better.

Expert Selection In the Selective LLM-based en-
semble strategy, LLMs determine which experts
are activated and incorporated in the overall deci-
sion. To evaluate each expert’s contribution, we
examine the frequency of expert selection and the
performance when a given expert is selected. Fig-
ure 6 illustrates that experts who have been selected
more times tend to perform better, indicating that
LLMs have preliminary capabilities to select help-
ful experts based on the news content.

Model Calibration Robust fake news detectors
should provide not only a binary prediction but
also a well-calibrated confidence score to facilitate
content moderation. We evaluate how well DELL
and baselines are calibrated with the fake news
detection datasets in Figure 8. We use the probabil-
ity of the prediction token (“fake” or “real”) from
the LLM as the confidence score, bin it into five
buckets (0.5 to 1.0), and calculate the estimated
calibration error (ECE) (Guo et al., 2017). It is
demonstrated that DELL are better-calibrated with
an ECE of 0.2357 while achieving an improvement
of up to 19.1% compared to baselines. We hypoth-
esize that by integrating expert confidence scores
in the LLM-guided ensemble, the overall decision
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Figure 7: An example of generated comments related
to a news article. The red areas indicate the comments
match the user profiles, while the green areas indicate
strong continuity in the comments of the comment chain.
This case highlights the quality and contribution of the
LLM-generated comments.

is better-calibrated and thus more trustworthy.

Case Study We study a specific case of news ar-
ticle and its LLM-generated comments in Figure 7.
The red area indicates that the generated comments
match the user attributes about partisanship and
age groups. The green areas indicate strong conti-
nuity in the comment chain. Overall, the example
showcases the effectiveness of DELL in generat-
ing diverse comments that ground news articles and
facilitate characterization.

6 Related Work

Existing fake news detection methods (Zeng and
Gao, 2022; Biamby et al., 2022; Mendes et al.,
2023; Sung et al., 2023; Xu et al., 2023a; Liao
et al., 2023) mostly fall into text-based (Pelrine
et al., 2021; Jin et al., 2022; Chen et al., 2023d)
and graph-based approaches (Wu et al., 2022; Zhou
et al., 2022; Karami et al., 2023; Feng et al., 2023e;
Lin et al., 2023; Phan et al., 2023; Chang et al.,
2023; Ma et al., 2023b). Text-only approaches
take news context and employ NLP methodologies
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Figure 8: Calibration of DELL and baselines in the fake news detection benchmarks. ECE denotes estimated
calibration error, the lower the better. The dashed line indicates perfect calibration, while the bar’s color is darker
when it is closer to perfect calibration. DELL achieves low ECE scores and thus is better-calibrated.

for classification such as recurrent neural networks
(Goonathilake and Kumara, 2020; Liu et al., 2023),
attention mechanism (Shu et al., 2019a; Dun et al.,
2021), and pre-trained language models (Hartl and
Kruschwitz, 2022). In addition to solely consider-
ing news content, graph-based approaches first con-
struct networks composed of entities such as news
articles, sources (Nguyen et al., 2020), users (Shu
et al., 2019b; Dou et al., 2021), and more. These ap-
proaches then employ graph neural networks (Bian
et al., 2020; Zhang et al., 2024) for classification.
Among graph-based approaches, the widely used
is to employ comments, i.e., user reactions to news
article on social media (Yang et al., 2021; Tian
et al., 2022; Mehta et al., 2022; Yang et al., 2023b;
Russo et al., 2023; Min and Ananiadou, 2023). In
this work, we seek to employ LLMs to generate
synthetic comments from diverse perspectives to
complement the scarce and incomplete comment
networks in real-world datasets (Jung et al., 2020;
Micallef et al., 2020; Heidari et al., 2021).

With the advent of autoregressive large language
models, previous works have attempted to gauge
their risks and generate misinformation with LLMs
(Zellers et al., 2019; Fung et al., 2021; Huang et al.,
2023c; Wang et al., 2023). They find that LLMs are
capable of generating misinformation that is chal-
lenging to detect and characterize (Huang et al.,
2023b; Chen and Shu, 2023; Pan et al., 2023b;
Goldstein et al., 2023; Su et al., 2023b; Xu et al.,
2023b; Uchendu et al., 2023). On the other hand, re-
searchers have attempted to employ LLMs off-the-
shelf for misinformation research through prompt-
ing and in-context learning (Stiff and Johansson,
2022; Gabriel et al., 2022; Kim et al., 2023a; Pel-
rine et al., 2023; Russo et al., 2023; Jiang et al.,
2023b; Nakshatri et al., 2023; Sundriyal et al.,
2023; Su et al., 2023a; Li et al., 2023b; Chen et al.,
2023a; Feng et al., 2023c; Yue et al., 2023; Yang
et al., 2023a; Choi and Ferrara, 2024). We argue

that LLMs face challenges of hallucination (Ji et al.,
2023; Du et al., 2023), factuality (Kandpal et al.,
2023; Pan et al., 2023a), and temporal knowledge
update (Feng et al., 2023a; Luo et al., 2024): as
a result, they could not be directly used off-the-
shelf for predicting a True-of-False label since they
lack accurate and up-to-date information about real-
world news events, while such information is cru-
cial in characterizing fake news campaigns. To this
end, we identify three key stages in evaluating news
veracity and propose strategies to integrate LLMs
in countering online misinformation campaigns.

7 Conclusion

We propose DELL for identifying fake news where
LLMs could be incorporated as part of the pipeline.
First, we employ LLMs to generate news reactions
from diverse perspectives and simulate user-news
networks. Second, we design six explainable proxy
tasks that help identify misinformation. LLMs
perform these tasks and generate explanations to
produce experts specializing in various aspects of
news articles. Finally, we develop three strategies
for LLMs to merge task-specific experts and pro-
vide an overall prediction. Extensive experiments
demonstrate that DELL achieves state-of-the-art
performance on three tasks across seven datasets,
presenting a misinformation detector better cali-
brated and better grounded in diverse perspectives.
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Limitation

While DELL could generate synthetic news reac-
tions from diverse perspectives and form networks
of user-news interactions, the iterative process with
LLMs in computationally heavy. Scaling our solu-
tion to the real-world scale of millions of real-time
news reactions could be challenging, while we ex-
pect efficient LLM inference approaches could help
alleviate this limitation.

While we develop six proxy tasks for LLMs to
generate explanations and enrich news contexts,
they may not be able to fully tap into the diverse
capabilities of LLMs and their potential for evaluat-
ing the veracity of news articles. Future work could
focus on automatically generating and proposing
proxy tasks for a more general LLM-as-enhancer
framework.

Ethics Statement

The development of fake news detectors is essen-
tial in countering online misinformation campaigns.
This research demonstrates that LLMs could be in-
tegrated as part of the news analysis pipeline. How-
ever, it may increase the risk of dual-use, where ma-
licious actors may develop advanced misinforma-
tion campaigns that are evasive to LLM-generated
comments and explanations. We will establish con-
trolled access to ensure that the data and trained
model checkpoint are only publicly available to
researchers.

LLMs have been widely shown to have inherent
social biases (Bender et al., 2021; Jin et al., 2021;
Shaikh et al., 2023), and such biases could have an
impact on fake news detection (Feng et al., 2023b).
Informed by LLMs’ internal biases, stereotypes,
and spurious correlations, DELL might struggle to
simulate certain demographic groups and provide
incorrect explanations of news articles. We argue
that the predictions of DELL should be interpreted
as an initial screening, while content moderation
decisions should be made with experts in the loop.
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You are a social media user. You are female. You
are 18 to 29 years old. Racially, you are Hispanic.
Financially, your annual family income is 30,000
to 74,999. Educationally, you are a college grad.
Politically, you are a Republican. Meanwhile,
you are probably registered to vote.

Table 4: An Example of a synthetic social media user
prompt.

A Methodology Details

A.1 User Attribute Details

We simulate each synthetic user as an intersection
of seven categories, and the detailed attribute de-
scriptions of each category are as follows:

• gender: “You are male.”; “You are female.”

• age: “You are under 17 years old.”; “You are 18
to 29 years old.”; “You are 30 to 49 years old.”;
“You are 50 to 64 years old.”; “You are over 65
years old.”

• ethnicity: “Racially, you are White.”; “Racially,
you are Black.”; “Racially, you are Hispanic.”

• education level: “Educationally, you are a col-
lege grad.”; “Educationally, you haven’t gradu-
ated from college.”; “Educationally, you have a
high school diploma or less.”

• family income: “Financially, your annual fam-
ily income is more than 75,000.”; “Financially,
your annual family income is 30,000 to 74,999.”;
“Financially, your annual family income is less
than 30,000.”

• political leaning: “Politically, you are a Repub-
lican.”; “Politically, you are a Democrat.”

• voter registration: “Meanwhile, you are regis-
tered to vote.”; “Meanwhile, you are probably
registered to vote.”; “Meanwhile, you are not
registered to vote.”

We uniformly sample each value for the seven
attributes to represent a social media user. We then
concatenate these attributes prefixed with “You are
a social media user.” as the prompt for the syn-
thetic user. Table 4 illustrates a complete example
of a synthetic social media user prompt.
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Algorithm 1: Pseudo-code of user-news
network generation.
Data: news content s; graph size m; α to

control the probability of
commenting on the news; β to
control the balance of tree height and
width; k to control candidate set size

Result: user-news network G(V, E)
1 V = [s]
2 E = []
3 F = [s]
4 H denoting height of each node
5 W denoting width of each node
6 while ∥V ∥ ≤ m do
7 u = ψ()
8 p ∼ U(0, 1)
9 if p <= α then

10 PROMPT = ϕ1(s,u)
11 f = s

12 else
13 P = β ∗ H+ (1− β) ∗W
14 {ci}i = Sample(V,P, k)
15 SELECT = ϕ3(s,u, {Ci}i)
16 j = LLM(SELECT)
17 f = C = Cj

18 PROMPT = ϕ2(s,u,C)

19 end
20 sout = LLM(PROMPT)
21 V .append(sout)
22 E .append((sout,f))
23 F .append(f )
24 update H and W
25 end

Return: G(V, E)

A.2 User-News Networks Details

Our generated user-news interaction networks G
forms a tree structure, where ∥V∥ = ∥E∥ + 1.
To control the iterative process of generating user-
news networks, we design hyperparameters α to
control the probability of commenting on news and
β to control the balance of tree height and width.
We present an algorithmic summary of the gen-
eration process in Algorithm 1, where ϕ1(s,u),
ϕ2(s,u,C), and ϕ3(s,u, {Ci}i) denotes com-
ment on news, Comment on a comment, and Se-
lect a comment to comment prompt generation pro-
cess, ψ() denotes the diverse user attribute prompt
generation process as mentioned in Appendix A.1,
Sample(V,P, k) denote the sample function that

sample k instances from V according to the proba-
bility P . Table 9 presents the prompt templates.

A.3 Explainable Proxy Task Details
We propose four proxy tasks to enhance news arti-
cles, the details of Sentiment Analysis, Framing
Detection, and Propaganda Tactics Detection are
as follows:

• Sentiment Analysis: we employ six basic emo-
tions: anger; disgust; fear; happiness; sadness;
and surprise.

• Framing Detection: we employ 14 news frames:
Economic; Capacity and resources; Morality;
Fairness and equality; Legality, constitutional-
ity and jurisprudence; Policy prescription and
evaluation; Crime and punishment; Security and
defense; Health and safety; Quality of life; Cul-
tural identity; Among public opinion; Political;
External regulation and reputation.

• Propaganda Tactics Detection: we em-
ploy 19 propaganda tactics: Conversation
Killer; Whataboutism; Doubt; Straw Man;
Red Herring; Loaded Language; Appeal to
Fear-Prejudice; Guilt by Association; Flag
Waving; False Dilemma-No Choice; Repeti-
tion; Appeal to Popularity; Appeal to Au-
thority; Name Calling-Labeling; Slogans; Ap-
peal to Hypocrisy; Exaggeration-Minimisation;
Obfuscation-Vagueness-Confusion; Causal Over-
simplification.

Table 10 presents the presents the prompt template
of each proxy task.

A.4 LLM-Based Expert Ensemble Details
We propose three LLM-based approaches to selec-
tively integrate the prediction of each expert. The
description di of each expert ei is as follows:

• w/o expert: This expert is comprehensive.

• sentiment: This expert focuses on the emotion of
this news.

• framing: This expert focuses on the framing of
this news.

• propaganda tactics: This expert focuses on the
propaganda tactics of this news..

• retrieval: This expert focuses on the external
knowledge of this news.
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• stance: This expert focuses on the stance of re-
lated comments on this news.

• relation: This expert focuses on the relation of
related comments on this news.

to obtain the confidence score, we employ a soft-
max operator score for binary classification and
absolute value operator for multi-label classifica-
tion. We provide the prompt templates in Table
11.

B Experiment Setting Details

B.1 Dataset Details

We evaluate DELL and baselines on three tasks
related to fake news detecton.

1) Fake News Detection:

• Pheme (Buntain and Golbeck, 2017) is a dataset
of potential rumors on Twitter and journalistic
assessments of their accuracies.

• LLM-mis (Chen and Shu, 2023) is a LLM-
generated misinformation dataset with different
LLM generators and generation approaches.

2) Framing Detection:

• MFC (Card et al., 2015b) contains labeled and
unlabeled articles on six issues from 14 newspa-
pers covering the years 1990-2014, though some
issues have broader coverage. The issues include
climate; the death penalty; gun control; immigra-
tion; same-sex sex; and tobacco. We sample the
labeled articles as a benchmark.

• SemEval-23F (Piskorski et al., 2023) aim to iden-
tify one or more frames used in an article from a
pool of 14 generic frames: Security and defense;
Fairness and equality; Political; Capacity and re-
sources; Economic; Morality; Policy prescription
and evaluation; Legality Constitutionality and ju-
risprudence; External regulation and reputation;
Quality of life; Health and safety; Cultural iden-
tity; Crime and punishment; and Public opinion.

3) Propaganda Tactic Detection:

• Generated is a benchmark generated by Chat-
GPT. We first determine 4 topics: Russia and
Ukraine; Palestine and Israel; the Republican
Party; and the Democratic Party. Around these
topics, we generated 5 paragraphs for each tactic.

• SemEval-20 (Martino et al., 2020) contains 14
possible propaganda tactics: Appeal to fear-
prejudice; Black-and-White Fallacy; Name Call-
ing, Labeling; Slogans; Whataboutism,Straw
Men,Red Herring; Exaggeration, Minimisation;
Loaded Language; Repetition; Causal Oversim-
plification; Bandwagon,Reductio ad hitlerum;
Flag-Waving; Thought-terminating Cliches; Ap-
peal to Authority; and Doubt. This benchmark
merges some tactics into one category.

• SemEval-23F (Piskorski et al., 2023) contains
6 main categories: Attack on reputation; Jus-
tification; Simplification; Distraction; Call; and
Manipulative wording. It contains 19 propaganda
tactics: Conversation Killer; False Dilemma-No
Choice; Appeal to Popularity; Doubt; Flag Wav-
ing; Slogans; Whataboutism; Straw Man; Loaded
Language; Name Calling-Labeling; Obfuscation-
Vagueness-Confusion; Appeal to Fear-Prejudice;
Causal Oversimplification; Red Herring; Rep-
etition; Exaggeration-Minimisation; Appeal to
Authority; Guilt by Association; and Appeal to
Hypocrisy.

We randomly sample 1,000 instances from each
benchmark (select all if there are less than 1,000
instances), and divided the training set, validation
set, and test set according to the ratio of 7:2:1.

B.2 Bseline Details

• ZERO-SHOT asks LLMs to conduct detection.

• FEW-SHOT first provides LLMs with some pairs
of news instances and labels and then asks LLMs
to conduct detection.

• RETRIEVAL-augmented generation first provides
LLMs with the external knowledge retrieved
from Wikipedia, which is the same as Knowl-
edge Retrieval proxy task. It then asks LLM to
conduct detection.

• F3 Z-CoT (Lucas et al., 2023) uniquely lever-
ages LLMs’ self-formulated rationales by inte-
grating a standard instruction with the simple
phrase, “Let’s think step by step known as Chain
of Thoughts (CoT).”

• F3 DeF-Gen (Lucas et al., 2023) focuses con-
textually, emphasizing deductive and abductive
reasoning.
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• TAPE W/O GRAPH (He et al., 2023b) focus
on leveraging LLMs to capture textual infor-
mation as features, which can subsequently en-
hance GNN performance on downstream tasks.
Here we only employ the textual information
generated by LLMs to enhance news content.
DEBERTA (He et al., 2021) leverages the pre-
trained language model DeBERTa to encode
news content, then feed them into an MLP classi-
fier.

• K-HOPS (Huang et al., 2023a) incorporates ran-
domly selected neighbors into the prompt, where
the idea behind is to aggregate information from
neighboring nodes, following GCN.

• K-ATTENTION (Huang et al., 2023a) is designed
to weigh the influence of neighboring nodes dur-
ing the prediction process, following GAT.

• TAPE W/ GRAPH (He et al., 2023b) puts the en-
hanced news content into the user-news network
and employs graph neural networks to conduct
detection.

• GCN (Kipf and Welling, 2017) adopt multiple
GNN layers and a meaning pooling to obtain the
user-news network representations.

• DEFEND (Shu et al., 2019a) conducts explain-
able detection by the attention weights, we set
maximum sentence length and maximum com-
ment length as 96, maximum sentence count as
64, and maximum comment count as 10 to re-
produce so that the approach is applicable to our
tasks and datasets.

• RVNN (Ma et al., 2018) proposes two recursive
neural model stratages: bottom-up and top-down
tree-structured neural networks. We employ the
top-down structure.

• HYPEHN (Grover et al., 2022) is a discourse-
aware hyperbolic spectral co-attention network.
It is a fusion of hyperbolic graph representation
learning with a novel Fourier co-attention mech-
anism in an attempt.

• GET (Xu et al., 2022) models claims and related
evidences as graph-structured data and capture
the long-distance semantic dependency among
dispersed relevant snippets via neighborhood
propagation.

Hyperparameter Value

optimizer Adam
learning rate 10−4

weight decay 10−5

dropout 0.5
hidden dim 1024

embedding dim 1024
GNN layers 2

maximum epochs 100
temperature for reaction generation τ 0.6

temperature 0.1

Table 5: Hyperparameter settings of DELL.

• WSDMS (Yang et al., 2023b) needs bag-level
labels for training but possesses the capability
to infer both sentence-level misinformation and
article-level veracity, facilitated by pertinent so-
cial media conversations meticulously contextu-
alized with news sentences.

For the LLM-based baseline, we provide the
prompt templates in Table 12. Each baseline
prompt template contains a task-related prompt to
describe the task and a baseline-related prompt.

B.3 Hyperparameters

The hyperparameter settings of DELL are pre-
sented in Table 5 to facilitate reproduction.

C Additional Results

We leverage Mistral-7B (Jiang et al., 2023a),
LLaMA2-70B (Touvron et al., 2023), and ChatGPT
as the base LLMs. Tabel 7 presents more results.
DELL still outperforms other baselines.

For context, DELL has three components: Di-
verse Reaction Generation; Explainable Proxy
Tasks; and LLM-Based Expert Ensemble. On the
component level, we conduct more ablation studies
as follows:

• w/o Diverse Reaction Generation: we remove
the network part and only employ the news
content and related proxy task outputs.

• w/o Explainable Proxy Tasks: we remove all
proxy tasks and conduct experiments with
news content and generated content.

• w/o LLM-Based Expert Ensemble: we replace
LLM-based ensembling with simple majority
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voting: majority vote; confidence weighted
sum; and train the weights on validation set.

We present the results of the ablation study in
Table 6. Every module of DELL could improve
the fake news detection performance.

D Additional Analysis

D.1 Model Robustness to Comments (cont.)
Figure 9 presents the results of the other six
benchmarks. On other benchmarks, DELL drops
the least in performance with reduced comments.
Specifically, DELL almost keeps the same on
Pheme and drops 11.8% on MFC, 1.1% on
SemEval-23F, 7.1% on Generated, 3.9% on
SemEval-20, and 3.3% on SemEval-23P.

D.2 Expert Selection (cont.)
Figure 10 presents the results of the other six bench-
marks. Besides this experiment, we also examine
the count of experts in every selection and corre-
sponding performance. The results are shown in
Table 8.

D.3 Case Study (cont.)
Table 14, 15, and 16 provide more cases of the
explanations of proxy tasks generated by DELL.
It illustrates that LLMs could generate reasonable
explanations of proxy tasks, providing more infor-
mation in identifying fake news.
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Method
Fake News Detection Framing Detection Propaganda Tactic Detection
Pheme LLM-mis MFC SemEval-23F Generated SemEval-20 SemEval-23P

MaF MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF MiF

DELL .820 .820 .928 .930 .509 .603 .572 .718 .598 .577 .525 .636 .386 .643

w/o Diverse Reaction Single .790 .790 .896 .900 .433 .575 .528 .663 .551 .552 .516 .602 .407 .604
w/o Diverse Reaction Vanilla .800 .800 .907 .910 .440 .581 .521 .673 .522 .519 .490 .599 .370 .619
w/o Diverse Reaction Confidence .789 .790 .875 .880 .429 .581 .361 .544 .566 .588 .524 .613 .376 .634
w/o Diverse Reaction Selective .810 .810 .887 .890 .477 .594 .521 .670 .528 .537 .542 .629 .365 .606

w/o Explainable Proxy Tasks .790 .790 .915 .920 .417 .577 .518 .704 .543 .556 .504 .596 .364 .620

Majority Vote .830 .830 .917 .920 .418 .576 .555 .703 .580 .593 .544 .647 .377 .644
Confidence weight .820 .820 .917 .920 .458 .593 .583 .705 .578 .550 .504 .613 .369 .661
Train on Validation Set .800 .800 .897 .900 .496 .585 .579 .674 .566 .527 .546 .622 .407 .638

Table 6: Performance of variants of DELL. The ablation study results illustrate that every module of DELL is
helpful for fake news detection.

Method
Fake News Detection Framing Detection Propaganda Tactic Detection
Pheme LLM-mis MFC SemEval-23F Generated SemEval-20 SemEval-23P

MaF MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF MiF MaF MiF

LLM-based baselines with Mistral-7B.
ZERO-SHOT .450 .450 .517 .560 .247 .265 .371 .431 .189 .202 .293 .408 .207 .274
FEW-SHOT .385 .390 .639 .660 .259 .303 .376 .432 .170 .217 .382 .466 .306 .372
RETRIEVAL .466 .480 .648 .670 .216 .260 .285 .383 .116 .134 .280 .389 .234 .310
TAPE W/O GRAPH .789 .790 .895 .900 .278 .497 .409 .610 .340 .353 .320 .595 .259 .632
K-HOPS .301 .430 .533 .550 .255 .273 .377 .489 .107 .110 .286 .406 .156 .243
K-ATTENTION .310 .420 .483 .510 .280 .336 .414 .508 .143 .145 .433 .474 .264 .312
TAPE W GRAPH .800 .800 .897 .900 .270 .485 .379 .633 .341 .358 .328 .598 .253 .608

LLM-based baselines with LLaMA2-70B.
ZERO-SHOT .403 .410 .650 .650 .331 .374 .380 .493 .176 .178 .143 .228 .044 .140
FEW-SHOT .322 .420 .670 .670 .312 .357 .396 .480 .117 .119 .404 .452 .335 .415
RETRIEVAL .513 .520 .672 .680 .315 .354 .325 .483 .163 .167 .109 .186 .073 .150
TAPE W/O GRAPH .748 .750 .856 .860 .376 .581 .448 .654 .381 .427 .358 .613 .244 .612
K-HOPS .310 .420 .634 .690 .327 .386 .394 .521 .204 .180 .189 .292 .054 .167
K-ATTENTION .400 .410 .750 .760 .306 .378 .414 .539 .198 .196 .312 .429 .109 .203
TAPE W GRAPH .752 .760 .857 .860 .392 .575 .453 .670 .370 .420 .320 .592 .244 .632

All expert performance of DELL with ChatGPT.
VANILLA .790 .790 .915 .920 .417 .577 .518 .704 .543 .556 .504 .596 .364 .620
SENTIMENT .780 .780 .867 .870 .413 .552 .536 .684 .510 .492 .499 .578 .343 .650
FRAMING .810 .810 .887 .890 .446 .571 .509 .658 .509 .541 .520 .613 .375 .618
PROPAGANDA .780 .780 .858 .860 .458 .598 .487 .604 .506 .525 .496 .583 .363 .606
RETRIEVAL .779 .780 .897 .900 .450 .570 .512 .646 .522 .520 .513 .589 .370 .601
STANCE .780 .780 .917 .920 .435 .571 .532 .683 .517 .547 .496 .606 .376 .631
RESPONSE .780 .780 .928 .930 .428 .582 .506 .695 .536 .538 .493 .618 .364 .646

expert ensemble of DELL with Mistral-7B.
DELL Vanilla .770 .770 .888 .890 .411 .526 .577 .689 .551 .519 .513 .618 .337 .566
DELL Confidence .789 .790 .866 .870 .458 .571 .539 .676 .539 .507 .484 .590 .347 .623
DELL Selective .820 .820 .917 .920 .478 .579 .570 .700 .608 .577 .493 .608 .367 .662

expert ensemble of DELL with LLaMA2-70B.
DELL Vanilla .722 .730 .906 .910 .453 .582 .549 .700 .579 .553 .563 .655 .382 .646
DELL Confidence .624 .670 .894 .900 .421 .569 .509 .685 .555 .549 .541 .649 .371 .632
DELL Selective .810 .810 .897 .900 .457 .592 .573 .704 .575 .547 .505 .615 .367 .655

Table 7: Performance of DELL and baselines using other LLMs on seven datasets from three tasks related to fake
news detection. DELL still outperforms other baselines.
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Benchmark 0 1 2 3 4 5 6 7

Pheme
instance count 0 1 5 49 22 19 4 0
macro f1-score nan 1.00 1.00 .816 .818 .789 .750 nan

LLM-mis
instance count 0 0 2 37 32 16 9 4
macro f1-score nan nan .500 .946 .813 1.00 .889 1.00

MFC
instance count 0 0 3 43 36 17 0 1
macro f1-score nan nan .571 .602 .548 .583 nan .800

SemEval-23F
instance count 0 0 2 11 15 12 8 4
macro f1-score nan nan 63.2 62.1 70.5 73.3 66.7 68.8

Generated
instance count 0 0 1 27 23 19 4 0
macro f1-score nan nan 1.00 .704 .500 .476 .600 nan

SemEval-20
instance count 0 1 2 8 15 8 4 0
macro f1-score nan 0.833 0.800 0.615 0.604 0.615 0.667 nan

SemEval-23P
instance count 0 1 2 8 19 13 7 4
macro f1-score nan 1.00 .625 .582 .682 .607 .644 .745

Table 8: The count of experts in every selection and corresponding performance in the selective approach.

10% 30% 50% 70% 90%
0.8

0.9

M
ac

ro
 F

1-
sc

or
e Pheme

10% 30% 50% 70% 90%

0.3

0.4

0.5
MFC

10% 30% 50% 70% 90%

0.4

0.5

SemEval-23F

10% 30% 50% 70% 90%
Comment percentage (%)

0.2

0.4

0.6

M
ac

ro
 F

1-
sc

or
e Generated

10% 30% 50% 70% 90%
Comment percentage (%)

0.3

0.4

0.5

SemEval-20

10% 30% 50% 70% 90%
Comment percentage (%)

0.3

0.4
SemEval-23P

GCN RvNN Hyphen GET WSDMS TAPE w/ graph DELL

Figure 9: Performance of DELL and baselines when the comments are gradually removed. DELL shows great
robustness to the availability of comments.
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Comment on news

u
You view a piece of news with the following content.
News: s
Task: Please comment on this news on social media. Your comment
is limited to 40 words.
Your comment:

Comment on a comment

u
You view a piece of news and a related comment chain on social
media, and their contents are as follows.
News: s
Comment 1: c1
Comment 2: c2
. . .
Comment k: ck
Task: Please reply to the last comment(comment k) on social media.
Your reply is limited to 40 words.
Your reply:

Select a comment to comment

u
You view a piece of news and related comment chains on social
media, and their contents are as follows.
News: s
Comment Chain 1:
Comment 1: c11
Comment 2: c12
. . .
Comment k1: c1k1
Comment Chain 2:
. . .
Comment Chain n:
. . .
Comment kn: cnkn
Task: Please select a comment chain that you would most like to
comment on. Answer the selected number and explain the reason.
Answer:

Table 9: Prompt templates of generating user-news networks

2660



Sentiment Analysis

News: s
Task: Which emotions does the news contain? Please choose the
three most likely ones: anger, disgust, fear, happiness, sadness, and
surprise. Please provide your reasoning.
Answer:

Framing Detection

News: s
Task: Framing is a strategic device and a central concept in political
communication for representing different salient aspects and perspec-
tives to convey the latent meaning of an issue. Which framings does
the news contain? Please choose the five most likely ones: Economic;
Capacity and resources; Morality; Fairness and equality; Legality,
constitutionality and jurisprudence; Policy prescription and evalua-
tion; Crime and punishment; Security and defense; Health and safety;
Quality of life; Cultural identity; Among public opinion; Political;
External regulation and reputation. Please provide your reasoning.
Answer:

Propaganda Tactics Detection

News: s
Task: Propaganda Tactics are methods used in propaganda to con-
vince an audience to believe what the propagandist wants them to
believe. Which propaganda techniques does the news contain? Please
choose the five most likely ones: Conversation Killer; Whataboutism;
Doubt; Straw Man; Red Herring; Loaded Language; Appeal to Fear-
Prejudice; Guilt by Association; Flag Waving; False Dilemma-No
Choice; Repetition; Appeal to Popularity; Appeal to Authority; Name
Calling-Labeling; Slogans; Appeal to Hypocrisy; Exaggeration-
Minimisation; Obfuscation-Vagueness-Confusion; Causal Oversim-
plification. Please provide your reasoning.
Answer:

Knowledge Retrieval

News: s
Task: Identify five named entities within the news above that necessi-
tate elucidation for the populace to understand the news comprehen-
sively. Ensure a diverse selection of the entities. The answer should
in the form of python list.
Answer:

Stance Detection

Task: Determine the stance of sentence 2 on sentence 1. Is it support-
ive, neutral or opposed? Provide your reasoning.
Sentence 1: s1
Sentence 2: s2
Answer:

Response Characterization

Sentence 1: s1
Sentence 2: s2
Task: Sentence 1 and Sentence 2 are two posts on social networks.
Please judge whether the sentence 2 replies to the sentence 1. Answer
yes or no and provide the reasoning.
Answer:

Table 10: Prompt templates of each proxy task.
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Figure 10: The frequency of expert selections and performance when a particular expert is selected in the Selective
approach.

Vanilla

News: s
Some experts give predictions about the news.
Expert 1: d1. The expert predicts the label of this news is ℓ1.
Expert 2: d2. The expert predicts the label of this news is ℓ2.
. . .
Expert 7: d7. The expert predicts the label of this news is ℓ7.
Question: Based on the analysis of experts, please judge the final label of this news.
Give the label in the form of “[your answer]”, do not give any explanation.
Label:

Confidence

News: s
Some experts give predictions about the news.
Expert 1: d1. The expert predicts the label of this news is ℓ1. The confidence scores
are score1.
Expert 2: d2. The expert predicts the label of this news is ℓ2. The confidence scores
are score2.
. . .
Expert 7: d7. The expert predicts the label of this news is ℓ7. The confidence scores
are score7.
Question: Based on the analysis of experts, please judge the final label of this news.
Give the label in the form of “[your answer]”, do not give any explanation.
Label:

Selective

News: s
Expert 1: d1.
Expert 2: d2.
. . .
Expert 7: d7.
To understand this news, which expert knowledge do you need? Return a Python list,
e.g. [expert 1, expert 2, expert 6].

Table 11: Prompt templates of our proposed LLM-based ensemble approaches.
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Fake News Detection Task: Please determine whether the news is real or fake.

Framing Detection

Task: Framing is a strategic device and a central concept in political
communication for representing different salient aspects and perspec-
tives to convey the latent meaning of an issue. Which framings does
the news contain? Please choose from: the candidate label set of a
specific dataset.

Propaganda Tactic Detection

Task: Propaganda techniques are methods used in propaganda to
convince an audience to believe what the propagandist wants them
to believe. Which propaganda techniques does the news contain?
Please choose from: the candidate label set of a specific dataset.

ZERO-SHOT

Task-related prompt
News: s
Answer:

FEW-SHOT

Example pairs of news and lable
Task-related prompt
News: s
Answer:

RETRIEVAL

Knowledge: externel knowledge retrieved from Wikipedia
Task-related prompt
News: s
Answer:

TAPE

News: s
Task-related prompt
Provide your reasoning.
Answer:

K-HOPS

News: s
It has the following comments:
the comments related to the news
Task-related prompt
Answer:

K-ATTENTION

News: s
It has the following comments:
the comments related to the news
Task: Please return the index of the comment that best assists in
understanding this news.
Answer:

News: s
It has the following comments:
the selected comments
Task-related prompt
Answer:

Table 12: Prompt templates of LLM-based baselines.
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F3 Z-CoT

You are an AI assistant trained to detect fake news. Deeply Analyze
the given text, think step-by-step, and determine if it is real or fake
news. {News content}

You are an AI assistant trained to detect framing. Deeply Analyze
the given text, think step-by-step, which framings does the following
news contain? Please choose from: {label set} {News content}

You are an AI assistant trained to detect propaganda tactic. Deeply
Analyze the given text, think step-by-step, which propaganda tactics
does the following news contain? Please choose from: {label set}
{News content}

F3 DeF-Gen

You are an AI assistant trained to detect fake news. Determine if the
text contains factual information supported by evidence (real) or ’
’misleading/inaccurate information (fake). Respond with ’True’ or
’False’. {News content}

You are an AI assistant trained to detect framing. Framing is a
strategic device and a central concept in political communication for
representing different salient aspects and perspectives to convey the
latent meaning of an issue. Which framings does the following news
contain? Please choose from:{label set} {News content}

You are an AI assistant trained to detect propaganda tactic. Pro-
paganda tactics are methods used in propaganda to convince an
audience to believe what the propagandist wants them to believe.
Which propaganda tactics does the following news contain? Please
choose from: {label set} {News content}

Table 13: Prompt templates of LLM-based baselines. (cont.)
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News:
Given the recent wave of allegations pertaining to sexual misconduct on the part of congressmen in
Washington, it is not inconceivable that similar accusations could be directed at Senator Chuck Schumer.
While I acknowledge that some of my previous posts may have been hasty and not grounded in factual
evidence, I must clarify that I do not make such remarks maliciously. I hope this insight assuages any
potential doubts about my intentions.
User profile:
You are a social media user. You are female. You are 18 to 29 years old. Racially, you are White.
Financially, your annual family income is less than 30,000. Educationally, you haven’t graduated from
college. Politically, you are a Democrat. Meanwhile, you are not registered to vote.
Comment:
As a fellow Democrat, I urge Senator Schumer to address these allegations swiftly and transparently.
It’s important that we hold all elected officials accountable for their actions.

Sentiment Analysis

Based on the content of the news, the three most likely emotions
are anger, disgust, and fear. Anger is likely to be felt by those who
believe that Senator Schumer has engaged in improper behavior and
that he should be held accountable. Disgust is also likely to be felt
by those who are repulsed by the idea of sexual misconduct on the
part of any politician, regardless of their political affiliation. Fear
is likely to be felt by those who are concerned about the potential
repercussions of these allegations for the broader political landscape,
as well as for the safety and security of the senator himself.

Framing Detection

The news contains the following five likely framings:
1. Morality: The allegations of sexual misconduct against congress-
men in Washington are often framed as a moral issue, with some
commentators arguing that such behavior is unethical and unaccept-
able.
2. Fairness and equality: The issue of sexual misconduct is also
framed as a matter of fairness and equality, with some arguing that
women should be treated with respect and dignity, regardless of their
position or status.
3. Legality, constitutionality and jurisprudence: The legal impli-
cations of sexual misconduct are also a key concern, with some
commentators arguing that such behavior is a violation of federal law
and the Constitution.
4. Policy prescription and evaluation: The issue of sexual miscon-
duct is also framed as a matter of policy prescription and evaluation,
with some commentators arguing that Congress should take action to
address the problem and prevent it from happening in the future.
5. External regulation and reputation: The issue of sexual misconduct
is also framed as a matter of external regulation and reputation, with
some commentators arguing that Congress should be held account-
able for its actions and that the public should demand better behavior
from its elected representatives.

Table 14: Examples of the explanations of proxy tasks generated by DELL.
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Propaganda Tactics Detection

The news contains the following five propaganda techniques:
1. Appeal to Authority: The news uses the authority of the senator to
make the audience believe that he is trustworthy and reliable.
2. Appeal to Popularity: The news uses the popularity of the senator
to make the audience believe that he is a good person and deserves
their support.
3. Appeal to Fear-Prejudice: The news uses the fear of being accused
of sexual misconduct to make the audience believe that the senator is
innocent and deserves their support.
4. False Dilemma-No Choice: The news presents the audience with
a false dilemma by suggesting that the only choice is to support the
senator or to believe the allegations against him.
5. Exaggeration-Minimisation: The news exaggerates the importance
of the allegations against the senator and minimizes the evidence
supporting them.

Stance Detection

The stance of sentence 2 on sentence 1 is supportive. The speaker of
sentence 2, who is a fellow Democrat, acknowledges the potential
allegations against Senator Schumer and urges him to address them
swiftly and transparently. This shows that the speaker supports the
idea of holding elected officials accountable for their actions, which
is a sentiment that is expressed in sentence 1. Additionally, the
speaker’s use of the word f̈ellows̈uggests that they share a common
identity with Senator Schumer, further indicating support.

Response Characterization

Yes, sentence 2 replies to sentence 1. Sentence 1 expresses the
possibility that Senator Chuck Schumer could be accused of sexual
misconduct, while sentence 2 urges him to address the allegations in
a transparent manner. Sentence 1 and Sentence 2 are related in that
they both discuss Senator Schumer and the allegations against him.

Table 15: Examples of the explanations of proxy tasks generated by DELL. (cont.)
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Knowledge Retrieval

Given the recent wave of allegations pertaining to sexual misconduct
(Sexual misconduct is misconduct of a sexual nature which exists
on a spectrum that may include a broad range of sexual behaviors
considered unwelcome. This includes conduct considered inappropri-
ate on an individual or societal basis of morality, sexual harassment
and/or criminal sexual assault. However generally, from a purely
legal standpoint, sexual misconduct is a l̈ay termẅhich represents a
boundary that has been broken, dictated by a moral set of conduct,
particularly where the situation is normally non-sexual and there-
fore unusual for sexual behavior, or where there is some aspect of
personal power or authority that makes sexual behavior inappropri-
ate.) on the part of congressmen (A member of congress (MOC) is
a person who has been appointed or elected and inducted into an
official body called a congress, typically to represent a particular
constituency in a legislature. The term member of parliament (MP) is
an equivalent term within a parliamentary system of government.) in
Washington (George Washington (February 22, 1732 2̆013 December
14, 1799) was an American Founding Father, military officer, and
statesman who served as the first president of the United States from
1789 to 1797. Appointed by the Second Continental Congress as
commander of the Continental Army in June 1775, Washington led
Patriot forces to victory in the American Revolutionary War and
then served as president of the Constitutional Convention in 1787,
which drafted and ratified the Constitution of the United States and
established the American federal government. Washington has thus
been called the F̈ather of his Country.̈), it is not inconceivable that
similar accusations could be directed at Senator (A senate is a delib-
erative assembly, often the upper house or chamber of a bicameral
legislature. The name comes from the ancient Roman Senate (Latin:
Senatus), so-called as an assembly of the senior (Latin: senex mean-
ing ẗhe elderör öld man)̈ and therefore considered wiser and more
experienced members of the society or ruling class. However the
Roman Senate was not the ancestor or predecessor of modern parlia-
mentarism in any sense, because the Roman senate was not a de jure
legislative body.Many countries have an assembly named a senate,
composed of senators who may be elected, appointed, have inherited
the title, or gained membership by other methods, depending on the
country.) Chuck Schumer (Charles Ellis Schumer ( SHOO-m0̆259r;
born November 23, 1950) is an American politician serving as Sen-
ate Majority Leader since 2021 and the senior United States senator
from New York since 1999. A member of the Democratic Party, he
has led the Senate Democratic Caucus since 2017 and was Senate
Minority Leader from 2017 to 2021. Schumer is in his fifth Senate
term, making him the longest-serving US senator from New York,
having surpassed Daniel Patrick Moynihan and Jacob K. Javits in
2023.). While I acknowledge that some of my previous posts may
have been hasty and not grounded in factual evidence, I must clarify
that I do not make such remarks maliciously. I hope this insight
assuages any potential doubts about my intentions.

Table 16: Examples of the explanations of proxy tasks generated by DELL. (cont.)
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