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Abstract
Chinese grammatical error correction (CGEC)
faces serious overcorrection challenges when
employing autoregressive generative models
such as sequence-to-sequence (Seq2Seq) mod-
els and decoder-only large language models
(LLMs). While previous methods aim to ad-
dress overcorrection in Seq2Seq models, they
are difficult to adapt to decoder-only LLMs. In
this paper, we propose an alignment-enhanced
corrector for the overcorrection problem that
applies to both Seq2Seq models and decoder-
only LLMs. Our method first trains a correc-
tion model to generate an initial correction of
the source sentence. Then, we combine the
source sentence with the initial correction and
feed it through an alignment model for another
round of correction, aiming to enforce the align-
ment model to focus on potential overcorrec-
tion. Moreover, to enhance the model’s ability
to identify nuances, we further explore the re-
verse alignment of the source sentence and the
initial correction. Finally, we transfer the align-
ment knowledge from two alignment models to
the correction model, instructing it on how to
avoid overcorrection. Experimental results on
three CGEC datasets demonstrate the effective-
ness of our approach in alleviating overcorrec-
tion and improving overall performance. Our
code has been made publicly available1.

1 Introduction

Chinese grammatical error correction (CGEC)
(Zhao et al., 2018), which aims to identify and cor-
rect potential grammatical errors in given Chinese
sentences while adhering to the principle of min-
imal editing, has broad applications in scenarios
such as writing assistant and search engine (Wang
et al., 2021). Chinese grammatical errors can be
basically categorized into component missing, com-
ponent redundancy, improper collocation, and im-
proper word order (Ma et al., 2022), which are

* Corresponding authors
1https://github.com/yanghh2000/Alirector

我校采取了一系列卓有成效的改进方法。

我校采取了一系列卓有成效的改进措施。

我们采取了一系列卓有成效的解决措施。

Source Sentence

Initial Correction

We have adopted a series of effective solution measures. 

Our school has adopted a series of effective improvement measures.

Correction Model

Our school has adopted a series of effective improvement methods.

Alignment Model

Alignment

Final Correction

Figure 1: An illustration of addressing overcorrection
through alignment of the source sentence and the initial
correction. Overcorrected characters and their error-free
counterparts are highlighted in red and orange, respec-
tively. Correct edits are highlighted in blue.

similar to those in English but tend to be more intri-
cate due to the complexities of Chinese grammar.

Existing CGEC methods can be mainly divided
into three categories: sequence-to-edit (Seq2Edit),
sequence-to-sequence (Seq2Seq), and decoder-
only large language models (LLMs). Seq2Edit
methods treat CGEC as a sequence tagging task by
predicting token-level edit operations (Liang et al.,
2020; Zhang et al., 2022a). While offering fast
inference and robust error detection, these meth-
ods may compromise text fluency and exhibit weak
migration ability due to the reliance on language-
specific vocabulary (Li et al., 2022). Seq2Seq meth-
ods tackle CGEC using neural machine translation
techniques (Fu et al., 2018; Zhao and Wang, 2020)
and excel in generating fluent sentences but of-
ten lack controllability. More recently, decoder-
only LLMs have demonstrated breakthrough per-
formance in various NLP tasks, showing significant
potential in CGEC (Fang et al., 2023; Qu and Wu,
2023). However, research suggests that decoder-
only LLMs still fall short of surpassing lightweight
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Figure 2: Preliminary results of predict-and-align on
NaCGEC (Ma et al., 2022) and FCGEC (Xu et al., 2022)
datasets with Baichuan2-7B model (Yang et al., 2023).

state-of-the-art models (Zhang et al., 2023).
Besides, Seq2Seq models and decoder-only

LLMs may suffer from severe overcorrection is-
sues, resulting in the modification of error-free char-
acters of the source sentence (Park et al., 2020), as
illustrated in Figure 1. This can be attributed to the
tendency of these generative models to generate tar-
get sequences with higher probabilities and replace
low-frequency words with more frequent ones (Li
et al., 2022). While increasing the number of train-
ing examples empirically alleviates this problem,
obtaining high-quality annotated examples remains
a challenge. Previous studies have explored miti-
gating overcorrection in Seq2Seq models. Among
them, a copy module can be incorporated to enable
the direct copying of correct tokens from source
sentences to output sentences (Zhao et al., 2019).
Another approach involves integrating error detec-
tion results from a Seq2Edit model into a Seq2Seq
correction model (Li et al., 2023a). However, these
methods prove challenging to migrate to decoder-
only LLMs due to differences in their architectures.
Given the emerging breakthroughs of LLMs in var-
ious NLP tasks, there is an urgent need to explore
their potential in CGEC, where the overcorrection
problem presents a significant obstacle.

To fill this gap, we first explore a two-stage
predict-and-align method for mitigating overcor-
rection caused by Seq2Seq models and decoder-
only LLMs. As illustrated in Figure 1, we first train
a correction model to generate an initial correction
of the source sentence. Then, we combine the
source sentence with the initial correction and feed
it through an alignment model for another round
of correction. The alignment2 model is tasked not
only with copying correct edits in the initial correc-
tion but also retaining error-free characters in the
source sentence, thereby reducing overcorrections.

2For the explanation and discussion about the term "align-
ment" in this paper, please refer to Appendix G.

Preliminary results in Figure 2 show that the two-
stage method substantially enhances the overall
performance of the original correction model.3

The above predict-and-align method requires
deploying two models during inference, which
is inefficient in terms of both time and storage.
Therefore, we propose to enhance the correction
model with knowledge acquired from the align-
ment model, resulting in an alignment-enhanced
corrector (Alirector) better at alleviating the over-
correction problem. Moreover, previous studies
(Lu et al., 2022; Qin et al., 2023) have shown that
language models are sensitive to the ordering of
the input sequence. Hence, we train another align-
ment model to explore the reverse combination of
the source sentence and the initial correction. For
knowledge transfer, we apply KL-divergence to
constrain the output distributions of the correction
model and the two alignment models, guiding the
correction model on how to avoid overcorrection.
Note that the proposed alignment method applies
to both Seq2Seq models and decoder-only LLMs.

Extensive experiments were conducted on three
CGEC datasets, and the experimental results
demonstrate that our method achieves substantial
improvements over baselines and effectively alle-
viates the overcorrection problem. Among vari-
ous findings, our in-depth analysis reveals that the
alignment information between the source sentence
and the initial correction is crucial for mitigating
overcorrection and improving the robustness of the
correction model. Besides, we confirm that cur-
rent decoder-only LLMs underperform Seq2Seq
models, which warrants further investigation.

2 Related Work

2.1 Traditional CGEC Methods
Traditional CGEC methods typically follow the ap-
proaches used in English GEC, which are broadly
categorized into Seq2Edit and Seq2Seq methods.

Seq2Edit methods (Awasthi et al., 2019;
Omelianchuk et al., 2020; Liang et al., 2020; Zhang
et al., 2022a) treat GEC as a sequence editing task,
which predicts token-level edit operations for the
input sentence. PIE (Awasthi et al., 2019) uti-
lizes BERT to iteratively predict edit labels. GEC-
ToR (Omelianchuk et al., 2020) further extends the
tag vocabulary with fine-grained edit tags. Liang
et al. (2020) and Zhang et al. (2022a) explore
adapting GECToR for CGEC tasks. The strengths

3More preliminary results are provided in Section 4.3.
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of Seq2Edit methods lie in its high inference ef-
ficiency and strong error detection performance.
However, they rely heavily on manually designed
vocabularies and language-specific lexical rules,
limiting their adaptability (Li et al., 2022).

On the other hand, Seq2Seq methods (Zhao
et al., 2019; Zhao and Wang, 2020; Kaneko et al.,
2020; Zhang et al., 2022b) employ encoder-decoder
models inspired by neural machine translation to
model the GEC task, where the encoder encodes
the source sentence and the decoder sequentially
generates the target tokens. While Kaneko et al.
(2020) further adapts pre-trained knowledge into
the encoder-decoder model, Zhang et al. (2022b)
explore incorporating syntax information. Besides,
efforts have been made to combine Seq2Edit and
Seq2Seq to enhance the inference efficiency (Chen
et al., 2020) or improve the correction results (Yuan
et al., 2021; Li et al., 2022, 2023a).

2.2 LLMs for GEC
With the success of LLMs across various NLP
tasks, researchers have explored their potential for
CGEC. Recent studies (Fang et al., 2023; Li et al.,
2023b; Qu and Wu, 2023; Fan et al., 2023) as-
sess the performance of diverse LLMs, including
both closed-source and open-source models, on the
CGEC task. Fang et al. (2023) evaluate ChatGPT’s
performance on CGEC through in-context learning,
highlighting its ability to generate fluent sentences
as well as susceptibility to overcorrection. Fan et al.
(2023) explore open-source LLMs for CGEC via
instruction tuning (Ouyang et al., 2022a). Zhang
et al. (2023) suggest that fine-tuned LLMs still
struggle to match the performance of existing state-
of-the-art lightweight GEC models. Besides, some
research endeavors (Kaneko and Okazaki, 2023;
Song et al., 2023) aim at generating explanations
for corrections utilizing LLMs’ powerful capabil-
ity. While these studies often overlook the overcor-
rection issue, our work presents a novel approach
capable of mitigating overcorrection in LLMs.

2.3 Overcorrection in GEC
Seq2Seq models tend to generate sentences with
higher probabilities and replace infrequent words
with more frequent ones, leading to overcorrection.
Previous works (Zhao et al., 2019; Li et al., 2022,
2023a) expore various approaches to relieve this
problem. Zhao et al. (2019) employ a copy mod-
ule to directly copy the correct tokens from the
source sentence to the output sentence. Li et al.

(2022) propose a sequence-to-action module based
on the seq2seq model to generate a token-level ac-
tion sequence. Li et al. (2023a) propose a two-stage
approach by integrating detection results from a
Seq2Edit model into a Seq2Seq correction model.
While these methods are challenging when applied
to decoder-only LLMs due to architectural differ-
ences, the approach proposed in this work applies
to both Seq2Seq models and decoder-only LLMs.

3 Methodology

As depicted in Figure 3, our alignment-enhanced
corrector (Alirector) for Chinese grammatical er-
ror correction (CGEC) comprises three main steps
to build. First, we train a correction model to gener-
ate an initial correction of the source sentence. Sec-
ond, we perform bidirectional alignment by com-
bining the source sentence with the initial correc-
tion forward and backward respectively, and pass-
ing each combination through an alignment model
for another round of correction. Third, we employ
knowledge distillation to transfer the knowledge
from the two alignment models to the correction
model. In the following sections, we first formulate
the CGEC task and introduce the correction model
in Section 3.1. Then, we delve into the details of
the alignment models in Section 3.2 and specify
the knowledge distillation in Section 3.3.

3.1 Correction Model

Given a source sentence X = {x1, x2, .., xm} that
may contain grammatical errors, the goal of CGEC
is to identify and correct the potential grammati-
cal errors within X and output the corresponding
gold sentence Y = {y1, y2, .., yn}. The models
we investigate to implement the correction model
include Transformer-based (Vaswani et al., 2017)
Seq2Seq models and decoder-only LLMs.

Seq2Seq The training objective of the Seq2Seq
correction model is to minimize the negative log-
likelihood (NLL) loss (Williams and Zipser, 1989):

Lgec =
n∑

t=1

−logP (yt|y<t, X; θ1), (1)

where y<t represents the tokens preceding time
step t, and θ1 denotes the trainable parameters.

Decoder-only LLMs The input to the decoder-
only correction model is formulated by converting
X and Y into a natural language sequence Z with
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我校采取了一系列卓有成效的改进措施。

Target Sentence Y

Our school has adopted a series of effective 

improvement measures.

我们采取了一系列卓有成效的解决措施。

Initial Correction ෠𝑌

We have adopted a series of effective 

solution measures.

我校采取了一系列卓有成效的改进方法。

Source Sentence X

Our school has adopted a series of effective 

improvement methods.

Initial

Correction Model

+

Forward Alignment Model Reverse Alignment Model

X + [SEP] + ෠𝑌 ෠𝑌 + [SEP] + X

Step 1: Generate Initial Correction

Step 2: Bidirectional Alignment

Enhanced Correction Model

Step 3: Knowledge Distillation

X ෠𝑌

Figure 3: An overview of our proposed framework, which comprises three main steps. First, we train a correction
model to generate an initial correction of the source sentence. Second, we perform bidirectional alignment by
combining the source sentence with the initial correction forward and backward respectively, and passing each
combination through an alignment model for another round of correction. Third, we employ knowledge distillation
to transfer the knowledge from the two alignment models to the correction model.

an instruction template Tgec(X,Y ):4

Z = Tgec(X,Y )

= {
instruction︷ ︸︸ ︷
z1, ..., zi−1,

X︷ ︸︸ ︷
zi, ..., zj ,

Y︷ ︸︸ ︷
zj+1, ..., zj+n}.

(2)

Then, we compute the NLL loss on the target to-
kens as the training objective:

Lgec =

j+n∑

t=j+1

−logP (zt|z<t; θ2). (3)

3.2 Alignment Model

The purpose of our alignment model is to mitigate
potential overcorrections in the initial correction
generated by the aforementioned correction model.
This is achieved by using a separate dataset and
training the alignment model to predict the target
sentence based on alignment information between
the source sentence and the initial correction. Simi-
lar to the correction model, both Seq2Seq models
and decoder-only LLMs can be employed to build
the alignment model. However, to reduce the diffi-
culty of transferring knowledge from the alignment
model to the correction model, we require the two

4Instruction templates are provided in Appendix A.

stages to share the same architecture5.

Input Construction We use Ŷ to represent the
initial output generated by the correction model
for the source sentence X . Then, we construct
the input to the alignment model based on X and
Ŷ as follows. For Seq2Seq models, we simply
concatenate X and Ŷ separated by “[SEP]” as the
input, denoted as Xalign = X + [SEP] + Ŷ . As
for decoder-only LLMs, we follow Eq. (2) and
construct the input by transforming X , Ŷ and Y
into a natural language sequence W using another
instruction template Talign:

W = Talign(X, Ŷ , Y )

= {...,
X︷ ︸︸ ︷

wi, ...,

Ŷ︷ ︸︸ ︷
wj , ..., wk,

Y︷ ︸︸ ︷
wk+1, ..., wk+n}.

(4)

Training Objective The alignment model aims
to predict Y based on the alignment of X and Ŷ .
For Seq2Seq models, the training objective is:

Lalign =
n∑

t=1

−logP (yt|y<t, Xalign; θ3), (5)

5Knowledge distillation between different architectures
may require an additional tokenizer and distribution alignment
(Wan et al., 2024).
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where θ3 denotes the trainable parameters in the
alignment model. As for decoder-only LLMs, the
NLL loss is computed on the target tokens in W :

Lalign =
k+n∑

t=k+1

−logP (wt|w<t; θ4). (6)

Bidirectional Alignment Previous studies (Lu
et al., 2022; Qin et al., 2023) have shown that lan-
guage models are sensitive to input ordering. Mo-
tivated by this, we further introduce bidirectional
alignment by incorporating a reverse alignment
model, which takes the combined source and initial
correction in reverse order as input. For example,
the input to the Seq2Seq-based reverse alignment
model is Ŷ + [SEP] +X . Intuitively, the reverse
alignment model may capture different information
compared to the forward alignment model between
the source sentence and the initial correction. Our
empirical analysis in Section 5.2 also demonstrates
that combining these two alignment models helps
alleviate the impact of overcorrection and improves
the overall robustness of the correction model.

3.3 Bidirectional Alignment Distillation
The alignment models described above can be em-
ployed alongside the correction model in a two-
stage predict-and-align paradigm to mitigate over-
correction. However, this approach presents two
potential issues. Firstly, deploying both the cor-
rection model and the two alignment models dur-
ing inference increases both time and storage re-
quirements. Secondly, the correction model and
the alignment models are trained separately, over-
looking the possibility of mutual enhancement. To
address these issues, we propose enhancing the cor-
rection model with knowledge distilled from the
alignment models, guiding the correction model
to avoid overcorrection, as well as eliminating the
need for the alignment models during inference.

Knowledge Distillation We consider the two
alignment models as the teachers and the correc-
tion model as the student for knowledge distillation
(Hinton et al., 2015). During this process, only
the parameters of the correction model are updated,
while the parameters of the alignment models re-
main fixed. For training, we construct inputs for
both the correction model and the alignment mod-
els following the methods introduced in Section 3.1
and Section 3.2, and obtain the final output logits
over the target tokens. Let zc, zf , and zr denote
the output logits from the correction model, the

forward alignment model, and the reverse align-
ment model, respectively. We use KL-divergence
as the distillation objective. The forward and re-
verse alignment distillation losses are defined as:

Lf
kd = DKL(σ(

zf

τ
)||σ(z

c

τ
))

Lr
kd = DKL(σ(

zr

τ
)||σ(z

c

τ
)),

(7)

where τ is the temperature, σ is the softmax func-
tion, and DKL(·) denotes the KL-divergence.

The overall distillation loss is the weighted sum
of these two distillation losses:

Lkd = αLf
kd + (1− α)Lr

kd, (8)

where α ∈ (0, 1) is a hyperparameter.

Overall Objective To train the correction model,
we formulate the overall objective by combining
the GEC loss with the alignment distillation loss:

L = Lgec + βLkd, (9)

where β is a hyperparameter that controls the im-
portance of the distillation loss. More training de-
tails are provided in Appendix C.1.

4 Experiments

4.1 Datasets and Metrics

Based on the data sources, the datasets uti-
lized in our experiments fall into two categories:
i) datasets sourced from Chinese-as-a-Second-
Language (CSL) learner texts, and ii) datasets
sourced from Chinese native speaker texts. For
CSL learner data, following previous works (Zhang
et al., 2022b; Li et al., 2023a), we employ a com-
bination of the Chinese Lang8 dataset (Zhao et al.,
2018) and the HSK dataset (Zhang, 2009) as our
training set, MuCGEC-Dev (Zhang et al., 2022a)
as the development set, and NLPCC18-Test (Zhao
et al., 2018) as the test set. For native speaker data,
we first randomly partition 1000 samples from the
FCGEC (Xu et al., 2022) training set as the develop-
ment set, with the remainder used for training. For
testing, we utilize FCGEC-Dev and NaCGEC-Test
(Ma et al., 2022) as our test sets6. Further details
regarding the datasets can be found in Appendix B.

For evaluation metrics, we follow previous work
and report word-level precision (P)/recall (R)/F-
measure (F0.5) results on NLPCC18-Test using
the official MaxMatch scorer (Dahlmeier and Ng,

6We use FCGEC-Dev here since we can not access the
gold labels of FCGEC-Test.
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Figure 4: Preliminary results of predict-and-align on NaCGEC and FCGEC datasets with Transformer and BART.

2012) and PKUNLP word segmentation tool pro-
vided by Zhao et al. (2018). For FCGEC-Dev
and NaCGEC-Test, we report the character-level
P/R/F0.5 scores using the ChERRANT scorer7.

4.2 Base Models and Baselines
As previously mentioned, the proposed method ap-
plies to both Seq2Seq models and decoder-only
LLMs. For Seq2Seq, we choose Transformer-large
and Chinese BART-large (Shao et al., 2021) as the
base models. For decoder-only LLMs, we choose
Baichuan2-7B (Yang et al., 2023), a powerful Chi-
nese LLM, and Chinese-LLaMA2-7B8, which is
obtained by incremental training of LLaMA2 (Tou-
vron et al., 2023b) with Chinese corpus.

For comparison, we first employ the follow-
ing Seq2Seq models as baselines. Vanilla Fine-
tuning (FT) means directly fine-tuning the base
models on the entire training set. TemplateGEC
(Li et al., 2023a) constructs a detection template to
integrate the Seq2Edit and Seq2Seq methods. Syn-
GEC (Zhang et al., 2022b) incorporates syntax in-
formation into Seq2Seq models. Copy (Zhao et al.,
2019) employs a copy mechanism for Seq2Seq
models to directly copy unchanged words from the
source sentence to the target sentence. Besides, we
also employ decoder-only baselines. Except for
vanilla fine-tuning, we implement the copy method
(Zhao et al., 2019) in decoder-only LLMs for com-
parison. The implementation details and hyperpa-
rameter settings are presented in Appendix C.2.

4.3 Preliminary Results
As mentioned earlier, we conducted preliminary
experiments of the predict-and-align method on
NaCGEC and FCGEC datasets. In addition to the
results shown in Figure 2 using Baichuan2-7B, we
also present the results with two Seq2Seq models,

7https://github.com/HillZhang1999/MuCGEC/tree/
main/scorers/ChERRANT

8https://huggingface.co/Linly-AI/
Chinese-LLaMA-2-7B-hf

namely Transformer-large and BART-large, in Fig-
ure 4. From these results, we observe that after
alignment, both Baichuan2-7B and Transformer
exhibit a substantial performance improvement,
especially in precision, revealing the potential of
alignment in enhancing overall performance and
mitigating overcorrection. While BART’s perfor-
mance improvement may not be as remarkable as
Baichuan2, the alignment approach still demon-
strates favorable enhancement. More analysis and
discussion regarding the potential of the alignment
method are presented in Appendix D.

4.4 Main Results

The main results are shown in Table 1.9 We note
that our Alirector consistently outperforms all base-
lines in F0.5 across all the datasets, demonstrat-
ing the effectiveness of this method. In contrast,
the Copy method even underperforms vanilla fine-
tuning in some cases. Besides, Alirector achieves
considerable improvements in precision across all
the datasets, highlighting the efficacy of this ap-
proach in mitigating overcorrection. Further anal-
ysis regarding the effect of Alirector on reducing
overcorrection is presented in Section 5.1.

Moreover, we make several interesting obser-
vations. First, despite the notable enhancement
achieved by Alirector, the decoder-only LLMs
of Baichuan2 and Chinese-LLaMA2 still strug-
gle to outperform BART. This can be attributed
to the fact that BART’s pre-training involves a
series of denoising tasks utilizing strategies like
token masking, token deletion and text infilling,
which are naturally suitable for the CGEC/GEC
task (Lewis et al., 2020; Wang et al., 2023). Sec-
ond, different models exhibit varying degrees of im-
provement by employing Alirector, with decoder-
only LLMs generally experiencing more notable
improvements than Seq2Seq models. The perfor-
mance of Chinese-LLaMA2 is much worse than

9More experimental results can be found in Appedix E.
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Model Method NLPCC18-Test NaCGEC-Test FCGEC-Dev
P R F0.5 P R F0.5 P R F0.5

Transformer

Vanilla FT 42.37 23.49 36.50 59.67 28.69 49.07 47.83 22.99 39.33
TemplateGEC 42.00 22.20 35.60 - - - - - -

SynGEC 41.44 28.28 37.91 51.45 39.69 48.57 38.00 32.18 36.67
Copy 43.16 23.58 37.01 64.61 26.42 50.12 48.95 19.77 37.79

Alirector 45.98 22.87 38.25 65.44 31.27 53.70 57.86 24.15 45.23

BART

Vanilla FT 50.63 31.83 45.28 65.85 40.79 58.64 56.26 40.71 52.27
TemplateGEC 54.50 27.40 45.50 - - - - - -

SynGEC 49.96 33.04 45.32 63.76 47.41 59.65 53.11 39.45 49.67
Copy 51.25 32.55 45.97 66.67 41.88 59.61 58.55 38.46 53.01

Alirector 51.76 33.49 46.67 68.11 43.87 61.33 58.78 39.15 53.42

Baichuan2-7B
Vanilla FT 51.69 27.92 44.17 62.93 44.50 58.12 51.77 38.10 48.31

Copy 51.56 28.53 44.39 62.27 44.20 57.56 53.47 35.51 48.56
Alirector 52.27 27.14 45.01 66.04 45.91 60.71 58.55 39.74 53.49

Chinese-LLaMA2-7B
Vanilla FT 45.85 27.44 40.43 61.93 30.31 51.24 50.15 26.19 42.39

Copy 46.53 27.93 41.06 62.15 30.54 51.49 48.04 28.35 42.18
Alirector 47.43 26.96 41.18 62.60 32.90 53.03 52.64 28.47 45.00

Table 1: Overall results on NLPCC18-Test, NaCGEC-Test, and FCGEC-Dev datasets. The results of TemplateGEC
(Li et al., 2023a) and SynGEC (Zhang et al., 2022b) on NLPCC18 are cited from the original papers, and other
results including Copy (Zhao et al., 2019) are implemented by us. Best results are highlighted in bold.
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Figure 5: Results of precision for different error types,
including missing (M), redundant (R), substitution (S),
and word-order (W), on the FCGEC-Dev test set.

Baichuan2, which may be attributed to their dif-
ferent capabilities achieved through pre-training.
Third, Alirector yields more pronounced improve-
ments on the FCGEC and NaCGEC datasets than
on the NLPCC18 dataset. We attribute this dis-
crepancy to the differing error distributions across
datasets. The errors in NLPCC18, derived from
Chinese-as-a-Second-Language learners, are less
common, while the errors in FCGEC and NaCGEC,
stemming from native speakers, exhibit more preva-
lent patterns that are easier for the model to learn.

5 Analysis

5.1 Overcorrection Mitigation

To further verify the effectiveness of Alirector in
mitigating overcorrection, we use Baichuan2-7B
as the backbone and present fine-grained precision
results across the four categories of CGEC errors,
including missing (M), redundant (R), substitution

Type #Overcorrections / #Undercorrections
Vanilla FT Alirector

M 129 / 259 113 (-12.4%) / 245
R 203 / 181 152 (-25.1%) / 183
S 91 / 226 67 (-26.4%) / 215
W 39 / 140 34 (-12.8%) / 141
All 462 / 806 366 (-20.8%) / 784

Table 2: The number of overcorrections and undercor-
rections reduced by Alirector over direct fine-tuning for
different error types on FCGEC-Dev.

(S), and word-order (W), in Figure 5. Moreover,
we present in Table 2 the number of overcorrec-
tions and undercorrections that Alirector reduces
on the four error types compared to Baichuan2-
7B. The results depicted in Figure 5 and summa-
rized in Table 2 demonstrate that Alirector signifi-
cantly enhances precision for all error types while
notably decreasing the number of overcorrections
without deteriorating undercorrection, particularly
for the redundant and substitution types. These
findings support the effectiveness of Alirector in
mitigating overcorrection induced by generative
language models and in enhancing the robustness
of our method across different error types. For a
more intuitive illustration of Alirector’s effective-
ness, we provide a case study in Appendix F.

5.2 Ablation Study

To investigate the contribution of key components
of our approach, we conduct in-depth ablation
experiments on NaCGEC-Test and FCGEC-Dev
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Method NaCGEC-Test FCGEC-Dev
P R F0.5 P R F0.5

BART
Alirector 68.11 43.87 61.33 58.78 39.15 53.42

w/o Lf
kd 68.30 40.44 60.03 59.70 36.46 52.95

w/o Lr
kd 68.19 43.41 61.21 59.56 37.41 53.25

w/o Lkd 67.17 40.79 59.48 56.26 40.71 52.27
disc. source 65.44 41.87 58.82 57.62 38.69 52.48
disc. predict 67.93 39.53 59.40 59.22 35.08 52.05

Baichuan2-7B
Alirector 66.04 45.91 60.71 58.55 39.74 53.49

w/o Lf
kd 65.92 43.72 59.84 57.88 38.57 52.62

w/o Lr
kd 66.91 40.99 59.40 55.99 36.66 50.65

w/o Lkd 62.93 44.50 58.12 51.77 38.10 48.31
disc. source 59.98 49.46 57.53 51.46 39.22 48.44
disc. predict 66.05 41.78 59.18 53.47 35.51 48.56

Table 3: Results of ablation study on NaCGEC-Test and
FCGEC-Dev, where “disc.” is short for “discard”.

datasets using BART and Baichuan2-7B.

Distillation from Alignment Models We first
ablate different alignment distillation components
in turn to analyze their contribution. As shown in
Table 3, while removing either forward distillation
Lf

kd or reverse distillation Lr
kd causes noticeable

performance degradation, there is a significant per-
formance drop after removing the overall distilla-
tion loss Lkd, particularly in recall and F0.5. This
indicates that bidirectional alignment contributes
more to performance improvement through knowl-
edge distillation compared to unidirectional align-
ment. Moreover, a notable drop in precision is
observed when removing the entire distillation loss
(as shown in the line labeled w/o Lkd), suggesting
that the alignment distillation is essential for our
method to mitigate overcorrection.

Input of Alignment Models To further investi-
gate the effect of the alignment between the source
sentence and the initial correction, we conduct addi-
tional experiments by ablating the source sentence
or initial correction from the input of the align-
ment models during training Alirector. To keep
the format of the input, we ablate the source sen-
tence by replacing it with the initial correction, e.g.,
Ŷ + [SEP] + Ŷ for Seq2Seq. Similarly, we con-
struct the input as X + [SEP] +X when ablating
the initial correction. As shown in Table 3, we
observe that ablating the source sentence causes
an obvious decline in precision while ablating the
initial correction leads to a notable drop in recall.
These findings highlight the role of alignment in
reducing both overcorrection and undercorrection.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

20
30
40
50
60
65

Sc
or

es
 (%

)

Precision
F0.5
Recall

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

56

58

60

62

Pr
ec

isi
on

 (%
) Precision

36

38

40

42

Re
ca

ll 
(%

)

Recall

Figure 6: Results of our method on FCGEC develop-
ment set with different values of α and β that control
the weight of forward and reverse alignment losses.

5.3 Impact of α and β

The training objective of Alirector involves α to
control the weight of forward and reverse alignment
losses, as well as β to balance between the original
GEC loss and the distillation loss. To investigate
their impact on model performance, we use BART
as the backbone and show the results of different
values of α and β on the FCGEC development set
in Figure 6, where we change one while fixing the
other. From the first subfigure, we observe that as
α increases, the P/R/F0.5 scores consistently rise
and achieve the best results around 0.9. The second
subfigure shows that as β increases, the precision
rises accordingly while recall gradually falls. This
trend indicates that β plays a role in balancing
between precision and recall. Similar trends can be
observed when other models are employed, and the
optimal values of α and β are provided in Table 6.

6 Conclusion

In this paper, we first investigate a predict-and-align
method that effectively leverages alignment infor-
mation between the source sentence and the initial
correction to alleviate the overcorrection issue in
CGEC. Then, we propose transferring knowledge
from the alignment process to enhance the correc-
tion model, resulting in an improved model termed
Alirector. Experimental results on three CGEC
datasets showcase the efficacy of our approach in
mitigating overcorrection for both Seq2Seq models
and decoder-only LLMs. Detailed analysis fur-
ther demonstrates the effectiveness of this method
across various error types, as well as the pivotal
role of alignment in enhancing performance.

Broadly speaking, the overcorrection challenge
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falls within the realm of uncontrollability of gen-
erative language models. Besides straightforward
efforts to acquire more high-quality training data
or employ specific pre-training strategies such as
BART, this study introduces an alignment-based
method that has demonstrated effectiveness in ad-
dressing this issue. Despite the improvement of
our approach for decoder-only LLMs, their per-
formance in CGEC still lags behind that of the
strongest Seq2Seq models, even though they are
smaller in size, which contradicts their outstand-
ing performance in other NLP tasks. In future
research, we will further exploring enhancing the
performance of decoder-only LLMs for CGEC.
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A Instruction Templates

In our experiments, we explored various instruction
templates and observed that the choice of instruc-
tion templates has a limited impact on the exper-
imental results, particularly when the amount of
training data is sufficient. Table 4 presents the in-
struction templates Tgec and Talign used in our exper-
iments for tuning LLMs. The instruction template
comprises an input field that provides the source
text and a response field that denotes the target text.

LLM Instruction for correction model Tgec

Baichuan2 纠正输入句子中的语法错误，并输出
正确的句子。
(Trans.: Correct grammatical errors
in the input sentence and output the
correct sentence.)
Input: {Source}
Response: {Target/Output}

Chinese-LLaMA2 ### Instruction: 纠正输入句子中的语
法错误，并输出正确的句子。
(Trans.: Correct grammatical errors
in the input sentence and output the
correct sentence.)
### Input: {Source}
### Response: {Target/Output}

LLM Instruction for alignment model Talign

Baichuan2 对齐输入中用“\t”分隔的两个句子，并输
出没有语法错误的句子。
(Trans.: Align the two sentences separated
by “\t” in the input and output the sentence
without grammatical errors.)
Input: {Source} \t {Initial Correction}
Response: {Target/Output}

Chinese-LLaMA2 ### Instruction: 对齐输入中用“\t”分隔的两
个句子，并输出没有语法错误的句子。
(Trans.: Align the two sentences separated
by “\t” in the input and output the sentence
without grammatical errors.)
### Input: {Source} \t {Initial Correction}
### Response: {Target/Output}

Table 4: Instruction templates for the correction model
and alignment models, where “Trans.” denotes the trans-
lation of the instruction.

B Datasets

The statistics of the datasets used in our exper-
iments are shown in Table 5. For CSL learner
data, we adopted the same training set as Zhang
et al. (2022a), which involves discarding all sam-
ples without grammatical errors in the Lang8 and
HSK datasets and replicating the HSK dataset five
times and combining with the Lang8 dataset, re-
sulting in a total of 1,568,885 sentence pairs.

Train Source #Sent #Error
Lang8 Learner 1,220,906 1,092,285 (89.5%)
HSK Learner 15,6870 95,320 (60.8%)
FCGEC Native 35,341 19,183 (54.3%)
Dev Source #Sent #Error
MuCGEC-Dev Learner 2,467 2,409 (97.6%)
FCGEC Native 1,000 563 (56.3%)
Test Source #Sent #Error
NLPCC18-Test Learner 2,000 1,983 (99.2%)
FCGEC-Dev Native 2,000 1,101 (55.1%)
NaCGEC-Test Native 5,869 5,612 (95.6%)

Table 5: Statistics of the used CGEC datasets. #Sent
denotes the number of the sentences and #Error denotes
the number (the percentage) of the erroneous sentences.

C Experimental Details

C.1 Training Details

Training on Native Speaker Datasets Since
FCGEC contains only 35,341 training samples,
which is insufficient for model training, we per-
formed continuous training on the FCGEC training
set with the model trained on the CSL learner data.

Training of Alignment Models As described in
Section 3.2, before training the alignment models,
we need to obtain initial corrections using an initial
correction model. For this purpose, we divided the
training data into two parts, one for training the
initial correction model and the other for training
the alignment models. In the case of CSL learner
data, 80%10 of the training samples are randomly
selected to train the initial correction model. Then,
this correction model is used to generate initial cor-
rections for the remaining training samples. These
initial corrections along with their corresponding
source and target sentences are used to train the
alignment models. For the native speaker datasets,
we used the correction model trained on the CSL
learner data to generate initial corrections on the
FCGEC training set.

Training of Alirector As outlined in Section 3.3,
we perform knowledge distillation using the correc-
tion model as the student and the alignment models
as the teachers. For this training, we used the same
training set as that used for training the teachers.
The student was initialized with the weights of the
well-trained initial correction model.

10We experimented with different ratios, including 4:6, 5:5,
and 8:2, and found that 8:2 works the best.
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Hyperparameter NLPCC18 FCGEC/NaCGEC
Seq2Seq

Backbone Transformer-large BART-large Transformer-large BART-large
Batch size 1024 1024 256 256
Max Epochs 20 10 20 10
Max Length 128 (Source); 128 (Target)
Learning Rate 3× 10−4 3× 10−5 3× 10−5 3× 10−5

Warmup Steps 3000 1000 100 100
Dropout 0.3 0.1 0.3 0.1
Dropout-Src 0.2 0.2 0.2 0.2
α 0.7 0.5 0.5 0.9
β 1.0 1.5 0.5 0.5
τ 1 1 1 1
Beam Size 10 10 10 10

LLMs
Backbone Baichuan2-7B Chinese-LLaMA2-7B Baichuan2-7B Chinese-LLaMA2-7B
Batch size 1024 1024 256 256
Max Epochs 3 5 10 10
Max Length 192 (GEC); 256 (Alignment)
Learning Rate 3× 10−5 3× 10−4 3× 10−5 3× 10−5

Warmup Steps 1000 1000 100 100
LoRA target modules = all linears; lora rank = 8; lora alpha = 16, lora dropout = 0.05
α 0.3 0.5 0.3 0.5
β 1.5 2.0 0.5 1.0
τ 1 1 1 1
Beam Size 10 10 10 10

Table 6: Hyperparameter settings in our experiments.

C.2 Implementation Details

For Seq2Seq model training, following Zhang
et al. (2022b), we utilized the Dropout-Src tech-
nique (Junczys-Dowmunt et al., 2018) that ap-
plies dropout on input embeddings for alleviat-
ing over-fitting. As for LLMs tuning, consider-
ing the time and computational resources, we ap-
plied QLoRA (Dettmers et al., 2023) for efficient
fine-tuning instead of full-parameter fine-tuning.
Our code implementation mainly follows the Al-
paca LoRA project11, and is based on the Hug-
gingface Transformers (Wolf et al., 2020) and bit-
sandbytes12 (Dettmers et al., 2022) toolkit in Py-
torch. We searched for the optimal value of α in
{0.1, 0.3, 0.5, 0.7, 0.9}, β in {0.5, 1.0, 1.5, 2.0} and
the temperature τ in {1, 2, 3, 4, 5} on the develop-
ment set. We used the Adam optimizer (Kingma
and Ba, 2014) and polynomial learning rate decay.
The hyperparameter settings are presented in Ta-
ble 6. All experiments are carried out on 8 GeForce
RTX 4090 24GB GPUs.

11https://github.com/tloen/alpaca-lora
12https://github.com/TimDettmers/bitsandbytes

Method NaCGEC-Test FCGEC-Dev
P R F0.5 P R F0.5

Vanilla FT 62.93 44.50 58.12 56.26 40.71 52.27
predict-and-align 67.21 45.61 61.39 62.60 37.43 55.18

repl. src+src 66.05 41.78 59.18 61.50 32.25 52.06
repl. pred+pred 59.98 49.56 57.53 50.59 42.48 48.73

Alirector 66.04 45.91 60.71 58.55 39.74 53.49

Table 7: Results of the potential of alignment on
FCGEC-Dev, where "repl." is short for "replace".

D Potential of Alignment

The alignment models are introduced to mitigate
overcorrection by leveraging the alignment infor-
mation between the source sentence and the initial
correction. To demonstrate the potential of the
alignment models, we employed a BART-based
alignment model to align the predictions of a
Baichuan2-based correction model, and present the
comparison results between vanilla fine-tuning (i.e.,
without alignment) and predict-and-align method
in Table 7. From the results, we note that predict-
and-align improves precision and F0.5 by a large
margin compared to vanilla fine-tuning. Notably,
predict-and-align even outperforms our Alirector,
highlighting the effectiveness and the potential of
the two-stage alignment method. Moreover, when
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only source information is retained in the input
(namely repl. src+src), we observe high precision
but low recall, while retaining only prediction in-
formation (namely repl. pred+pred) exhibits the
opposite trend. This observation once again em-
phasizes the role of alignment in reducing both
overcorrection and undercorrection.

E Additional Experimental Results

E.1 Results on FCGEC-Test

We conducted additional experiments on FCGEC-
Test13, the test set of FCGEC (Xu et al., 2022),
for more comprehensive evaluation. As shown in
Table 8, our Alirector improves the P/F0.5 score by
5.59/1.77 over vanilla fine-tuning on BART, while
the improvement is 4.37/2.25 on Baichuan2-7B.
In contrast, the Copy method has only a minor
improvement over vanilla fine-tuning.

Model Method FCGEC-Test
P R F0.5

BART
Vanilla FT 63.85 40.16 57.11

Copy 65.31 39.45 57.74
Alirector 69.44 36.60 58.88

Baichuan2-7B
Vanilla FT 60.12 37.21 53.53

Copy 62.14 35.47 54.01
Alirector 64.49 36.22 55.78

Table 8: Results on FCGEC-Test.

E.2 Results on More LLMs

We also implemented our Alirector method on
other Chinese LLMs, namely Yi-6B14, a Chi-
nese LLM that employs the same architecture as
LLaMA (Touvron et al., 2023a), and ChatGLM3-
6B15, a chat model based on GLM (Du et al., 2022).
The results on NLPCC18-Test are shown in Table 9.
We observe that our Alirector method improves
the precision/F0.5 score over vanilla fine-tuning by
3.62/1.75 on Yi-6B and 3.14/1.05 on ChatGLM3-
6B, respectively. This highlights the generalizabil-
ity of Alirector across other LLMs. However, the
performance of Yi-6B and ChatGLM3-6B lags sig-
nificantly behind that of Baichuan2-7B. This dis-
crepancy can be attributed to the different capabili-
ties achieved through pre-training.

13FCGEC-Test provides online evaluation at https://
codalab.lisn.upsaclay.fr/competitions/8020.

14https://huggingface.co/01-ai/Yi-6B
15https://huggingface.co/THUDM/

chatglm3-6b-base

Model Method NLPCC18-Test
P R F0.5

Yi-6B
Vanilla FT 50.61 25.22 42.13

Copy 50.11 25.01 41.73
Alirector 54.23 24.89 43.88

ChatGLM3-6B
Vanilla FT 48.61 26.46 41.64

Copy 49.64 25.23 41.59
Alirector 51.75 25.11 42.69

Table 9: Results on Yi-6B and ChatGLM3-6B.

F Case Study

We provide four examples in Table 10 to illustrate
the effectiveness of our Alirector in mitigating over-
correction. We can note that the vanilla fine-tuned
model often tends to overcorrect by modifying the
error-free characters. In contrast, Alirector is able
to correct all the errors in the sentence while pre-
serving the error-free characters. These cases in-
tuitively show that Alirector learns to identify and
correct the potential errors in the sentence while ac-
tively avoiding overcorrection as much as possible.

G Explanation of Term "Alignment"

We adopt the term "alignment" in this paper as it
works in a similar way to the alignment in RLHF
(Ouyang et al., 2022b). RLHF aims to align the
LLM’s response with human preferences, while our
alignment model seeks to refine the GEC model’s
over-corrected predictions by aligning them with
the source text. From this perspective, our ap-
proach ensures that the corrections are more ac-
curate and contextually appropriate, maintaining
faithfulness to the original input while avoiding
unnecessary changes. Additionally, Ji et al. (2024)
use an Aligner to refine the initial output of LLMs,
which shares a similar concept with our paper.
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Source 在过去一年，我校采取了一系列卓有成效的改进方法。
In the past year, our school has adopted a series of effective improvement methods.

Target 在过去一年，我校采取了一系列卓有成效的改进措施。
In the past year, our school has adopted a series of effective improvement measures.

Vanilla FT 在过去一年，我们采取了一系列卓有成效的解决措施。(%)
In the past year, we have adopted a series of effective solution measures.

Alirector 在过去一年，我校采取了一系列卓有成效的改进措施。(!)
In the past year, our school has adopted a series of effective improvement measures.

Source
他已经回国，现就任于北大医学部体育教授。
He has returned to China and is now serving in a professor of physical education in the Peking University
Health Science Center.

Target
他已经回国，现就任于北大医学部，担任体育教授。
He has returned to China and is now serving as a professor of physical education in the Peking University
Health Science Center.

Vanilla FT 他已经回国，现就任于北大医学部体育教授。(%)
He has returned to China and is now serving in the Peking University Health Science Center.

Alirector
他已经回国，现就任于北大医学部，担任体育教授。(!)
He has returned to China and is now serving as a professor of physical education in the Peking University
Health Science Center.

Source 斯诺登虽然决定了自己的住处，而且出于安全考虑他不会公布住址。
Snowden has decided where he is going to live, though, and he will not release his address for security reasons.

Target 斯诺登虽然决定了自己的住处，但是出于安全考虑他不会公布住址。
Snowden has decided where he will live, but he will not release his address for security reasons.

Vanilla FT 虽然斯诺登决定了自己的住处，但是出于安全考虑他不会公布住址。(%)
Although Snowden has decided where he will live, he will not release his address for security reasons.

Alirector 斯诺登虽然决定了自己的住处，但是出于安全考虑他不会公布住址。(!)
Snowden has decided where he will live, but he will not release his address for security reasons.

Source
这样不仅有助于维护国家安全和社会稳定，而且有利于提高工作效率，有利于金融机构落实存款实名制。
This will not only help maintain national security and social stability, but also help improve work efficiency and
help financial institutions implement the real-name deposit system.

Target
这样不仅有利于提高工作效率，有利于金融机构落实存款实名制，而且有助于维护国家安全和社会稳定。
This will not only help improve work efficiency, but also help financial institutions implement the real-name
deposit system and help maintain national security and social stability.

Vanilla FT
这样不仅有利于提高工作效率，有利于金融机构落实存款实名制，而且有助于维护国家安全和社会稳定。(%)
This will not only help financial institutions implement the real-name deposit system, but also help maintain
national security and social stability.

Alirector
这样不仅有利于提高工作效率，有利于金融机构落实存款实名制，而且有助于维护国家安全和社会稳定。(!)
This will not only help improve work efficiency, but also help financial institutions implement the real-name
deposit system and help maintain national security and social stability.

Table 10: A case study of vanilla fine-tuning and our Alirector using Baichuan2-7B on FCGEC-dev and NaCGEC-
Test, where overcorrected characters and their error-free counterparts are highlighted in red and orange, respectively,
and correct edits are highlighted in blue.
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