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Abstract

Large language models (LLMs) are typically
trained on general source data for various do-
mains, but a recent surge in domain-specific
LLMs has shown their potential to outperform
general-purpose models in domain-specific
tasks (e.g., biomedicine). Although domain-
specific pre-training enhances efficiency and
leads to smaller models, the computational
costs of training these LLMs remain high, pos-
ing budgeting challenges. We introduce MediS-
wift, a suite of biomedical LMs that leverage
sparse pre-training on domain-specific biomed-
ical text data. By inducing up to 75% weight
sparsity during the pre-training phase, MediS-
wift achieves a 2-2.5x reduction in training
FLOPs. Notably, all sparse pre-training was
performed on the Cerebras CS-2 system, which
is specifically designed to realize the accelera-
tion benefits from unstructured weight sparsity,
thereby significantly enhancing the efficiency
of the MediSwift models. Through subsequent
dense fine-tuning and strategic soft prompting,
MediSwift models outperform existing LLMs
up to 7B parameters on biomedical tasks, set-
ting new benchmarks w.r.t efficiency-accuracy
on tasks such as PubMedQA. Our results show
that sparse pre-training, along with dense fine-
tuning and soft prompting, offers an effective
method for creating high-performing, computa-
tionally efficient models in specialized domains.

1 Introduction

The landscape of large language models (LLMs)
has been predominantly shaped by efforts aimed at
creating generalized models (Achiam et al., 2023;
Touvron et al., 2023a; Zhang et al., 2022; Shoeybi
et al., 2020), trained on diverse datasets that encom-
pass a wide array of topics and domains, such as
Pile (Gao et al., 2020), MassiveText (Hoffmann
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Figure 1: Comparison of Model Size vs. PubMedQA
Accuracy in the Reasoning-Required Setting: Our
dense and sparse MediSwift models noticeably outper-
form other fine-tuned language models ≤ 7B param-
eters, improving the efficiency-accuracy pareto fron-
tier. In particular, MediSwift-XL (1.21B) achieves new
state-of-the-art 76.8% accuracy at this size (i.e., being
5.8x smaller than PMC-LlaMA). In addition, sparse
pre-trained MediSwift-XL models at s ∈ {50%, 75%}
outperform other models at similar or larger size. Addi-
tional details are provided in Table 2 and 3.

et al., 2022) and RedPajama (Computer, 2023).
While these comprehensive datasets have included
data in specialized domains (e.g., programming
code (Chen et al., 2021) and PubMed Central (Gao
et al., 2020)), the overarching goal has been to forge
LLMs capable of broad applicability. However, re-
cent efforts in training models on domain-specific
data are emerging, with these smaller, specialized
models surpassing general-purpose ones in domain
focused tasks, especially in science (Taylor et al.,
2022) and medicine (Luo et al., 2022; Bolton et al.,
2021). This has sparked a renewed interest in the
development of LLMs tailored to specific domains,

214



suggesting a promising avenue for enhancing com-
pute efficiency and model performance w.r.t evalu-
ation metrics on downstream tasks.

Furthermore, the shift towards specialized LLMs
in the field of medicine is particularly gaining
recognition for its capacity to significantly improve
the accuracy and effectiveness of these models.
This is achieved by closely aligning them with
the specific needs and complexities of this spe-
cialized area. For example, in biomedicine, mod-
els trained on specialized literature (e.g., MED-
ITRON (Chen et al., 2023), BioGPT (Luo et al.,
2022), BioMedLM (Bolton et al., 2021)) exhibit
significant improvements over general ones. This
approach involves either continued pre-training on
domain-relevant texts or pre-training models from
scratch with domain-specific data (e.g., PubMed
Central1 and PubMed open-access research papers),
emphasizing the accuracy benefits and ability to
yield models that are more compute efficient.

After pre-training models on domain-specific
data, further accuracy enhancements are achieved
through prompt-based fine-tuning (Nori et al.,
2023b; Reynolds and McDonell, 2021; Peng et al.,
2023; Liu et al., 2022b) and full fine-tuning of the
weights (Ziegler et al., 2019; Cohen et al., 2022;
Hu et al., 2021), offering a balance between adapt-
ability, efficiency, and task-specific optimization.
This dual approach merges the model’s pre-trained
knowledge with the specific needs of downstream
tasks, thereby facilitating a more accurate and effec-
tive application of the model’s capabilities across a
wide array of downstream applications; maximiz-
ing the potential of domain-specific LLMs.

Although domain-specific LLM pre-training of-
fers significant benefits, the computational de-
mands remain a significant challenge, necessitating
innovative solutions for broader accessibility and
efficiency. Techniques proposed to mitigate these
burdens include sparse attention (Dao et al., 2022b;
Jaszczur et al., 2021), quantized optimization (Tang
et al., 2021), low-rank factorization (Lialin et al.,
2023), and sequence-level curriculum learning (Li
et al., 2022). Sparse attention enhances transformer
efficiency but mainly benefits attention layers and
may struggle with long-range dependencies. Quan-
tized optimization reduces memory footprint and
accelerates training with lower-precision arithmetic
but introduces quantization noise and relies on hard-
ware support. Low-rank factorization saves mem-

1https://pubmed.ncbi.nlm.nih.gov/

ory and computation by approximating weight ma-
trices, risking information loss and requiring ar-
chitectural changes. Sequence-level curriculum
learning improves convergence and generalization
by progressively increasing difficulty, primarily
enhancing training efficiency. Among these ap-
proaches, weight sparsity emerges as a promising
method, distinct from the others in its approach by
setting a subset of model parameters to zero, thus
reducing the FLOPs needed during training. Unlike
sparse attention, which optimizes a specific com-
ponent, or quantized optimization and low-rank
factorization, which may introduce trade-offs in
model performance, sparse pre-training directly re-
duces computational costs across the entire model
without inherently compromising performance.

However, the adoption of sparse training is lim-
ited by (1) the challenge of finding optimal spar-
sity patterns which retain the accuracy of the orig-
inal dense model (Frankle and Carbin, 2018; Ma
et al., 2022) and (2) its difficulties in accelerat-
ing on hardware optimized for dense computations
(e.g., Nivida GPUs and Google TPUs) (Hooker,
2020). Additionally, sparse pre-training of LLMs
typically leads to an accuracy loss from optimiza-
tion challenges in sparse networks (Evci et al.,
2019), but previous studies have shown that tran-
sitioning from sparse-to-dense training can effec-
tively address these problems (Thangarasa et al.,
2023a; Dao et al., 2022a). Our work aims to reduce
training FLOPs by employing unstructured weight
sparsity in domain-specific LLMs and recovering
lost representational capacity by transitioning to
dense weight matrices for downstream fine-tuning.

Despite weight sparsity not being widely used
in real-world applications, advancements in spe-
cialized software kernels (Gale et al., 2019; Elsen
et al., 2019; Ashby et al., 2019; Tang et al., 2023)
have facilitated inference acceleration with unstruc-
tured sparsity. Recent developments have shown
that the benefits of unstructured weight sparsity can
be fully harnessed on specialized hardware, such
as the Cerebras CS-2 (Cerebras, 2023; Lie, 2022b),
for LLM training. As sparse training techniques
and hardware continue to co-evolve, we anticipate
that the reductions in FLOPs will lead to realized
sparse acceleration. The latest innovations in soft-
ware and hardware (NeuralMagic, 2021; Gupta,
2024) are geared towards enabling the widespread
adoption of unstructured weight sparsity, offering
the potential to achieve higher compression ratios
and practical speedups in terms of wall-clock time.
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Building on this momentum, we introduce
MediSwift, a suite of biomedical language models
(LMs) available in three sizes: Med (302M), Large
(510M), and XL (1.21B). These models are based
on GPT-3 and pre-trained sparsely from scratch on
biomedical texts, aimed at reducing the computa-
tional costs required for training. We explore the
impact of applying 50% and 75% weight sparsity
during pre-training, which results in a 2-2.5x reduc-
tion in the overall training FLOPs needed. Figure 1
summarizes the performance, where our dense and
sparse MediSwift models noticeably outperform
other language models up to 7B parameters. We
demonstrate MediSwift’s capabilities through fine-
tuning on established benchmarks for biomedical
natural language processing (NLP) tasks (e.g., Pub-
MedQA (Jin et al., 2019) for question answering
and HoC (Baker et al., 2016) for document classi-
fication) showing significant improvements in the
balance between efficiency and accuracy.

Although previous research suggests that sparse
pre-training may compromise model accuracy on
downstream tasks, our approach incorporates dense
fine-tuning with strategic soft prompting to ef-
fectively regain performance on specialized tasks.
Specifically, MediSwift-XL (1.21B) sets a new
state-of-the-art by reaching 76.8% accuracy, de-
spite being 5.8x smaller than PMC-LlaMA. More-
over, MediSwift-XL models, pre-trained with 50%
and 75% sparsity, surpass the performance of mod-
els of similar or greater sizes (e.g., MediSwift-XL
at 75% sparsity outperforms BioMedLM while be-
ing almost 9x smaller). Our work not only high-
lights the potential for sparse pre-training to make
LM training more economically viable but also sets
a new benchmark for efficiency in domain-specific
applications of LLMs. The key contributions are:

1. We introduce MediSwift, a family of biomed-
ical language models in three sizes (Med,
Large, and XL), and extend this by introduc-
ing both dense and sparse variants pre-trained
with 50% and 75% weight sparsity. This diver-
sification balances computational efficiency
with model effectiveness in biomedical appli-
cations, offering options for different compu-
tational resource needs.

2. To our knowledge, this is the first study to
highlight the benefits of sparse pre-training on
biomedical texts, achieving significant com-
putational savings. We show inducing 75%
weight sparsity into MediSwift models, results

in a 2.5x reduction in training FLOPs, while
improving efficiency-accuracy trade-offs in
tasks like PubMedQA.

3. We demonstrate that despite the potential for
sparse pre-training to reduce model accuracy,
dense fine-tuning combined with soft prompt-
ing can effectively regain performance on task-
specific fine-tuning. Specifically, 50% sparse
MediSwift-XL achieves a new state-of-the-art
with 76.3% accuracy on PubMedQA, surpass-
ing existing models up to 7B parameters.

2 Methodology

In this section, we formalize our two-phase train-
ing framework for MediSwift models to reduce
computational costs and yet retain model accuracy.
Initially, we pre-train these models on biomedical
data, applying unstructured weight sparsity to re-
duce the computational training FLOPs. Following
this, we enhance the model through dense fine-
tuning, reactivating weights to improve adaptability
for specific tasks, and incorporate soft prompting
to refine responses for task requirements. This
efficient approach, combining sparse pre-training,
dense fine-tuning, and soft prompting, significantly
boosts both model efficiency and performance, as
our results demonstrate in Section 4.

2.1 Autoregressive Language Modeling
Dense Pre-training Autoregressive LMs predict
a series of tokens by making each token’s pre-
diction dependent on the ones before it, similar
to a Markov chain process. This method follows
core principles of language modeling, aiming to
understand the pattern of token sequences unsu-
pervisedly from a corpus of text data. Consider
an unsupervised corpus U consisting of tokens
u1, u2, . . . , u|U|, with |U| denoting the corpus’s to-
tal token count. Our objective is to enhance the
model’s ability to predict sequences by maximizing
the likelihood of the observed sequences, formu-
lated as the sum of the log probabilities of each
token given its preceding context within a window
of size k. The mathematical representation of this
objective is as follows:

L(U) =
|U|∑

i=1

log(p(ui|ui−k:i−1, θ)),

where θ denotes the neural network’s parameters,
encapsulating the dense configuration of the net-
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work’s architecture. The context window, k, de-
termines the number of preceding tokens used for
current token prediction. The neural network, pa-
rameterized by θ ∈ RN , where N is the total pa-
rameter count, aims to optimize these parameters
across all layers L, with each layer l having its own
set of parameters θl.

Sparse Pre-training Building upon our frame-
work for dense pre-training, we introduce weight
sparsity into the model, specifically to improve
the computational efficiency. We achieve this by
methodically reducing the number of active connec-
tions within each layer l of the model by a prede-
fined sparsity level sl ∈ (0, 1), effectively render-
ing a portion of the network’s parameters inactive.
This process yields a network with (1− sl)Nl ac-
tive parameters per layer, where Nl denotes the
original number of parameters in layer l. The over-
all sparsity is quantified by S, which represents
the ratio of inactive parameters to the total param-
eter count of the initially dense model, calculated

as S =
∑L

l slNl

N . To apply sparsity effectively,
we employ a binary mask m ∈ {0, 1}|θ| to the
model’s initial parameters θ0, resulting in a sparse
parameter set m ⊙ θ0. Our approach to inducing
sparsity involves random parameter pruning, a pro-
cess where S percentage of the model’s weights are
randomly set to zero at initialization. This mask
effectively segregates the parameters into active
(1) and inactive (0) states, thereby establishing a
sparsity-induced version of the language model that
aims to minimize a slightly modified objective:

L(U) =
|U|∑

i=1

log(p(ui|ui−k:i−1,m⊙ θ)). (1)

We leverage the GPT-3 (Brown et al., 2020a) ar-
chitecture for the MediSwift biomedical language
model, training it with the AdamW (Loshchilov
and Hutter, 2017) optimizer on a curated biomedi-
cal dataset, following the objective shown in Eq. 1
for j iterations to obtain parameters θj . This pre-
trained model is then fine-tuned for specific super-
vised tasks in the biomedical domain. GPT-3 was
selected for MediSwift due to its versatility in NLP
tasks and suitability for specialized domains like
biomedicine. Its autoregressive nature and capa-
bility to produce contextually relevant text align
with our methodology of sparse pre-training, dense
fine-tuning, and soft prompting to enhance effi-
ciency and task performance. Additionally, GPT-3

was well-supported on the Cerebras CS-2 hardware,
with optimized kernels for sparse training using un-
structured weight sparsity, further enhancing our
model’s computational efficiency.

Our approach is fundamentally model-agnostic
and adaptable to various LLMs. The core compo-
nents of our methodology (i.e., sparse pre-training
to reduce computational burden, followed by dense
fine-tuning and soft prompting to regain or enhance
task performance) can be broadly applied across
different LLMs, including newer iterations of GPT.

2.2 Dense Fine-tuning and Soft Prompting

In this section, we detail the adaptation of our pre-
trained MediSwift model for tasks like biomedical
question answering (QA) and document classifi-
cation using dense fine-tuning and soft prompting.
We align tasks with varying output formats to our
pre-training format by converting task labels into
natural language sequences (Li and Liang, 2021;
Hu et al., 2021). This method avoids structured
formats and special tokens, ensuring semantic co-
herence and making full use of the natural language
corpus MediSwift was trained on.

Following Luo et al. (2022), each downstream
fine-tuning task is represented by a training set con-
sisting of source-target pairs defined as: Z =
{(x1, y1), (x2, y2), . . . , (x|x|, y|y|)}, where both x
and y are sequences of tokens. For example, in
question answering (e.g., PubMedQA), x corre-
sponds to the question and reference context de-
scription, and y the categorical answer to the ques-
tion; in biomedical document classification (e.g.,
Hallmarks of Cancers corpus), x is the text passage
and y corresponds to the hallmarks of cancer.

2.2.1 Dense Fine-tuning
We begin fine-tuning with parameters θj set at
their pre-trained values, adjusting them by a task-
specific increment ∆θ with the same dimension-
ality, |∆θ| = |θ|. Unlike prior efforts that aimed
at parameter efficiency for easier model deploy-
ment (Hu et al., 2021; Dettmers et al., 2023),
we prioritize reducing pre-training computational
costs via unstructured weight sparsity and en-
hance network representation by adopting dense
fine-tuning (Thangarasa et al., 2023a). This ap-
proach overcomes sparse optimization challenges
by reactivating previously inactive weights during
the dense fine-tuning phase, thus enhancing the
model’s capacity. By removing the sparsity mask
m, we allow

∑L
l sl·Nl weights to be reactivated
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and initialize them to zero—a method proven more
effective than other initialization strategies (e.g.,
scaled uniform or normal distribution initializa-
tions (Evci et al., 2020)). The network is then
densely updated to optimize the loss function:

L(Z) =
∑

(x,y)∈Z
log

|y|∏

t=1

(2)

p(yt|(x1, . . . , xt−1), θ
j +∆θ)

2.2.2 Soft Prompting

Previous research on language models in the
biomedical field has mainly focused on fine-tuning
for domain-specific tasks (Bolton et al., 2021). Re-
cently, there has been a move towards improv-
ing biomedical NLP task performance through
prompt engineering (Luo et al., 2022; Nori et al.,
2023b; Yagnik et al., 2024). Drawing inspiration
from these advancements, our approach integrates
prompt-based techniques into the fine-tuning phase
of MediSwift. More precisely, we adopt the soft
prompting methodology as described by Luo et al.
(2022), aiming to refine our model’s capability in
understanding and processing biomedical text. Sim-
ilar to existing work on prompt tuning (Brown et al.,
2020b; Liu et al., 2021b; Lester et al., 2021), to inte-
grate soft prompts, we insert virtual tokens between
the source and target sequences, thus modifying
the loss function L(Z) in Eq. 2. This adjustment
accounts for the [source; prompt; target] se-
quence structure, impacting the model’s learning
and inference. Let P denote the prompt, consisting
of a sequence of virtual tokens ∈ {v1, v2, . . . , vn},
where n is the number of virtual tokens, and these
tokens are represented by continuous embeddings.
The modified Eq. 2, reflecting the inclusion of the
prompt and its positioning, can be formalized as:

L(Z) =
∑

(x,y)∈Z
log

|y|∏

t=1

(3)

p(yt|([x;P]; y<t), θ
j +∆θ)

Through this multi-faceted approach, our pre-
training and fine-tuneing method for MediSwift
not only addresses the computational efficiency
challenges in LM training, but also leverages the
capabilities of in-domain pre-trained LMs to im-
prove performance on biomedical NLP tasks.

3 MediSwift Biomedical Pre-training

This section describes the MediSwift pre-training
process, including data sources, collection, and pre-
processing for biomedical data. We explain the
dataset’s origins, statistical analysis, and prepara-
tion for efficient training. We also compare MediS-
wift models’ performance with both dense and
sparse pre-training, emphasizing training conver-
gence differences and FLOPs savings.

3.1 PubMed Papers and Abstracts

MediSwift is an in-domain biomedical language
model, drawing its strength from an exclusive pre-
training regimen focused solely on biomedical tex-
tual data. Its foundation lies in the vast repository
of available open-access medical research papers
and abstracts found in PubMed Central (PMC) (Na-
tional Library of Medicine. 2003–2023), similar
to the approaches used in prior models (e.g., Med-
itron (Chen et al., 2023), BioGPT (Luo et al., 2022),
BioMedLM (Bolton et al., 2021)).

PMC consists of 4.91M full-text papers, and
PubMed and PMC Abstracts comprise of 16.1 mil-
lion papers (see Table 1). Moreover, we gathered
the most recent PubMed entries, updated prior to
2023, directly from the official website1, utiliz-
ing the official scripts for PubMed Abstracts2 and
PubMed Central3. Similar to Luo et al. (2022)
and Chen et al. (2023), we filter out empty items
containing solely titles without accompanying ab-
stracts. Furthermore, prior works have show the
significance of in-domain vocabulary for improving
performance of specialized LMs (Gu et al., 2021;
Wu et al., 2023b; Mielke et al., 2021), a critical
step that is often overlooked. Therefore, inspired
by Luo et al. (2022) and (Bolton et al., 2021), in-
stead of using the standard GPT-3 vocabulary, we
learned the vocabulary directly from the biomedical
corpus. Employing Moses (Koehn et al., 2007) tok-
enization followed by byte pair encoding (BPE), we
segment the corpus into word pieces and learn the
vocabulary; resulting in a size of 42,384. By exclu-
sively pre-training with biomedical texts and using
a specialized vocabulary, MediSwift improves the
efficiency-accuracy frontier, as empirically shown
on biomedical tasks in Section 4.

2https://github.com/thoppe/The-Pile-
PubMed?tab=readme-ov-file

3https://github.com/EleutherAI/pile-
pubmedcentral
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Table 1: Statistics on the mixture of pre-training data
for MediSwift, including the sizes of the training and
validation sets. Total sample count is provided for each
set, along with the percentage of validation set allocation
relative to the training set.

Dataset Number of Samples
Train Validation

PubMed Abstracts1 15.7M 487K (3%)
PubMed Papers1 4.9M 142K (3%)

Total 20.6M 629K

3.2 MediSwift Pre-training

Pre-training Experimental Details We pre-train
and benchmarked MediSwift in-domain biomedi-
cal language models at 3 sizes: 302M, 510M and
1.21B. All MediSwift models are pre-trained from
scratch using the Cerebras CS-24, taking advantage
of its ability to accelerate training with unstructured
sparsity. At the time of the study, the specialized
kernels of Cerebras CS-2 were designed to facili-
tate training with static unstructured sparsity (refer
to Appendix B for additional details). In the pre-
training phase of the MediSwift models, 50%, and
75% sparsity levels are explored, aside from their
respective dense counterparts. The pre-training of
MediSwift models are conducted on a single CS-2
for a total of 200,000 steps, with a batch size of
512 and a maximum sequence length of 1024 to-
kens, resulting in approximately 104.86B tokens
processed in total (see Appendix A.1 for additional
pre-training experimental setup details).

3.3 Sparse Pre-trained MediSwift

While there are several advanced sparse training
techniques (Evci et al., 2020; Mocanu et al., 2018;
Liu et al., 2021a), for simplicity, in this work, we
adopt static sparsity, namely random pruning, for
the sparse pre-training of MediSwift models. This
approach mandates a uniform distribution of spar-
sity levels throughout each layer, irrespective of
the layer’s parameter count or its FLOPs. Specif-
ically, the scope of our sparsification process is
confined to all dense linear layers within the net-
work, including both matrices within the multi-
layer perceptron (MLP) module—namely, the in-
termediate layer and the MLP output projection,
as well as the four weight matrices integral to the
self-attention (Vaswani et al., 2017) mechanism:

4https://docs.cerebras.net/en/2.1.1/wsc/
how_to_guides/sparsity.html
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Figure 2: Comparison of pre-training loss curves
for MediSwift models: MediSwift-XL’s training loss
reveals that at 50% sparsity, the model’s performance
closely mirrors that of its dense variant, with negligible
effects on training loss. At 75% sparsity, although the
gap in training loss widens, the sparse MediSwift-XL
still outperforms the dense MediSwift-Med, showcasing
efficient learning even at higher sparsity levels.

query, key, value, and attention output projection.
Notably, we ensure that the embeddings, Layer
Normalization (Ba et al., 2016) components and
biases are kept dense.

3.4 Analysis on Pre-trained Models

In Figure 2, we illustrate the training loss curves
for the MediSwift-XL model for both the dense
and sparse configurations at s ∈ {50%, 75%}.
The 50% sparse model’s training loss closely fol-
lows that of the dense MediSwift-XL, showcasing
minimal deviation throughout the training process.
However, a noticeable divergence is observed at
75% sparsity, where the final training loss slightly
lags behind that of the dense counterpart. Interest-
ingly, when comparing the 75% sparse MediSwift-
XL model with the dense MediSwift-Med model,
the former, despite sharing the same number of non-
embedding parameters, it achieves a lower training
loss (refer to Table 2). This observation aligns with
previous findings that larger, albeit sparser, models
can surpass their smaller, densely parameterized
equivalents in terms of performance (Thangarasa
et al., 2023b; Liu et al., 2022a; Ramanujan et al.,
2020; Golubeva et al., 2021). This superiority is fur-
ther supported by the improved accuracy of the 75%
sparse model on biomedical NLP tasks, when com-
pared to the MediSwift-Med dense model (see Sec-
tion 4), highlightling the benefits of training larger
sparse models in comparison to smaller dense ones.

In Table 2, we provide an analysis of the com-
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Table 2: Final Pre-training Losses and Computa-
tional Efficiency of MediSwift Models. We summarize
the results for the MediSwift-Med and MediSwift-XL
models, trained using the biomedical pre-training corpus
detailed in Section 3.1. We report the final pre-training
losses for dense and sparse variants at 50% and 75%
sparsity levels. The total FLOPs and FLOP savings rel-
ative to the dense baseline are indicated in parentheses,
highlighting the models’ computational efficiency.

MediSwift Size Pre-train
Loss

Train
FLOPs (x 1020)

Meddense 302M 2.234 2.677 (1.00x)
Meds=50% 151M 2.265 1.727 (0.64x)
Meds=75% 0.76M 2.375 1.252 (0.46x)
XLdense 1.21B 1.979 9.148 (1.00x)
XLs=50% 605M 2.012 5.348 (0.58x)
XLs=75% 302M 2.141 3.448 (0.38x)

putational efficiency achieved through sparse pre-
training in our proposed MediSwift architectures,
namely MediSwift-Med and MediSwift-XL. Here,
we quantify the total FLOPs required for both for-
ward and backward propagations during the pre-
training phase of these models. For the MediSwift-
XL model, attention and vocabulary embeddings
represent 13.3% and 6.8% of total FLOPs, re-
spectively, hence highlighting the computational
savings at the 1.21B parameter scale. Sparse
pre-training with 75% sparsity reduces FLOPs by
slightly over 2.5x compared to its dense counter-
part. The smaller MediSwift-Med model has a
higher FLOP percentage for attention and embed-
dings, hence achieving a 2x reduction at the same
sparsity level. This indicates that FLOP savings
increase with model size, demonstrating that larger
models (Hoffmann et al., 2022; Kaplan et al., 2020;
Hestness et al., 2017) can potentially benefit more
from sparse pre-training. In addition, we empha-
size that the total FLOPs required for fine-tuning
these models account for a minor fraction of the
overall pre-training FLOPs, reinforcing the effi-
ciency of our approach in scaling to larger model
sizes while conserving computational resources.

4 Fine-tuning on Biomedical tasks

This section evaluates MediSwift’s performance
on PubMedQA and HoC benchmarks using dense
fine-tuning on each variant’s specific training set
(e.g., fine-tuning and testing with the PubMedQA
dataset). During the fine-tuning phase, the total
training FLOPs constitute only a minor fraction
of the FLOPs expended during pre-training, de-

spite the fine-tuning being conducted densely. As
a result, the FLOPs consumed during sparse pre-
training is proportional to the combined FLOPs of
sparse pre-training and dense fine-tuning. Follow-
ing Luo et al. (2022), we incorporate soft prompt-
ing into our fine-tuning framework by format-
ting sequences as [source; prompt; target].
This format helps our models better utilize con-
textual information, demonstrating MediSwift’s ef-
fectiveness and adaptability in medical text analy-
sis. Further details on hyperparameters and dataset
specifics are provided in Appendix A.2 and A.3.
We note that all fine-tuning results were averaged
across 3 random seeds.

4.1 Question Answering with PubmedQA

We assess MediSwift’s performance on the Pub-
MedQA (Jin et al., 2019) dataset, which is derived
from PubMed abstracts and includes three subsets:
PQA-A, PQA-U, and PQA-L. We adhere to the
original train/val/test splits, focusing on the PQA-
L test set for the final evaluation. Our approach
utilizes multi-stage fine-tuning and soft prompt-
ing with continuous embeddings of length n = 9,
which was shown to perform the best in terms of
accuracy (Luo et al., 2022). Following established
preprocessing methods, we format the data into
[source, target] sequences, each consisting of
a question, reference context, long answer, and
a categorical label, [yes/no/maybe], for the an-
swer. The performance is measured by classifica-
tion accuracy, particularly under the challenging
reasoning-required setting (Jin et al., 2019), where
the model predicts based on the question and con-
text without the long answer.

In Table 3, we demonstrate that across all
sizes, MediSwift improves the pareto frontier
in PubMedQA accuracy, notably with the dense
MediSwift-XL model setting a new benchmark
while being significantly smaller, at 5.8x less size
than PMC-LLaMA. This trend continues with
the 50% and 75% sparse variants of MediSwift,
which surpass other language models of com-
parable or larger sizes. Specifically, the 75%
sparse MediSwift-XL exceeds BioMedLM’s per-
formance by 1.0% while being approximately 8.9x
smaller. Furthermore, within the MediSwift family,
the larger yet sparse 75% MediSwift-XL demon-
strates superior performance over the smaller dense
MediSwift-Med by 1.2%, despite both models shar-

5https://github.com/microsoft/BioGPT/tree/
main/examples/QA-PubMedQA
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Table 3: MediSwift’s performance on the PubMedQA
reasoning-required task in both dense and sparse set-
tings, s ∈ {50%, 75%}. This table compares MediS-
wift against other language models from the PubMedQA
leaderboard, demonstrating its efficiency-accuracy im-
provement. Results are shown for models ≤ 7B pa-
rameters, with the “size” column indicating pre-training
parameters and the final column reporting test accuracy
on the PQA-L test set.

Model Size Acc.
PubMedBERT(Gu et al., 2021) 110M 55.8
BioELECTRa(Kanakarajan et al., 2021) 110M 64.2
BioLinkBERTbase, (Yasunaga et al., 2022b) 110M 70.2
BioLinkBERTlarge, (Yasunaga et al., 2022b) 340M 72.2
BioGPTmed, (Luo et al., 2022) 345M 73.6†

DRAGON(Yasunaga et al., 2022a) 360M 73.4
MediSwift-Meddense 302M 74.2
MediSwift-Med(s=50%) 151M 73.8
MediSwift-Med(s=75%) 0.76M 72.4
BioGPTlarge, (Luo et al., 2022) 1.54B 75.5†

BioMedLM(Bolton et al., 2021) 2.70B 74.4
PMC-Llama(Wu et al., 2023a) 7.00B 73.4
GPT-3.5 (0-shot)(Nori et al., 2023a) - 71.6
GPT-4 (0-shot)(Nori et al., 2023a) - 75.2
MediSwift-Largedense 510M 75.1
MediSwift-Large(s=50%) 255M 74.2
MediSwift-Large(s=75%) 128M 73.4
MediSwift-XLdense 1.21B 76.8
MediSwift-XL(s=50%) 605M 76.3
MediSwift-XL(s=75%) 302M 75.4
† We followed the fine-tuning steps used in the official
BioGPT code5 to reproduce the results on BioGPTmed and
BioGPTlarge, which reported accuracies of 78.2% and 81.0%,
respectively (Luo et al., 2022). However, the methodologies
for fine-tuning on PubMedQA (Luo et al., 2022), as well as
the fine-tuning scripts, lack clear descriptions and details,
making it difficult to reproduce these results, especially
under a reasoning-required setting. Hence, we made efforts
to replicate their findings as closely as possible, despite
uncertainties about the original experimental setup.

ing the same pre-training parameters.

Prompt Tuning Ablation Study To assess the
effectiveness of soft prompting, we have conducted
the requested analysis and provide the results below.
Our study focused on evaluating the impact of soft
prompting on the performance of our MediSwift
models during the fine-tuning phase, across both
dense and sparse configurations (see Table 1). The
approach involves steering the pre-trained language
model by appending several additional virtual to-
kens as prompts before the text. These continuous
embeddings, distinct from the main text, are ran-
domly initialized and learned end-to-end on down-

Table 4: Ablation study results evaluating the impact
of soft prompting on MediSwift-XL models during
fine-tuning. We compared dense and sparse configu-
rations (50% and 75% sparsity) with and without soft
prompting. Soft prompting consistently improved accu-
racy across all configurations.

MediSwift-XL Size Dense
Fine-tune

Soft
Prompt Acc.

Dense 1.21B ✓ ✗ 76.1
Dense 1.21B ✓ ✓ 76.8
s = 50% 605M ✓ ✗ 75.7
s = 50% 605M ✓ ✓ 76.3
s = 75% 302M ✓ ✗ 74.8
s = 75% 302M ✓ ✓ 75.4

stream tasks, making them task-specific. Unlike
prefix tuning (Li and Liang, 2021), we strategi-
cally place the virtual tokens not at the very be-
ginning of the source input but specifically before
the target sequence, resulting in a final sequence
structure of [source; prompt; target] (as described
in Section 2.2.2). The application of soft prompt-
ing yields a 0.7% accuracy increase in the dense
MediSwift-XL model, with significant gains also
seen in the 50% and 75% sparse configurations.
This highlights soft prompting’s role in refining out-
puts through task-specific conditioning, boosting
accuracy in biomedical question answering tasks.

4.2 Document Classification on HoC

We examine the Hallmarks of Cancers (HoC) cor-
pus (Baker et al., 2016), comprising 1580 PubMed
abstracts annotated for ten cancer hallmarks. We
tackle a document classification task, assigning
documents to predefined single or multi-label cat-
egories, and using MediSwift to generate label
words. We follow the established train/dev/test
splits of 1108/157/315 (Gu et al., 2021). Similar
to Luo et al. (2022), we employ a continuous em-
bedding of length n = 1 as the prompt, and we
incorporate labels into the target sequence.

The performance is evaluated using the micro-
F1 score, allowing direct comparison with prior
models and demonstrating our method’s effective-
ness. In Table 5, the dense MediSwift-XL model
outperformed all similarly sized models in micro-
F1 score, with its 50% and 75% sparse showing
very competitive results, emphasizing sparse pre-
training’s balance of computational efficiency and
accuracy. This further showcases the potential of
sparsity in optimizing language model performance
for biomedical applications.
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Table 5: MediSwift’s performance on the Hallmarks
of Cancers (HoC) document classification task in both
dense and sparse settings, s ∈ {50%, 75%}. This ta-
ble compares MediSwift against other language mod-
els, demonstrating its efficiency-accuracy improvement.
The size column indicating pre-training parameters and
final column reporting micro-F1 score on the test set.

Model Size F1
BioBERT(Lee et al., 2019) 110M 81.54
PubMedBERT(Gu et al., 2021) 110M 82.32
BioLinkBERTbase, (Yasunaga et al., 2022b) 110M 84.35
BioLinkBERTlarge, (Yasunaga et al., 2022b) 340M 84.57
GPT-2med, (Luo et al., 2022) 345M 81.54
BioGPTmed, (Luo et al., 2022) 345M 85.12
BioGPTlarge, (Luo et al., 2022) 1.54B 84.40
MediSwift-Meddense 302M 85.15
MediSwift-Meds=50% 151M 84.48
MediSwift-Meds=75% 0.76M 83.95
MediSwift-Largedense 510M 85.22
MediSwift-Larges=50% 255M 84.63
MediSwift-Larges=75% 128M 84.12
MediSwift-XLdense 1.21B 85.46
MediSwift-XLs=50% 605M 84.98
MediSwift-XLs=75% 302M 84.71

5 Related Work

Sparse Training for Language Models Sparse
weight training for language models (LM) have
emerged as a promising avenue to address the
computational intensity of training large models.
Recent work has explored various sparse train-
ing methods (Thangarasa et al., 2023a; Dao et al.,
2022a; Chen et al., 2022), aiming to maintain or
enhance model performance while significantly re-
ducing computational requirements. Techniques
such as pruning (Chen et al., 2020), sparse activa-
tions (Mirzadeh et al., 2024), along with the de-
velopment of specialized software (NeuralMagic,
2021; Gupta, 2024) and hardware (Lie, 2022b,a; Di-
etrich et al., 2021) have been pivotal. We build on
these foundations, focusing on optimizing sparse
weight training strategies specifically for domain-
specific LMs, pushing the boundaries of efficiency.
Biomedical Language Models The evolution of
language models for medical applications has pro-
gressed from adapting encoder-only architectures
like BERT (Devlin et al., 2018), using biomedi-
cal corpora (Lee et al., 2019; Gu et al., 2021), to
incorporating strategies like document links (Ya-
sunaga et al., 2022b) and knowledge graphs (Ya-
sunaga et al., 2022a). The shift towards autore-

gressive generative models, such as GPT (Brown
et al., 2020b) and Llama (Touvron et al., 2023a),
for pretraining on medical texts has led to signif-
icant advancements (Wu et al., 2023a; Luo et al.,
2022; Bolton et al., 2021). Recent scaling efforts
include GatorTronGPT with 20B parameters (Yang
et al., 2022), as well as Clinical-Camel (Toma et al.,
2023), MEDITRON (Chen et al., 2023) and Med-
42 (Christophe et al., 2023), based on Llama-2-
70B (Touvron et al., 2023b), focusing on mixed
clinical and general English texts. Our work di-
verges from works that scaled up medical LMs by
introducing weight sparsity into the pre-training of
biomedical LMs. This reduces the computational
costs typically associated with large-scale models,
thereby improving the balance between efficiency
and accuracy in the medical domain.
Prompting for Biomedical Language Models
Recent research has shifted towards prompt en-
gineering to enhance language models’ perfor-
mance on biomedical tasks, such as BioGPT’s (Luo
et al., 2022) use of soft prompt-tuning and Med-
prompt’s (Nori et al., 2023b) innovative prompt-
ing techniques for generalist foundation models.
Liévin et al. (2023) and Yagnik et al. (2024) ana-
lyzed the effectiveness of prompting in the med-
ical domain and showed that it can improve met-
ric scores. However, combining task-specific fine-
tuning with prompting strategies, as seen in Med-
PaLM 2 (Singhal et al., 2022, 2023), yields com-
petitive results on challenging biomedical tasks.
Our work extends this by integrating task-specific
fine-tuning and soft prompting to address model
accuracy loss during sparse pre-training, effectively
achieving efficiency gains with minimal accuracy
degradation on biomedical tasks.

6 Conclusion

In conclusion, MediSwift innovates in biomedical
language models by combining sparse pre-training
with dense fine-tuning and soft prompting, balanc-
ing computational efficiency with accuracy. Avail-
able in Med, Large, and XL sizes, with 50% and
75% sparsity, MediSwift addresses the cost of train-
ing models and sets new standards for biomedical
tasks like PubMedQA. MediSwift-XL, in particu-
lar, showcases superior efficiency-accuracy trade-
offs, outperforming models up to 7B parameters.
This work exemplifies the potential of sparse pre-
training as a cost-effective method for developing
specialized, high-performance models, establishing
MediSwift as a benchmark in biomedical NLP.
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Limitations

Our work on MediSwift represents a signifi-
cant leap forward in developing efficient domain-
specific LLMs, particularly in biomedicine, by uti-
lizing sparse pre-training to strike a fine balance
between computational efficiency and accuracy.
While we have initially focused on static sparse
pre-training, the emerging field of dynamic sparse
training (DST) holds great promise for further im-
provements (Evci et al., 2020; Mocanu et al., 2018;
Liu et al., 2021a).

DST offers an exciting avenue for optimizing
sparsity patterns dynamically, potentially elevat-
ing model quality and training efficiency to new
heights. Although the implementation of DST re-
quires advanced software and hardware support
for unstructured sparse computations—capabilities
that were beyond our current scope—this innova-
tive approach represents an interestingly opportu-
nity for future research. As support for unstruc-
tured sparse training evolves with ML software-
hardware co-design, we anticipate these advance-
ments will enable us to harness DST, paving
the way for even more high-quality and efficient
domain-specific LLMs.

Ethics Statement

While MediSwift represents a significant advance-
ment in encoding medical knowledge from sources
of high-quality evidence, it is important to note
that it has not been fully adapted to deliver this
knowledge in a manner that is appropriate, safe,
or within the actionable constraints required by
medical professionals. Therefore, we strongly rec-
ommend against deploying MediSwift directly in
clinical or medical applications without thorough
alignment with specific use cases.

Moreover, additional testing is crucial, including
the conduct of randomized controlled trials in real-
world practice settings, to ensure the model’s rec-
ommendations are reliable and beneficial in prac-
tical healthcare environments. This cautionary ap-
proach emphasizes the importance of bridging the
gap between technological capabilities and the nu-
anced requirements of medical practice to ensure
patient safety and efficacy of care.
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A Experimental Setup and
Hyperparameter Details

A.1 Pre-training on Biomedical Data
To train all MediSwift models, we use the AdamW
optimizer (Loshchilov and Hutter, 2017) with
a peak learning rate set at 2×10-4, β1 =0.9,
β2 =0.95 and ϵ =10-8. A linear warmup period,
amounting to 10% of the total training steps, is
employed before transitioning to a cosine decay
schedule, with the learning rate decreasing to a
minimum of 10% of the peak value (i.e., 2×10-5).
In Table 6, we provide details on the size and ar-
chitecture configurations of the MediSwift models
we pre-trained. Here, nparams is the total number
of trainable parameters, nlayers is the number of
decoder layers, and dmodel is the base size of the
model. The feedforward bottleneck is four times
the base size, i.e., dff = 4 × dmodel. Finally, nheads
are the number of attention heads and dhead is the
dimension of each attention head. The context win-
dow size is set to 1024.

Table 6: Sizes, architectures, and pre-training hyperpa-
rameters (batch size, learning rate, etc.) of the MediS-
wift models at three sizes (i.e., Med, Large and XL),
which are trained for a total of 104.86B tokens.

MediSwift Models
Med Large XL

nparams 302M 510M 1.21B
nlayers 24 18 24
dmodel 1024 1536 2048
nheads 16 12 16
dhead 64 128 128
Batch Size 512
MSL 1024
Optimizer AdamW
Warmup Schedule Linear
Decay Schedule Cosine
LR 2×10-4

Weight Decay 0.1
Total Steps 200,000
Warmup Tokens 10.486×109

Training Tokens 104.86×109

Following the training FLOPs calculation de-
scribed in Hoffmann et al. (2022), we compute the
total pre-training FLOPs for the dense and sparse
variants of MediSwift-Med, Large and XL, and
report them in Table 7, along with their relative
FLOPs reduction over the dense baseline. Simi-
lar to Appendix F of Hoffmann et al. (2022), we

Table 7: Final Pre-training Losses and Computa-
tional Efficiency of MediSwift Models. We summarize
the results for the MediSwift-Med and MediSwift-XL
models, trained using the biomedical pre-training corpus
detailed in Section 3.1. We report the final pre-training
losses for dense and sparse variants at 50% and 75%
sparsity levels. The total FLOPs and FLOP savings rel-
ative to the dense baseline are indicated in parentheses,
highlighting the models’ computational efficiency.

MediSwift Size Pre-train
Loss

Train
FLOPs (x 1020)

Meddense 302M 2.234 2.677 (1.00x)
Meds=50% 151M 2.265 1.727 (0.64x)
Meds=75% 0.76M 2.375 1.252 (0.46x)
Largedense 510M 2.047 4.248 (1.00x)
Larges=50% 255M 2.172 2.645 (0.62x)
Larges=75% 128M 2.281 1.840 (0.43x)

XLdense 1.21B 1.979 9.148 (1.00x)
XLs=50% 605M 2.012 5.348 (0.58x)
XLs=75% 302M 2.141 3.448 (0.38x)

also include the training FLOPs contributed by the
embedding matrices. Additionally, in large mod-
els, the contribution of embedding matrices to the
overall FLOPs and parameters is minimal.

A.2 PubMedQA Fine-tuning

As mentioned in Section 4.1, the PubMedQA
dataset includes three subsets: PQA-A, PQA-U,
and PQA-L. We train all of our MediSwift models
on the original train/val/test splits for each of these
datasets in a multi-stage manner (Jin et al., 2019),
both dense and sparse, using AdamW (Loshchilov
and Hutter, 2017) and a linear learning rate warmup
(i.e., 10% of to the total training steps) followed by
a cosine decay schedule for a maximum 5 epochs,
and perform early-stopping when the models began
to overfit. We perform a grid search to discover an
appropriate learning rate that led to the best down-
stream classification accuracy on each of the three
datasets for a given compute budget. More specifi-
cally, on the dense baseline and sparse variants, we
select the best batch size among {8, 16, 32, 64}
and select the best learning rate among {2e-4, 1e-4,
5e-5, 2.5e-5} on the validation set. After training
on the final stage (i.e., PQA-L), we evaluate the
model on the PQA-L test set using the official eval-
uation scripts6. All results were averaged across 3
random seeds.

6https://github.com/pubmedqa/pubmedqa
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Figure 3: Comparison of measured speedup versus the-
oretical speedup for GPT-3 layer 12k × 12k matrix
multiplication (MatMul) on the Cerebras CS-2 system
at various sparsity levels. This graph illustrates the
efficiency gains achieved through sparse computation,
highlighting the real-world performance relative to the-
oretical predictions.

A.3 HoC Fine-tuning

In Section 4.2, we described the Hallmarks of
Cancers (HoC) dataset which comprises of 1580
PubMed abstracts with a 1108/157/315 split for
train, val and test sets following Gu et al. (2021).
We train all of our MediSwift models on the orig-
inal train/val/test splits for both dense and sparse,
using AdamW (Loshchilov and Hutter, 2017) and
a linear learning rate warmup (i.e., 10% of to the
total training steps) followed by a cosine decay
schedule for a total of 100 epochs, and perform
early-stopping when the models began to overfit.
We perform a grid search to discover an appropriate
learning rate that led to the best micro-F1 score for
a given compute budget. More specifically, on the
dense baseline and sparse variants, we select the
best batch size among {16, 32, 64} and select the
best learning rate among {8e-5, 4e-5, 2e-5, 1e-5}
on the validation set. All results were averaged
across 3 random seeds.

B Unstructured Sparsity on Specialized
Hardware Accelerators

The Cerebras CS-2 system, designed specifically
for accelerating deep learning computations, can
handle unstructured sparsity efficiently due to its
unique architecture (Lie, 2022b, 2021). The CS-2’s

wafer-scale engine, with its vast array of compu-
tational cores and on-wafer memory, efficiently
manages unstructured sparsity’s irregular memory
access, surpassing traditional architectures that of-
ten face memory bandwidth constraints. Moreover,
the CS-2 has a significant amount of on-chip mem-
ory, reducing the need to access external memory.
This is crucial for unstructured sparsity, as the irreg-
ular access patterns can lead to high latency if data
needs to be fetched from off-chip. By keeping more
data on-chip, the CS-2 minimizes these latencies.
In addition, the system supports fine-grained paral-
lelism, allowing it to execute many small, sparse op-
erations concurrently across its thousands of cores.
This is particularly advantageous for unstructured
sparsity, as the workload can be distributed across
many cores to maintain high utilization. In Fig-
ure 3, we highlight the potential realized gains with
unstructured weight sparsity on the Cerebras CS-2.
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