
Findings of the Association for Computational Linguistics: ACL 2024, pages 2336–2353
August 11-16, 2024 ©2024 Association for Computational Linguistics

Iterative Refinement of Project-Level Code Context for Precise Code
Generation with Compiler Feedback

Zhangqian Bi1∗ Yao Wan1∗† Zheng Wang2 Hongyu Zhang3 Batu Guan1

Fangxin Lu1 Zili Zhang4 Yulei Sui5 Hai Jin1∗ Xuanhua Shi1∗
1Huazhong University of Science and Technology 2University of Leeds

3Chongqing University 4Shanghai Jiao Tong University 5University of New South Wales
{zqbi,wanyao,hjin,xhshi}@hust.edu.cn

Abstract

Large Language Models (LLMs) have shown
remarkable progress in automated code genera-
tion. Yet, LLM-generated code may contain er-
rors in API usage, class, data structure, or miss-
ing project-specific information. As much of
this project-specific context cannot fit into the
prompts of LLMs, we must find ways to allow
the model to explore the project-level code con-
text. We present COCOGEN, a new code gener-
ation approach that uses compiler feedback to
improve the LLM-generated code. COCOGEN
first leverages static analysis to identify mis-
matches between the generated code and the
project’s context. It then iteratively aligns and
fixes the identified errors using information ex-
tracted from the code repository. We integrate
COCOGEN with two representative LLMs, i.e.,
GPT-3.5-Turbo and Code Llama (13B), and
apply it to Python code generation. Experimen-
tal results show that COCOGEN significantly
improves the vanilla LLMs by over 80% in
generating code dependent on the project con-
text and consistently outperforms the existing
retrieval-based code generation baselines.

1 Introduction

Large Language Models (LLMs), especially those
pre-trained on code, as demonstrated by tools
such as GitHub Copilot (Microsoft, 2024), Ama-
zon’s CodeWhisperer (Amazon, 2023), and Chat-
GPT (OpenAI, 2023), are revolutionizing how de-
velopers approach programming by automatically
generating code for given contexts (e.g., natural-
language descriptions or surrounding incomplete
code). While existing LLM-based code generation
tools excel in code generation within a small-scale
and isolated context (i.e., a single file), integrating

*Also with National Engineering Research Center for Big
Data Technology and System, Services Computing Technol-
ogy and System Lab, Cluster and Grid Computing Lab, School
of Computer Science and Technology, Huazhong University
of Science and Technology, Wuhan, 430074, China.

†Yao Wan is the corresponding author.

Enhance the image by first reducing
noise and then adjusting brightness and
contrast.

(a) Task Prompt

def (img: Image):

 denoised_img = (img)

 ...

enhance_image
reduce_noise

import
def

denoising

denoising.denoise(img)

 (img):

 denoised_img =
 ...

enhance_image

Error: missing .

Synonyms:

‘reduce_noise’

def denoising.denoise(img)

(b) Generating and Identifying Errors

(c) Generating with Correct Context

Figure 1: LLM-based code generation example. (a) task
prompt; (b) wrong solution and error identification; (c)
correct solution utilizing project context

LLM-based code generation into real-world soft-
ware projects remains challenging (Li et al., 2024).

Practical code generation for software reposito-
ries is often associated with broader project-level
contexts declared in other repository files due to
the demands of modularity, structure, and compre-
hension in software management (Kemerer, 1995).
Solely providing the task requirements and sur-
rounding incomplete code can lead LLMs to over-
look the complex hierarchies of APIs, classes, data
structures, or type constraints specific to a software
project’s repository, risking omitting essential logic
during code generation (Gifany et al., 2013).

As a motivating example, consider the case
shown in Figure 1. In this case, we use the Ope-
nAI GPT-3.5-Turbo API to generate an image-
enhancing function by first reducing the notice and
then adjusting brightness and contrast. Given the
prompt in Figure 1a, the LLM will produce a code
snippet of calling a reduce_noise method as
depicted in Figure 1b. Although the generated code
follows a standard workflow specified in the task

2336

prompt, it leads to a compilation error in our ap-
plication context because reduce_noise is not
implemented. This is unsurprising as the prompt
does not provide enough project-level context for
the LLM, and can be fixed by providing the project-
specific function denoising.denoise as con-
text, as illustrated in Figure 1c. While a carefully
engineered prompt may resolve this issue, it is
not always possible for the user to generate such
prompts, and the project context may be too large
to fit into the prompt. As we will empirically show
later in (Section 2.2), such errors are commonly
found when applying LLMs to repository-level
code generation (Li et al., 2024).

This paper investigates a way to effectively in-
tegrate LLM-based code generation with existing
code implementations within a software project.
Our solution is to leverage project-level contextual
information, such as project-specific implementa-
tion of classes, methods, and data structures, to
reduce compilation errors and improve code qual-
ity. Directly incorporating the entire project code
into a language model is infeasible due to model
input sequence length limitations. Instead, we use
compiler-based analysis to post-process the model-
generated code by first detecting discrepancies be-
tween the generated code and the project’s con-
text. We then utilize information extracted from the
project code base to rectify the mismatches in using
modules, APIs, and classes. Our approach com-
bines well-established compiler techniques with
emerging generative methods, allowing software
developers to leverage the power of LLMs with-
out being overwhelmed and discouraged by the
frequent compilation and semantic errors in the
model-generated code.

We present COCOGEN, a method to allow an
LLM to leverage the code repository of a software
project to enhance the quality of the generated code.
For a given LLM-generated code sample, COCO-
GEN first compiles it and identifies context-related
errors. It then retrieves the related context from
the code repository to fix the errors. This itera-
tive generation and verification process proceeds
repetitively until no error is identified in the gen-
erated solution. We demonstrate that COCOGEN

enhances the accuracy of generation (as indicated
by pass rates) by bridging the gap between the
repository context and the intended solution.

We evaluate COCOGEN by applying it to the
CoderEval benchmarking dataset (Yu et al., 2024),

which consists of code generation tasks utilizing
project-specific context. We test COCOGEN on
two popular code generation models: the GPT-3.5-
Turbo (OpenAI, 2023) and Code Llama (Rozière
et al., 2023). Experimental results demonstrate that
COCOGEN significantly improves the repository-
level code generation performance of different de-
pendency levels, outperforming the baseline by
over 80% relative pass rates in generating functions
dependent on project-specific contexts. Moreover,
our iterative method consistently enhances the per-
formance of vanilla retrieval-augmented generation.
We also provide a comprehensive analysis of the ef-
fectiveness and limitations of COCOGEN, offering
insights for future research.

This paper makes the following contributions:

• An empirical study to analyze the error distribu-
tion in self-contained and repository-level code
generation, highlighting the significance of pre-
cise and grounded program context in generating
code at the project level (Section 2.2);

• A new iterative generation-verification-retrieval
method that leverages the program compiler to
eliminate context-related errors in repository-
level code generation (Section 3);

• Extensive experiments and analysis based on
two LLMs, i.e., GPT-3.5-Turbo and Code Llama
(13B), showing the effectiveness of the proposed
COCOGEN method (Section 5).

The source code and dataset used in this paper
are available at: https://github.com/
CGCL-codes/naturalcc/tree/main/
examples/cocogen.

2 Background

2.1 LLM-based Code Generation

Our work targets the code generation task, which
produces source code from a natural-language de-
scription complemented by programming context
(e.g., project-specific APIs, and data structures).
We denote this input as x. Given x, it is first con-
verted to a sequence of tokens x = [x1, . . . , x|x|],
and a generative Language Model (LM) pLM(x)
predicts new tokens sequentially. At each step t,
the LM calculates the probability distribution of
the next token as pLM(xt|x1:t−1). The probability
of generating a program y with token sequence
y = [x|x|+1, . . . , x|x|+|y|] is computed as a prod-

2337

https://github.com/CGCL-codes/naturalcc/tree/main/examples/cocogen
https://github.com/CGCL-codes/naturalcc/tree/main/examples/cocogen
https://github.com/CGCL-codes/naturalcc/tree/main/examples/cocogen

Table 1: Typical errors reported in compilation and
execution

Error Type Example
UNDEF No name ‘AsyncBolt5x0’ in module ’neo4j._sync.io._bolt5’
API No value for argument ‘xmls’ in function call
OBJECT ‘function’ object is not subscriptable
FUNC The generated function not passes a test case
OTHER Parsing failed: ‘expected an indented block after function definition’

uct of next-token distributions given left context:

p(y|x) =
|x|+|y|∏

t=|x|+1

pLM(xt|x1:t) (1)

For few-shot learning with large LMs, the gener-
ation is also often conditioned on a fixed set of m
exemplars, {⟨xi, yi⟩}i≤m. Thus, the LLM-based
code generation can be formulated as:

pLM(y|x) = p(y|x, {⟨xi, yi⟩}i≤m) (2)

Practically, the probability of the next token xt
depends on a fixed number of preceding tokens
xmax(1,t−w) : xt−1, defined by the model’s context
window length w, without encompassing the entire
software project’s code base.

2.2 Error Analysis in Code Generation
The performance of simple function-level code gen-
eration has significantly improved, as demonstrated
by an increase in the pass rate from 31.6% with
CodeT5 (Wang et al., 2021) to 94.7% with the
state-of-the-art Code Llama (Rozière et al., 2023)
on the widely-used HumanEval benchmark (Chen
et al., 2021). However, a recent study (Yu et al.,
2024) shows that existing LLMs for code gener-
ation struggle to generate code snippets that are
dependent on the project contexts, such as private
APIs, classes, data structures, or type constraints.
To this end, various benchmarks, including ClassE-
val (Du et al., 2024), CoderEval (Yu et al., 2024),
and CrossCodeEval (Ding et al., 2023), have been
devised to assess the performance of LLMs in gen-
erating context-dependent code within the project.

To better illustrate our motivation, we perform
an empirical analysis of when the LLMs fail to gen-
erate complex code that is dependent on project-
level context, on the CoderEval dataset (Yu et al.,
2024). This dataset comprises 85 function-level
tasks and 145 project-level tasks. Specifically, we
select the GPT-3.5-Turbo (OpenAI, 2023) as a tar-
get LLM for function-level code generation. Based
on it, we select a state-of-the-art method called
RepoCoder (Zhang et al., 2023a). RepoCoder re-
trieves project-level context as an augmentation

Error Type API OBJECT UNDEF OTHER FUNC

14%

2%
7%

5%

72%

17%

1%

47%

1%

34%

Function−level Project−level

Figure 2: Distribution of error types in the generated
solutions on CoderEval dataset

and incorporates the five code fragments with the
highest similarity scores, as determined by dense
passage retrieval (Karpukhin et al., 2020), into the
prompt for improved code generation.

As the code is generated, we compile it and col-
lect any errors reported by the compiler or encoun-
tered during testing. We have generated 10 candi-
date solutions for a task, comprising 850 solutions
for function-level tasks and 1450 for project-level
tasks. We report the Pass@10 rate as 53.57% for
function-level tasks and 39.73% for project-level
tasks. The code that does not pass the test has been
taken into error analysis. Each generated code snip-
pet contains precisely one type of error. If multi-
ple errors are reported by the compiler, the most
common error type is selected for analysis. The
error distribution reveals that four specific types of
errors constitute the majority of all errors encoun-
tered. We categorize these errors into: 1) UNDEF,
involving Use of Undefined Symbol, 2) API, involv-
ing Incorrect Use of APIs, 3) OBJECT, involving
Improper Use of an Object, 4) FUNC, involving
Runtime or Functional Errors, and 5) OTHER, in-
volving Other Syntax and Semantic Errors. Table 1
presents several errors encountered in compiling
and testing. One example is the “UNDEF” error,
where a variable AsyncBolt5x0 is referenced
but does not exist in the specified module.

Figure 2 illustrates the distribution of error types,
under the scenario of function-level code gener-
ation and project-level code generation. From
this figure, we can observe that the majority of
errors are runtime or functional errors, accounting
for 72% and 34% for function-level and project-
level code generation, respectively. Furthermore,
the UNDEF errors and the API errors account
for substantially high portions of 21% and 64%
for function-level and project-level code genera-
tion, respectively. COCOGEN addresses both types
of errors associated with project context by sup-

2338

Error Feedback

No name 'SyncBolt3' in
module async._bolt3

No compilation errorCompiler

Return Bolt protocol
handlers based on the
value of p_ver for
AsyncBolt.

main.py

 :

 ()

class
def

SynbBolt
get_handler

“Return Bolt
protocol handlers

...”

async/bolt3.py

 :

 ()

class
def

SynbBolt
get_handler

“Return Bolt
protocol handlers

...”

async/bolt3.py

 :

 ()

class
def

SynbBolt
get_handler

“Return Bolt protocol
handlers

...”

async/bolt3.py

 :

 ()

class
def

SynbBolt
get_handler

“Return Bolt protocol
handlers

...”

async/bolt.py

 :

 ():

 <to be completed>

class
def

AsyncBolt
get_handler

“Return Bolt protocol
handlers”

...

...()

async/_bolt3.py

class :

 """ Server connection
for Bolt protocol.
"""

AsyncBolt class :

 """Handler for

Bolt 3 protocol."""

AsyncBolt3

@classmethod

 (p_ver):

 """ Return Bolt
protocol handlers."""

 <to be completed>

def get_handler class (Enum):

 """Defines states for
a Bolt connection."""

BoltStates CONNECTED = "CONNECTED"

 READY = "READY"

 STREAMING = "STREAMING"

async/bolt.py

class :

 ...

SyncBolt

sync/bolt.pymain.py

class :

 def get_handler(p_ver):

 from ._bolt3 import

SyncBolt

 SyncBolt3

class :

 def get_handler(p_ver):

 <to_be_completed>

AsyncBolt
module :

 class :

 def (): ...

 class : ...

neo4j._sync.io._bolt3

BoltStates

AsyncBolt3
handler

f1

f1

f3

f2

f2

f1

f3

I

II

Class
Function
Variable

...

...
async/bolt.py

class

function

doc

name

ASyncBolt

name ...

get_han
dler

“Return
Bolt ...”

body

Code Files

Task Requirement
Iterations

LLMs

Retrieval Context Generated Solution

Abstract Syntax Trees
Extracted Project Context

def get_handler(p_ver):

 from ._bolt3

 import AsyncBolt3

 AsyncBolt3.handler()...

def get_handler(p_ver):

 from ._bolt3

 import
 . ()...

SyncBolt3

SyncBolt3 handler

(a) Project-level Context Extraction

(b) Iterative Context Refinement

Figure 3: Overview of the COCOGEN method. (a) the project-level code context extraction process; (b) iterative
refinement to fix compiler-reported errors

plying the relevant project context. Experiments
demonstrate that COCOGEN not only fixes these
two types of error but also mitigates other compila-
tion errors by providing context feedback on error
messages to the code LM, leading directly to an
improvement in prediction accuracy.

3 Methodology

3.1 Overview

Figure 3 depicts the workflow of COCOGEN, con-
sisting of two crucial components: 1) a method
for extracting project-level code context through
both syntactic and semantic approaches, and 2) a
component responsible for iterative generation and
evaluation of solutions. This process refines the
generated solutions incrementally, ensuring they
evolve towards an error-free state that seamlessly
aligns with the codebase of the software project.

3.2 Project-Level Code Context Extraction

Supposing that the code generation tools are acti-
vated at a specific juncture. In light of the natural-
language requirement and the code produced by
LLMs after an initial iteration, our objective is to
extract the semantic context of the generated code
from the project’s code base.

Unlike plain texts, source code has syntactic
structures that enable precise identification of ele-
ments in a project. Thus, in practice, we employ
syntax-directed program analysis (Aho et al., 2006)
at various points throughout the offline stage to
extract the code context at the project level. We
initially employ a parser to transform each source

code file within the project into an Abstract Syntax
Tree (AST), extracting tree nodes that correspond
to classes, functions, or variables. Subsequently,
if a node of these types is found to be a child of
another node (e.g., the function get_handler
and the class AsyncBolt in Figure 3a’s AST) ,
an edge is created from the parent node to the child
node, establishing a hierarchical relationship.

Take the function f1 from Figure 3a as an ex-
ample. From this figure, we can see that both
its semantics (e.g., its docstring), and its syntac-
tic relation between the parent class AsyncBolt
and file async/bolt.py are captured. This
allows COCOGEN to find the function from the
project syntactically using the function’s quali-
fied name AsyncBolt.get_handler(), or
semantically according to its docstring “Return
Bolt protocol handlers”.

3.3 Retrieval-Augmented Code Generation

We leverage project-level code context in the
retrieval-augmented generation paradigm (Zhang
et al., 2023a; Ding et al., 2024; Karpukhin et al.,
2020), which has been widely adopted to integrate
factual knowledge into LLMs and address halluci-
nation issues. In practice, we commence by ex-
tracting project-level context from the database
through the construction of a Structured Query
Language (SQL) query. Following this, we en-
hance the acquired context by retrieving similar
code snippets based on the dense passage retrieval
techniques (Karpukhin et al., 2020).

2339

Demonstration

Examples

Please generate SQL according to given error line
content and error message.

loggerDict.RootLogger(msg)

No name 'RootLogger' in module ‘loggerDict’
FROM Module m, Variable v WHERE m.getName() = ‘loggerDict’

SELECT v

(a) Prompt for SQL Synthesize

(b) Prompt for Code Generation

Error Message:
SQL:

Error Line Content:

Task instruction:

Last Solution:

Task Requirement:

Project Context:

from ._bolt3 import AsyncBolt3

No name ‘SyncBolt3’ in module ‘async._bolt3’

No name ‘SyncBolt3’ in module ‘async._bolt3’

[to be completed]
Error Message:
SQL:

Error Line Content:

[to be completed]Desired Solution:

Desired Solution:

Task Requirement:

Demonstration

Examples

Please generate code following the task requirement,
fixing errors in previous solution according to relevant context (if exist).

def handlers(p_ver):

module :neo4j._async._bolt3

 def (): ...get_handler
 class :AsyncBolt3

 class BoltStates: ...

 from ._bolt3 import SyncBolt3

from ._bolt3 import SyncBolt3

...

Return Bolt protocol handlers based on the value of
p_ver for AsyncBolt.

Check if in given list of numbers, are any two num-
bers closer to each other than given threshold.

def has_close_elements(numbers: List[float],
threshold: float) -> bool ...

Task instruction:

Compiler
Feedback

Retrieved
Context

Error Message:
Error Line Content:

Figure 4: Prompt examples for (a) SQL synthesize and
(b) code generation

Structural Search. Based on the compiler feed-
back, we aim to retrieve the relevant project-level
context from all extracted ones. We implement
this by transforming the textual compiler feedback
into an SQL query using the ChatGPT. The prompt
used is presented in Figure 4a. Several examples of
paired compiler feedback and SQL queries are pro-
vided as demonstrations for in-context learning*.

For instance, consider the compiler feed-
back: No name ’SyncBolt3’ found in module
’async._bolt3’, the resulting SQL query gen-
erated by ChatGPT is as follows:

FROM Module m, Class c
WHERE m.contains(c)
and m.getName() = ‘async._bolt3’
SELECT m, c

Using this SQL query, the code snippets that
involve the implementations of AsyncBolt3 will
be returned from our constructed database. The
detailed process of constructing and querying such
SQL database is refer to Appendix G.

Semantic Search. In addition to returning the
project-level context retrieved by the SQL query,
we also enhance the acquired context by retriev-
ing similar code snippets using dense passage re-

*Only one demonstration example is illustrated in Fig-
ure 3(b), the full list of examples can be found in Ap-
pendix G.2.

trieval (Karpukhin et al., 2020). In the initial search
round, no compilation error is reported, and COCO-
GEN utilizes the task description string for retrieval.
In subsequent searches, COCOGEN employs the
error report and the corresponding error line.

Given a natural-language query q, COCOGEN

first converts it into an embedding vector by utiliz-
ing an encoder network, as follows:

hq = ENCODER(q) (3)

COCOGEN utilizes a pre-trained Transformer
network (Vaswani et al., 2017) as the encoder. Af-
ter generating the query vector, COCOGEN calcu-
lates the cosine similarity between the query and
embedding vectors of each context entry hc. This
similarity measure is defined as:

sim(hq,hc) =
h⊺
qhc

||hq|| · ||hc||
(4)

and the top-n entries exhibiting the highest similar-
ity to the query are retrieved as results.

3.4 Refinement with Compiler Feedback

Figure 3(b) showcases the iterative refinement
pipeline. Given the task requirement and partial
function f1, a semantic retrieval is activated to iden-
tify similar functions. Specifically, the function
f2, which provides equivalent functionality in syn-
chronous scenario, is identified. Utilizing both the
retrieved context and the prompt illustrated in Fig-
ure 4(b), the language model generates a solution.

However, the generated output mistakenly in-
vokes SyncBolt3 due to its intended use in
asynchronous scenarios, not aligning with the syn-
chronous scenario in f2 The compiler’s feedback
highlights this error. With this feedback, COCO-
GEN conducts the structural and semantic search,
leading to the discovery of the correct function f3
for asynchronous scenarios. Incorporating the error
details and context into the next iteration ensures
accurate function invocation. This process goes
iterative until no error is reported by the compiler,
resulting in an error-free solution that aligns with
the project’s environment.

It is noteworthy that COCOGEN does not take
into account FUNC errors, which arise during exe-
cution despite successful compilation. COCOGEN

focuses on addressing compilation errors, which
constitute 66% of the total errors in the context of
project-level code generation, as shown in Figure 6.

2340

Table 2: Pass rates of COCOGEN based on two LLMs, i.e., GPT-3.5-Turbo and Code Llama (13B), assessed against
various baselines across different splits of the CoderEval dataset

Data Split Class Runnable File Runnable Project Runnable
Method Pass@1 Pass@5 Pass@10 Pass@1 Pass@5 Pass@10 Pass@1 Pass@5 Pass@10
LLM: GPT-3.5-Turbo
Direct 8.73 12.57 14.55 19.85 27.62 30.88 9.57 12.08 13.04
ReACC 20.36 33.27 38.18 17.65 28.92 33.82 11.30 19.53 21.74
RepoCoder 35.45 40.46 41.82 29.41 34.61 36.76 16.96 19.57 21.74
COCOGEN 28.00 44.92 49.09 30.29 43.58 47.06 21.30 36.73 39.13
LLM: Code Llama (13B)
Direct 18.91 30.65 34.55 18.53 27.82 29.41 5.22 8.70 13.04
ReACC 20.36 33.27 38.18 17.65 27.61 33.82 11.30 19.53 21.74
RepoCoder 17.82 35.22 40.00 15.00 28.31 32.35 16.09 21.36 21.74
COCOGEN 26.36 39.42 41.82 17.06 29.39 33.82 13.04 28.04 34.78

4 Experimental Setup

4.1 Models and Datasets
To validate the effectiveness of COCOGEN, we
select GPT-3.5-Turbo and Code-Llama 13B base†

language models for investigation. The technical
details of models and their invocation for inference
are presented in Appendix A.

We conduct experiments using the Python split
of the CoderEval benchmark (Yu et al., 2024), re-
ferred to as CoderEval-Python. It is a benchmark
designed to evaluate models within realistic soft-
ware development scenarios. Without loss of gener-
alizability, we concentrate on the Python program-
ming language within this dataset. This bench-
mark categorizes 230 test samples into six levels
of context dependency: 1) self-contained: built-
in types/functions, no imports required; 2) slib-
runnable: standard libraries/modules, no installa-
tion needed; 3) plib-runnable: publicly-available
libraries on PyPI/Maven; 4) class-runnable: code
outside the function but within a class; 5) file-
runnable: code outside the class but within the
file; and 6) project-runnable: code in other source
files. We concentrate on the last three dependency
types, where the solutions are dependent on project-
specific contexts. There are 55, 68, and 23 tasks as-
sociated with each dependency level, respectively.

We also evaluate COCOGEN on two function-
level code generation benchmarks, namely Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), as well as a project-level code com-
pletion benchmark named CrossCodeEval (Ding
et al., 2023), to further validate its generalizability

†https://huggingface.co/codellama/
CodeLlama-13b-hf

across other coding tasks. the statistics and exper-
imental results of these benchmarks can be found
in Appendix B and Appendix F.

4.2 Baseline Methods
COCOGEN can function seamlessly and be inte-
grated into existing LLMs, requiring only black-
box access to these models. In this paper, we se-
lect two state-of-the-art LLMs for code generation,
namely GPT-3.5-Turbo (OpenAI, 2023) and Code
Llama (13B) (Rozière et al., 2023), as our base
models. To validate the effectiveness of COCO-
GEN, we compare it with the following baselines:
▷ Direct Generation (Yu et al., 2024). This line
of method denotes directly inputting the task re-
quirements into LLM for code generation, without
providing additional context.
▷ ReACC (Lu et al., 2022). We employ the
retrieval-augmented generation technique intro-
duced in this baseline for code generation tasks.
More precisely, we retrieve project contexts aligned
with the task instructions semantically through em-
bedding similarity, and leverage them to augment
the prompts of LLMs for better code generation.
▷ RepoCoder (Zhang et al., 2023a). Similar to
our work, the referenced baseline also proposes the
iterative refinement of generated code. Specifically,
it involves retrieving similar code snippets derived
from the previously generated ones, and employ-
ing them to augment the prompts of LLMs. One
distinguishing feature is that this baseline does not
leverage compiler feedback.

4.3 Evaluation Metrics
We employ the Pass@k metric (Chen et al., 2021;
Yu et al., 2024) for code generation tasks, and em-

2341

https://huggingface.co/codellama/CodeLlama-13b-hf
https://huggingface.co/codellama/CodeLlama-13b-hf

P
as

s@
10

CoCoGen No Feedback RepoCoder

35

40

45

50

0 1 2 3

Class−level

30

35

40

45

50

0 1 2 3

File−level

10

20

30

40

0 1 2 3

Project−level

Number of Iterations

Figure 5: Pass@10 of COCOGEN, RepoCoder, and No
Feedback baseline across three dependency levels

ploy the code exact match (C-EM), code edit sim-
ilarity (C-ES), identifier exact match (I-EM), and
identifier F1 score (I-F1) to evaluate both the code
match rate and the identifier match rate for code
completion tasks, follows Ding et al. (2023). We
present the details of the Pass@k metric for code
generation. For metrics used in the code comple-
tion task, readers are referred to Appendix C.

Pass@k. Following previous studies (Chen et al.,
2021; Yu et al., 2024), we evaluate the functional
correctness of the generated code by executing test
cases. We employ the Pass@k metric, where k
denotes the number of programs generated for each
task. A task is solved if at least one solution passes
all unit tests, and we report the overall proportion
of solved tasks. To reduce sampling variance, we
generate n ≥ k solutions (for this study, n = 20
and k = 1, 5, 10) for each task, count the number
of correct solutions c ≤ n that pass the unit tests,
and calculate the unbiased estimator:

Pass@k = E

[
1−

(
n−c
k

)
(
n
k

)
]

(5)

5 Results and Analysis

5.1 Overall Performance of COCOGEN

Table 2 shows the overall performance of COCO-
GEN, assessed against various baselines, on the
CoderEval (Yu et al., 2024) and the CrossCodeE-
val (Ding et al., 2023) dataset, respectively. This ta-
ble shows that the COCOGEN can significantly out-
perform other baselines on the project-level code
generation task. This trend persists, with a few
exceptions noted specifically in terms of Pass@1.
We attribute such exceptions to variations in the
generated solutions. Selecting a significantly larger
n (e.g., 1000), as discussed in (Li et al., 2022), sta-
bilizes the result and eliminates these expectations.
Moreover, it becomes evident that models incor-
porating contextual information, such as ReACC,

Table 3: Pass rates of COCOGEN with components
ablated, based on GPT-3.5-Turbo model using the
CoderEval-Python dataset

Method Pass@1 Pass@5 Pass@10
COCOGEN 28.01 43.01 46.58
- w/o CF and SQL (RepoCoder) 28.72 34.44 36.30
- w/ CF, w/o SQL, w/o Semantic 25.69 37.50 41.78
- w/ CF and SQL, w/o Semantic 26.37 38.31 41.78
- w/ CF and Semantic, w/o SQL 27.39 40.02 44.45

RepoCoder, and COCOGEN, exhibit a noteworthy
performance superiority over the no context (i.e.,
direct) model, thereby affirming the practical value
of the context in project-level code generation.

5.2 Effectiveness of the Iterative Refinement

Here, we investigate the effectiveness of iterative
refinement in code generation with compiler feed-
back. We conduct an ablation analysis on both Re-
poCoder and COCOGEN, via removing or retaining
the iterative refinement process. Figure 5 shows the
performance of RepoCoder and COCOGEN, with
respect to varying iterations, on different data splits.
This figure clearly illustrates that as the number of
iterations increases, the performance of COCOGEN

also exhibits a corresponding improvement. The
improvement substantiates the efficacy of our sug-
gested iterative refinement process, demonstrating
its ability to enhance the generated code through
multiple iterations progressively.

5.3 Ablation on Components

To explore the impact of each component within
COCOGEN on overall performance, we remove
various components from COCOGEN, including
the compiler, SQL retriever, and semantic retriever.
Notably, the configuration that excludes the com-
piler and SQL, relying solely on semantic retrieval,
is known as RepoCoder (Zhang et al., 2023a).

Table 3 demonstrates the pass rates of COCO-
GEN across CoderEval-Python. The data indicates
that incorporating compiler feedback does improve
accuracy, although not markedly substantial. The
reason is that highlighting compilation errors alone
does not provide related context for resolving them,
which is important in project-level coding prob-
lems. Also, compared to RepoCoder—which relies
solely on semantic retrieval, integrating compiler
feedback with project-specific context results in a
stable performance improvement. Results on each
data split can be found in Appendix F.2.

Further analytical experiments, including the

2342

N
um

be
r

of
 E

rr
or

s
CoCoGen No Feedback RepoCoder

1000

2000

3000

4000

5000

0 1 2 3

UNDEF

500

1000

1500

0 1 2 3

API

25

50

75

100

125

0 1 2 3

OBJECT

50

100

0 1 2 3

OTHER

Number of Iterations

Figure 6: Compilation errors fixed per iteration of
COCOGEN, RepoCoder, and No Feedback baselines

evaluation of benefits from solely compiler feed-
back, the performance of COCOGEN on project-
level code completion and function-level code gen-
eration, and the efficiency of static analysis and
SQL queries, can be found in Appendix F.

5.4 Error Analysis and Case Study

We also perform an error analysis of the gener-
ated code in iterative generation. We follow the
categorization of errors defined in Section 2.2, ex-
amples of each error type can be found in Table 1.
Figure 6 shows the distribution of errors resolved
iteratively by our COCOGEN and two baselines.
From this figure, we can see that the errors of vari-
ous types can be effectively resolved after a single
iteration of refinement. For instance, UNDEF er-
rors are notably reduced from 5,133 to 1,042 after
one iteration. Additionally, it is observed that the
RepoCoder baseline, which operates without com-
piler feedback, manages to rectify API and syntax
errors, corroborating the findings in Zhang et al.
(2023a). Nonetheless, RepoCoder proves ineffec-
tive against UNDEF and OBJECT errors, likely
due to the model’s lack of awareness regarding
these errors in the absence of compiler feedback.

To thoroughly evaluate COCOGEN’s effective-
ness, we focus on scenarios where compilation is
successful, but execution fails. In the case illus-
trated in Figure 7, COCOGEN incorrectly excludes
the microseconds field and erroneously adds a
month field. This error stems from ambiguously

def

return

 (value):

 days = value.days

 seconds = value.seconds

 microseconds = value.microseconds

 nanoseconds = microseconds * 1000

 (, days, seconds, 0, nanoseconds)

dehydrate_timedelta

Structure b\"E\"

 Use the value in timedelta to generate the Structure class.

def dehydrate_timedelta(value):

 :param value:

 :type value: timedelta

class self
self

 : .days

 .seconds ...

timedelta

class
def self

 :

 __init__(, tag, fields)

Structure

def

return

 (value):

 months = 0

 days = value.days

 seconds = value.seconds

 nanoseconds = 1000 * value.microseconds

 (, , days, seconds, nanoseconds)

dehydrate_timedelta

Structure b\"E\" months

Task Requirement

Reference Solution

CoCoGen’s Solution

Context

Figure 7: An example of a runtime error in COCOGEN’s
generated code for a CoderEval test case

stated task requirements and the model’s lack of
familiarity with the Structure class’s format,
despite its definition being available, resulting in
misinterpretation of the intended functionality. Fur-
ther examples are detailed in Appendix E. The ob-
servations inspire us to integrate a comprehensive
reference comprising documentation, web search
results, and code execution log to provide explicit
guidelines for code generation in our future work.

6 Related Work

LLM-based Code Generation. Automated code
generation has a history spanning several decades,
with initial endeavors utilizing rule-based sys-
tems (Woods, 1973) and structured predic-
tion (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005). In recent years, the development
of LLMs has led to the emergence of many promi-
nent models in coding tasks. These include open-
access models such as DeepSeek Coder (Bi et al.,
2024), Code Llama (Rozière et al., 2023), and Star-
Coder (Li et al., 2023), alongside commercial of-
ferings like GPT-3.5 (OpenAI, 2023) and GitHub
Copilot (Microsoft, 2024). These models and tools
have demonstrated significant promise in enhanc-
ing code generation capabilities.

Project-level Code Generation. Generating ac-
curate code within a project poses challenges due to
the modular design of software engineering, which
results in cross-file dependency patterns (Parnas,
1972). Early works augmented N-gram, RNN, and
LSTM models with an additional cache model
to track project-level changes (Tu et al., 2014;
Hellendoorn and Devanbu, 2017). Pashakhanloo
et al. (2023) transformed projects into a relational
database and proposes a graph walking method to
traverse this database. Zan et al. (2022) first used

2343

private API documentation to improve code genera-
tion, and Zan et al. (2023) investigated how various
components of API documentation influence pre-
diction accuracy. Shrivastava et al. (2023) proposed
a code completion framework using a classifier to
filter useful repository-level prompt proposals. Lu
et al. (2022); Zhang et al. (2023a) proposed to use
single or multiple levels of retrieval-augmented
generation mechanisms for code generation. Liao
et al. (2023) proposed A3-CodGen, which utilizes
local, global, and third-party-library information
for better context retrieval. (Yu et al., 2024; Liu
et al., 2023; Zhou et al., 2022; Ding et al., 2023)
proposed benchmarks and datasets for repository-
level code generation tasks.

Post-processing of LLMs for Code Generation.
To identify correct code generated by LLM, re-
searchers employ post-processing techniques to
further rank and filter the generated code. Inala
et al. (2022) trained a fault-aware neural ranker
that ranks multiple code samples based on compila-
tion feedback. AlphaCode (Li et al., 2022) and Shi
et al. (2022) employed filtering methods based
on the execution feedback. Zhang et al. (2023c)
reranked LLM outputs based on back translation.
SelfEdit (Zhang et al., 2023b) employed a generate-
and-edit approach that utilizes execution results to
improve the competitive programming task code
quality. Chen et al. (2023) proposed a rubber duck
debugging mechanism without human feedback,
which identifies mistakes in generated code by in-
vestigating the execution results, and explaining
the generated code in natural language.

7 Conclusion

In this paper, we show how to use project-specific
context information, indexed structural and seman-
tic, to fix compilation errors generated by com-
pilers and improve the quality of code generated
by LLMs. Our experimental results show the in-
creased prevalence of errors related to project con-
texts in project-level code generation compared
to function-level code generation. The presented
COCOGEN can effectively fix the compilation er-
rors by retrieving related context from the project,
thus significantly improving the native LLM base-
lines on over 80% relative pass rates in generating
functions dependent on project-specific contexts.

Acknowledgements

This work is supported by the Major Program (JD)
of Hubei Province (Grant No. 2023BAA024), and
the National Natural Science Foundation of China
under grant No. 62102157. This work is also par-
tially supported by Huawei. Fangxin Lu is a visit-
ing student at Huazhong University of Science and
Technology, and she is from South-Central Minzu
University for Nationalities.

Limitations

In this paper, we utilize compilation information
as a means to validate programs. However, it is
important to note that even programs that compile
successfully can experience execution failures. Fur-
thermore, the successful compilation of programs
does not guarantee their safety for execution. As
a result, while our findings indicate improvements
in quality metrics through the correction of code to
properly leverage context, it is imperative to under-
take additional verification methods such as testing
and manual review to ascertain the functional cor-
rectness of the generated code. The challenge of en-
suring functional correctness of code encompasses
various aspects, including compliance with task re-
quirements, adherence to pre/post-conditions and
security requirements, and preserving robustness in
generating code. With many questions unanswered,
we hope our study can promote a broader view of
utilizing computational linguistic technologies in
the realm of automated software engineering.

Ethics Statements

We meticulously ensure that all code and mod-
els integrated into our research adhere to open-
access policies as outlined by the Creative Com-
mons license. The methodology ensures full com-
pliance with copyright and intellectual property
laws, thereby eliminating any potential for infringe-
ment or unauthorized use of protected materials.
By exclusively utilizing resources that are freely
available and legally distributable, we maintain the
highest standards of ethical conduct in research.
This approach fosters an environment of trans-
parency and respect for the intellectual property
rights of others. Our commitment to these princi-
ples ensures that our work advances the frontiers of
knowledge in a manner that is both legally sound
and ethically responsible.

2344

References
Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jef-

frey D. Ullman. 2006. Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison-Wesley
Longman Publishing Co., Inc., USA.

Amazon. 2023. Ai code generator—amazon codewhis-
perer. Online. Accessed 1-Feb-2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun
Gao, Ruiqi Ge, Kang Guan, Daya Guo, Jianzhong
Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie
Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi
Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin,
A. X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu,
Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shi-
rong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie
Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong
Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song,
Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui
Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang,
Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin
Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei
Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang
You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei
Zhang, Lecong Zhang, Liyue Zhang, Mingchuan
Zhang, Minghua Zhang, Wentao Zhang, Yichao
Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou,
Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. 2024.
Deepseek llm: Scaling open-source language models
with longtermism. arXiv preprint arXiv:2401.02954.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. arXiv
preprint arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian
Ding, Ming Tan, Nihal Jain, Murali Krishna Ra-
manathan, Ramesh Nallapati, Parminder Bhatia, Dan
Roth, and Bing Xiang. 2023. Crosscodeeval: A di-
verse and multilingual benchmark for cross-file code
completion. In Advances in Neural Information Pro-
cessing Systems, volume 36, pages 46701–46723.
Curran Associates, Inc.

Yangruibo Ding, Zijian Wang, Wasi U. Ahmad, Mu-
rali Krishna Ramanathan, Ramesh Nallapati, Par-
minder Bhatia, Dan Roth, and Bing Xiang. 2024.
CoCoMIC: Code completion by jointly modeling
in-file and cross-file context. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 3433–3445,
Torino, Italia. ELRA and ICCL.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang,
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng Sha,
Xin Peng, and Yiling Lou. 2024. Evaluating large
language models in class-level code generation. In
Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE ’24, New
York, NY, USA. Association for Computing Machin-
ery.

D. Gifany, IS. Amiri, M. Ranjbar, and J. Ali. 2013.
Logic codes generation and transmission using an
encoding-decoding system. International Journal of
Advances in Engineering & Technology, 5(2):37.

Vincent J. Hellendoorn and Premkumar Devanbu. 2017.
Are deep neural networks the best choice for model-
ing source code? In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2017, page 763–773, New York, NY,
USA. Association for Computing Machinery.

Jeevana Priya Inala, Chenglong Wang, Mei Yang, An-
dres Codas, Mark Encarnación, Shuvendu Lahiri,
Madanlal Musuvathi, and Jianfeng Gao. 2022. Fault-
aware neural code rankers. In Advances in Neural
Information Processing Systems, volume 35, pages
13419–13432. Curran Associates, Inc.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Chris F. Kemerer. 1995. Software complexity and soft-
ware maintenance: A survey of empirical research.
Annals of Software Engineering, 1(1):1–22.

Vladimir I. Levenshtein. 1965. Binary codes capable
of correcting deletions, insertions, and reversals. In
Doklady Akademii Nauk SSSR, volume 163, pages
845–848. Soviet Union.

2345

https://dl.acm.org/doi/book/10.5555/1177220
https://dl.acm.org/doi/book/10.5555/1177220
https://aws.amazon.com/cn/codewhisperer
https://aws.amazon.com/cn/codewhisperer
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.2401.02954
https://doi.org/10.48550/arXiv.2401.02954
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://proceedings.neurips.cc/paper_files/paper/2023/file/920f2dced7d32ab2ba2f1970bc306af6-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/920f2dced7d32ab2ba2f1970bc306af6-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/920f2dced7d32ab2ba2f1970bc306af6-Paper-Datasets_and_Benchmarks.pdf
https://aclanthology.org/2024.lrec-main.305
https://aclanthology.org/2024.lrec-main.305
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3597503.3639219
https://www.ijaet.org/volume-5-issue-2.html
https://www.ijaet.org/volume-5-issue-2.html
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/3106237.3106290
https://proceedings.neurips.cc/paper_files/paper/2022/file/5762c579d09811b7639be2389b3d07be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/5762c579d09811b7639be2389b3d07be-Paper-Conference.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1007/BF02249043
https://doi.org/10.1007/BF02249043
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=31411&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=31411&option_lang=eng

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and
Zhi Jin. 2024. Evocodebench: An evolving code
generation benchmark aligned with real-world code
repositories. arXiv preprint arXiv:2404.00599.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferran-
dis, Sean Hughes, Thomas Wolf, Arjun Guha, Le-
andro von Werra, and Harm de Vries. 2023. Star-
coder: may the source be with you! arXiv preprint
arXiv:2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097.

Dianshu Liao, Shidong Pan, Qing Huang, Xiaoxue Ren,
Zhenchang Xing, Huan Jin, and Qinying Li. 2023.
Context-aware code generation framework for code
repositories: Local, global, and third-party library
awareness. arXiv preprint arXiv:2312.05772.

Tianyang Liu, Canwen Xu, and Julian McAuley.
2023. Repobench: Benchmarking repository-level
code auto-completion systems. arXiv preprint
arXiv:2306.03091.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won
Hwang, and Alexey Svyatkovskiy. 2022. ReACC:
A retrieval-augmented code completion framework.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6227–6240, Dublin, Ireland.
Association for Computational Linguistics.

Microsoft. 2024. Microsoft Copilot. Online. Accessed
1-Feb-2024.

OpenAI. 2022. New and improved embedding model.
Online. Accessed 1-Feb-2024.

OpenAI. 2023. ChatGPT. Online. Accessed 1-Feb-
2024.

David L. Parnas. 1972. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058.

Pardis Pashakhanloo, Aaditya Naik, Yuepeng Wang,
Hanjun Dai, Petros Maniatis, and Mayur Naik. 2023.
Codetrek: Flexible modeling of code using an ex-
tensible relational representation. In Proceedings of
10th International Conference on Learning Represen-
tations.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2023. Code llama: Open foundation mod-
els for code. arXiv preprint arXiv:2308.12950.

Hinrich Schütze, Christopher D Manning, and Prab-
hakar Raghavan. 2008. Introduction to information
retrieval, volume 39. Cambridge University Press
Cambridge.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke
Zettlemoyer, and Sida I. Wang. 2022. Natural lan-
guage to code translation with execution. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 3533–3546,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow.
2023. Repository-level prompt generation for large
language models of code. In Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research, pages 31693–31715. PMLR.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,

2346

https://doi.org/10.48550/arXiv.2404.00599
https://doi.org/10.48550/arXiv.2404.00599
https://doi.org/10.48550/arXiv.2404.00599
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161
https://www.science.org/doi/10.1126/science.abq1158
https://www.science.org/doi/10.1126/science.abq1158
https://doi.org/10.48550/arXiv.2312.05772
https://doi.org/10.48550/arXiv.2312.05772
https://doi.org/10.48550/arXiv.2312.05772
https://doi.org/10.48550/arXiv.2306.03091
https://doi.org/10.48550/arXiv.2306.03091
https://doi.org/10.18653/v1/2022.acl-long.431
https://doi.org/10.18653/v1/2022.acl-long.431
https://www.microsoft.com/zh-cn/microsoft-copilot
https://openai.com/blog/new-and-improved-embedding-model
http://chat.openai.com
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://openreview.net/forum?id=WQc075jmBmf
https://openreview.net/forum?id=WQc075jmBmf
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.18653/v1/2022.emnlp-main.231
https://doi.org/10.18653/v1/2022.emnlp-main.231
https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html

Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288.

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu.
2014. On the localness of software. In Proceedings
of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2014,
page 269–280, New York, NY, USA. Association for
Computing Machinery.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

William A. Woods. 1973. Progress in natural language
understanding: an application to lunar geology. In
Proceedings of the National Computer Conference
and Exposition, AFIPS ’73, page 441–450, New
York, NY, USA. Association for Computing Machin-
ery.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang,
and Tao Xie. 2024. Codereval: A benchmark of prag-
matic code generation with generative pre-trained
models. In Proceedings of the IEEE/ACM 46th Inter-
national Conference on Software Engineering, ICSE
’24, New York, NY, USA. Association for Computing
Machinery.

Daoguang Zan, Bei Chen, Yongshun Gong, Junzhi Cao,
Fengji Zhang, Bingchao Wu, Bei Guan, Yilong Yin,
and Yongji Wang. 2023. Private-library-oriented
code generation with large language models. arXiv
preprint arXiv:2307.15370.

Daoguang Zan, Bei Chen, Zeqi Lin, Bei Guan, Wang
Yongji, and Jian-Guang Lou. 2022. When language
model meets private library. In Proceedings of Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 277–288, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’96, page 1050–1055. AAAI Press.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured

classification with probabilistic categorial grammars.
In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, UAI’05, page
658–666, Arlington, Virginia, USA. AUAI Press.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023a. RepoCoder: Repository-level
code completion through iterative retrieval and gen-
eration. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2471–2484, Singapore. Association for Com-
putational Linguistics.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin.
2023b. Self-edit: Fault-aware code editor for code
generation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 769–787, Toronto,
Canada. Association for Computational Linguistics.

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike
Lewis, Wen-Tau Yih, Daniel Fried, and Sida Wang.
2023c. Coder reviewer reranking for code generation.
In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 41832–41846.
PMLR.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang,
and Graham Neubig. 2022. Docprompting: Gener-
ating code by retrieving the docs. In Proceedings of
The Eleventh International Conference on Learning
Representations.

A More Details on Investigated Large
Language Models

In this paper, we have selected GPT-3.5-Turbo and
Code-Llama 13B for investigation.

GPT-3.5-Turbo (OpenAI, 2023). It is a large-
scale decoder-only model based on the Transformer
architecture (Vaswani et al., 2017). It is pre-trained
on a diverse array of data, encompassing both nat-
ural language and code, and can learn a specific
task given an instruction and several demonstration
examples. We perform the inference by invocating
the model through an online API.

Code Llama (Rozière et al., 2023). It is a family
of LLMs for code based on Llama 2 (Touvron et al.,
2023) and further trained on 1TB code and natural
language tokens. It can be used for code com-
pletion and generation following natural language
instructions. For Code-Llama 13B, we utilize its
base variant, specifically designed for general code
generation and understanding.‡

‡The model can be accessed via
https://huggingface.co/codellama/
CodeLlama-13b-hf.

2347

https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1145/2635868.2635875
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1145/1499586.1499695
https://doi.org/10.1145/1499586.1499695
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.1145/3597503.3623316
https://doi.org/10.48550/arXiv.2307.15370
https://doi.org/10.48550/arXiv.2307.15370
https://doi.org/10.18653/v1/2022.findings-emnlp.21
https://doi.org/10.18653/v1/2022.findings-emnlp.21
https://aaai.org/papers/156-aaai96-156-learning-to-parse-database-queries-using-inductive-logic-programming/
https://aaai.org/papers/156-aaai96-156-learning-to-parse-database-queries-using-inductive-logic-programming/
https://aaai.org/papers/156-aaai96-156-learning-to-parse-database-queries-using-inductive-logic-programming/
https://dl.acm.org/doi/10.5555/3020336.3020416
https://dl.acm.org/doi/10.5555/3020336.3020416
https://dl.acm.org/doi/10.5555/3020336.3020416
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
https://proceedings.mlr.press/v202/zhang23av.html
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=ZTCxT2t2Ru
https://huggingface.co/codellama/CodeLlama-13b-hf
https://huggingface.co/codellama/CodeLlama-13b-hf

In the inference stage, we set the decoding tem-
perature to 0.7, and adopt the top-k sampling
strategy. We implement the retrieval modules
based on the text-adamodel introduced by Ope-
nAI (OpenAI, 2022), which is effective in both
natural language search and code search. The em-
bedding dimension is 1,536 for the text-ada
model. We retrieve at most 5 entries for each query.
All the experiments in this paper are conducted
on a Linux server with 128GB memory, with four
32GB Tesla V100 GPUs.

B More Details on the Investigated
Dataset

In this paper, we also use three recently proposed
benchmarks evaluating the project-level code com-
pletion and function-level code generation ability.
We provide the details of each benchmark.

CrossCodeEval (Ding et al., 2023). It is a
project-level code completion benchmark that ne-
cessitates cross-file contextual understanding to
complete the code accurately. CrossCodeEval is
built on a diverse set of real-world, open-sourced,
permissively-licensed repositories, including 471
repositories, 2,665 test cases across 1,368 files for
Python language (Ding et al., 2023).

HumanEval (Chen et al., 2021). It is a function-
level code generation benchmark that consists of
164 programming problems with corresponding
Python solutions. These problems cover a range of
difficulty levels and programming concepts. Hu-
manEval is widely used in evaluating LMs for code
generation tasks due to its focus on real-world cod-
ing scenarios and its comprehensive test cases.

MBPP (Austin et al., 2021). It is a function-
level code generation benchmark consisting of
974 crowd-sourced Python programming problems.
These problems are designed to be solvable by
entry-level programmers and cover programming
fundamentals and standard library functionalities.
Each problem includes a task description, a code
solution, and several automated test cases.

C More Details on the Evaluation Metrics

In this work, we use several evaluation metrics for
method generation and line completion tasks. This
includes:

Exact Match. This metric assesses whether each
character of the model’s predicted code exactly

matches each character of the correct answer. All
characters are the same yields EM = 1, while any
discrepancy results in EM = 0. This is a strict
all-or-nothing metric, where a single character dif-
ference results in a score of 0. The average value
of EM on all test cases is reported.

Edit Similarity (Levenshtein, 1965). This met-
ric quantifies how dissimilar two strings are to one
another. It is measured by counting the minimum
number of operations required to transform one
string into the other:

lev(a, b) =





|a| if |b| = 0,

|b| if |a| = 0,

lev(tail(a), tail(b)) if head(a) = head(b),

1 + min





lev(tail(a), b)

lev(a, tail(b))

lev(tail(a), tail(b))

otherwise

(6)

F1 Score (Schütze et al., 2008). This metric eval-
uates the balance between precision and recall for
the retrieved identifiers. The F1 score is based on
the number of identifiers that both the prediction
and the ground truth share. Precision is defined as
the ratio of the shared identifiers to the total number
of identifiers in the prediction, while recall is the
ratio of the shared identifiers to the total number of
identifiers in the ground truth. The F1 score is then
calculated as the harmonic mean of the recall rate
and the precision rate:

F1 =
2

recall−1 + precision−1
(7)

D Errors Reported by the Compiler

We utilize pylint for error checking; it is a static
code analyzer designed to inspect code within a
project without executing it. The analyzer accepts
the entire file containing the solution along with
associated source files as input, and then it extracts
errors that pertain directly to the lines in the gener-
ated solution from the entirety of identified errors.
pylint generates a range of diagnostic messages,
encompassing errors, warnings, recommendations
for adhering to language conventions, and sugges-
tions for refactoring to adhere to best coding prac-
tices. However, our focus is solely on the errors.

Each error is identified by an error code and de-
scribed with an error message. The error code is
a numerical identifier that reflects the error’s na-
ture, while the error message provides a concise
description of the error. pylint recognizes 133

2348

Table 4: A complete list of frequently occurred errors reported by the compiler

Error Category Error ID Corresponding
Error Code

Error Reason

UNDEF-P E0401 Unable to import a Package.
UNDEF-CM E1101 A Class is accessed for an unexistent Member.
UNDEF-API E0611 A function or API cannot be found in a module.

UNDEF

UNDEF-O E0602 An undefined variable or Object is accessed.
API-TMA E1121 A function call passes Too Many positional Arguments.
API-IA E1120 A function call passes Insufficient Arguments.

E1111 Assignment from the function that doesn’t return anything.
API

API-WA
E1123 A function call passes a keyword argument which has no corresponding formal parameter.

OBJ-NI E1133 A Non-Iterable value is used in place where iterable is expected.
OBJ-NC E1102 An object being called is a Non-Callable object.OBJ
OBJ-NS E1136 A subscripted value does Not support Subscription.

OTHER OTHER Other errors reported by analyzer.

Table 5: Pass rates on CoderEval-Python of each ap-
proach with or without compiler feedback

Method Pass@1 Pass@5 Pass@10
Direct 20.65 26.66 29.13
Direct+CF 32.34 38.43 40.43
ReACC 34.13 41.44 43.48
ReACC+CF 36.60 44.05 46.52
RepoCoder 36.82 40.73 42.17
RepoCoder+CF 38.00 45.38 48.26

Table 6: Pass rates of COCOGEN on Class Runnable
test cases

Data Split Class Runnable
Method Pass@1 Pass@5 Pass@10
COCOGEN 28.00 44.92 49.09
- w/o CF and SQL (RepoCoder) 35.45 40.46 41.82
- w/ CF, w/o SQL, w/o Semantic 30.00 42.58 45.45
- w/ CF and SQL, w/o Semantic 30.36 44.61 49.09
- w/ CF and Semantic, w/o SQL 31.45 45.00 47.27

distinct error types, and only 12 of these are re-
ported frequently on the CoderEval-Python dataset.
We have categorized these errors into four groups
based on their characteristics, detailed in Table 1.
The FUNC error category is also included in the
error distribution analysis but is excluded from the
compiler feedback pipeline. This exclusion is be-
cause such errors can only be identified with exe-
cution, a process that extends beyond the scope of
static analysis and is unsuitable for the real-time
generation and refinement pipeline. The specific
types of each error and corresponding error codes
are documented in Table 4.

E More Details About the Error Cases

We delve into additional cases where COCOGEN

struggles to generate viable solutions, elucidating
the underlying causes to foster further research. We
identify two primary factors leading to execution
errors despite successful compilation. The first fac-
tor is the occurrence of degenerate solutions, such
as overly simplistic or redundant code. This phe-

 Returns the key in the form of int.

def index(self, key):

 :param key: a key

 :return: index

 :rtype: int

class ():

 __keys: t.Tuple[str]

Record

def
return

 (self, key):

 int(key)

index

Task Requirement

Context

Reference Solution def
if

if len

elif
try

return

raise
else

raise

 (self, key):

 isinstance(key, int):

 0 <= key < (self.__keys):

 return key

 raise IndexError(key)

 isinstance(key, str):

 :

 self.__keys.index(key)

 except ValueError:

 KeyError(key)

 :

 TypeError(key)

index

CoCoGen’s Solution

Figure 8: An error case of degenrate solution

def
def self

try
return self

except
return

for
def self

try

except

for in

type
with

for

return

 (name, fields, srid_map):

 ():

 :

 srid_map[len()]

 KeyError:

 None

 attributes = { : property(srid)}

 index, subclass_field in enumerate(fields):

 (, i=index, f=subclass_field):

 :

 return self[i]

 IndexError:

 raise AttributeError(f)

 field_alias {subclass_field, [index]}:

 attributes[field_alias] = property(accessor)

 cls = (name, (Point,), attributes)

 srid_table_lock:

 dim, srid in srid_map.items():

 srid_table[srid] = (cls, dim)

 cls

point_type
srid

accessor

"srid"

"xyz"

def
for in

class
def self

self
self

def
return

def
self

def
return

def
return and

def
return

return

 (name, fields, srid_map):

 fields_dict = {f: i i, f enumerate(fields)}

 srid = srid_map.get(len(fields), None)

 :

 __init__(, *args):

 if len(args) != len(fields):

 raise ValueError()

 ._coordinates = tuple(args)

 ._srid = srid

 @property

 (self):

 self._srid

 @srid.setter

 (self, value):

 ._srid = value

 (self):

 iter(self._coordinates)

 (self, other):

 isinstance(other, Point)

 self._coordinates == other._coordinates

 (self):

 name .join(

 map(str, self._coordinates)) "

 Point

point_type

Point

srid

srid

__iter__

__eq__

__repr__

"Wrong number of arguments"

f"{ }({', '
})

Task Requirement Dynamically Generating Point Class.

def dehydrate_timedelta(value):

 :param value:

 :type value: timedelta

class :

 srid_table = {}

 srid_table_lock = Lock()

PointContext

Reference Solution

CoCoGen’s Solution

Figure 9: An error case of misinterpreting task require-
ments

2349

Table 7: Pass rates of COCOGEN on File Runnable test
cases

Data Split File Runnable
Method Pass@1 Pass@5 Pass@10
COCOGEN 30.29 43.58 47.06
- w/o CF and SQL (RepoCoder) 29.41 34.61 36.76
- w/ CF, w/o SQL, w/o Semantic 26.03 37.41 42.65
- w/ CF and SQL, w/o Semantic 26.76 37.68 39.71
- w/ CF and Semantic, w/o SQL 27.35 39.90 45.45

Table 8: Pass rates of COCOGEN on Project Runnable
test cases

Data Split Project Runnable
Method Pass@1 Pass@5 Pass@10
COCOGEN 21.30 36.73 39.13
- w/o CF and SQL (RepoCoder) 16.96 19.57 21.74
- w/ CF, w/o SQL, w/o Semantic 14.35 25.62 30.43
- w/ CF and SQL, w/o Semantic 15.65 25.12 30.43
- w/ CF and Semantic, w/o SQL 17.83 28.50 34.78

nomenon is discovered and explored in (Zhang
et al., 2023c). Figure 8 exemplifies this issue,
showcasing a solution that omits necessary validity
checks and error handling, neither of which are
specified in the task requirements, nor produced
by COCOGEN’s outputs. Our analysis reveals that
degenerate solutions frequently pass compilation,
rendering compiler-based verification ineffective.

Another prevalent mistake involves misinterpret-
ing task requirements, resulting in solutions that
lack logical coherence. Figure 9 depicts an instance
where the assignment is to leverage the pre-existing
Point class; instead, the LM disregards this spec-
ification and redundantly recreates the class. This
underscores the challenge LLMs face in accurately
comprehending prompts and generating appropri-
ate solutions.

F More Analytic Experiments

F.1 Usefulness of Compiler Feedback

Here, we examine the usefulness of compiler feed-
back by integrating it into three baseline models:
Vanilla, ReACC, and RepoCoder, each considered
separately. We conduct experiments using the GPT-
3.5-Turbo and subsequently reported the average
score across the entire CoderEval-Python dataset
consisting of six levels of context dependencies, as
shown in Table 5. The table provides clear evidence
that incorporating compiler feedback yields a no-
table enhancement in model performance for code
generation. Specifically, a comparison between
RepoCoder with and without compiler feedback
reveals a substantial increase in Pass@1 from 36.82
to 38.00.

Table 9: Pass rates of COCOGEN on varying iterations

Iteration Class Level File Level Project Level
i = 0 34.55 30.88 13.04
i = 3 49.09 47.06 39.13
i = 10 47.27 45.59 39.13

Table 10: C-EM, C-ES, I-EM, and I-F1 scores based on
the GPT-3.5-Turbo on the CrossCodeEval dataset

Category Code Match Identifier Match
Method C-EM C-ES I-EM I-F1
Direct 1.91 50.51 3.60 32.27
ReAcc 5.48 54.03 10.02 38.49
RepoCoder 8.52 55.05 13.02 41.05
CoCoGen 9.08 55.31 14.11 42.34

F.2 More Results on the Ablation Study

To further examine the performance of each compo-
nent of COCOGEN across different dependency lev-
els of test cases, we evaluate COCOGEN at various
dependency levels from the CoderEval-Python test
suite. The results are presented in Table 6, Table 7,
and Table 8. The results show that utilizing com-
piler feedback and structural queries consistently
demonstrates performance improvements across
most scenarios. Furthermore, it achieves better per-
formance when stronger cross-file dependencies
are present (i.e., at the file-level and project-level
tasks), indicating that COCOGEN can accurately
capture the context across the project.

F.3 Varying the Number of Iterations

To investigate whether iteration could continuously
improve performance, we increase the number of
iterations to ten. As shown in Table 9, with more
iterations, the performance of COCOGEN reaches
a plateau. This indicates that there are still errors
that cannot got repaired by COCOGEN, leaving for
further research.

F.4 COCOGEN on Project-level Code
Completion

We also evaluate COCOGEN on project-level code
completion tasks. Although COCOGEN is origi-
nally designed for code generation tasks, the com-
piler feedback may also benefit this code comple-
tion task. The results are presented in Table 10.
From the table, we can see that the compiler feed-
back does improve performance, although not as
significantly as it does in the code generation task.

2350

Table 11: The performance of CoCoGen across varying
iterations on the HumanEval benchmark (CE: Compila-
tion Errors, CE%: their proportion among all generated
solutions)

Pass@1 Pass@5 Pass@10 CE CE(%)
Direct 61.52 80.56 83.15 40 2.38%
CF i = 1 71.46 82.46 85.20 7 0.42%
CF i = 2 71.40 82.56 85.98 3 0.18%
CF i = 3 71.65 82.49 85.36 3 0.18%

Table 12: The performance of CoCoGen across varying
iterations on the MBPP benchmark (CE: Compilation
Errors, CE%: their proportion among all generated so-
lutions)

Pass@1 Pass@5 Pass@10 CE CE(%)
Direct 49.71 58.50 60.81 185 1.90%
CF i = 1 52.95 59.58 61.85 11 0.11%
CF i = 2 53.06 59.87 62.01 9 0.09%
CF i = 3 52.79 59.80 62.09 7 0.07%

F.5 COCOGEN on Function-level Code
Generation

To assess the efficacy of COCOGEN in function-
level code generation, we evaluate it on two com-
monly used datasets: HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021). We retain
the compiler feedback model in COCOGEN, and
conduct tests in a 0-shot scenario, generating 10
code samples for each of the 163 test cases for Hu-
manEval and 974 cases for MBPP, totaling 11,370
samples. The generation and refinement loop iter-
ates 3 times, as shown in Table 11 and Table 12.

The data presented in the table illustrates that
compilation feedback improves the accuracy of the
generated code, although its efficacy is somewhat
limited. We manually review 7 compilation errors
not resolved in HumanEval after the first iteration,
and find that 6 out of 7 instances are caused by
the LLM mistakenly generating code segments en-
closed in Markdown code block markers (‘‘‘),
resulting in compilation failures. Additionally, an-
other instance of compilation error is identified in
the following generated solution:

def is_simple_power(x,
n): return x > 0 and (x
== 1 or (n != 1 and x ==
n**int(round(math.log(x, n))))

This code snippet contains five left parentheses
and four right parentheses in the return state-
ment, causing the syntax error. Interestingly, de-
spite the compiler has indicated this syntax error, it
is not rectified over three iterations.

In MBPP, we manually observe the 7 errors not

fixed after the last iteration, and identify that two
test tasks are responsible for all 7 errors: one named
"sum" contributed to six errors, and another called
"month_season" resulted in one error. We detail
these error cases as follows:

def month_season(month, day):
seasons = "spring": [(3, 20),
(6, 20)], "summer": [(6, 21),
(9, 22)], "autumn": [(9, 23),
(12, 20)], "winter": [(12, 21),
(3, 19)] for season, (start,
end) in seasons.items(): if
(month == start[0] and day >=
start[1]) or (month == end[0]
and day <= end[1]): return
season return "Invalid input"

The error arises because ’start’ and ’end’
are not included in seasons.items, which ap-
pears strange. We speculate that this issue stems
from the presence of functions with the same name
within the training set.

def sum(a, b):
common_divisors = [i for i
in range(1, min(a, b) + 1)
if a % i == 0 and b % i == 0]
return sum(common_divisors) if
common_divisors else 0

The root cause of this error lies in the model’s
confusion when a user-defined function name co-
incides with that of a system library function sum,
representing a category of potential issues.

F.6 Efficiency of Static Analysis

Utilizing static analysis tools to inspect code typ-
ically results in increased latency. To investigate
whether the latency impacts the usability of COCO-
GEN, we measure its latency at each test case. We
have observed that in experiments, the speed of
static analysis and structural query is relatively fast.
It is because the semantic checker (i.e., pylint),
only analyzes the current file and its dependent files.
The average latency is recorded at 1.27 seconds,
with a minimum of 0.359 seconds and a maximum
of 6.984 seconds. We deem this latency to be ac-
ceptable.

2351

Table 13: Tables pre-computed by COCOGEN for error correction
Table Name Description Element Example
M Stores the a module and its hierarchy in project. tests.unit.async_.work.__init__
M_C Stores a module and a class inside the module Module neo4j._codec.packstream.v1.__init__, Class PackableBuffer
M_C_CF Stores a class, its parent module, and its member functions. Module neo4j.time.__init__, Class Clock, Function local_offset
M_C_V Stores a class variable, its parent class and module. Module neo4j._sync.io.tmphhoug1of, Class Bolt, Variable is_reset
M_GF Store a global function and its parent module. Module neo4j.time._arithmetic, Function nano_add
M_GV Stores a global variable and its parent module. neo4j.__init__, Global Variable TRUST_SYSTEM_CA_SIGNED_CERTIFICATES

Table 14: A complete list of demonstration examples prompted to the language model

Error Type Example Error Message Action Example Structural Query
UNDEF-P Unable to import ’keys’ Confine the search scope in all

modules
from Module m where
m.inSource() and
v.getScope() = m select
m

UNDEF-CM Instance of ’RootLogger’ has no
’loggerDict’ member

Confine the search scope in all
members in the class

from Module m, Class
c, Function cf where
m.inSource() and
m.contains(c) and
c.contains(cf) and
cf.getScope() = c and
c.getName = ’RootLogger’
and not cf.isInitMethod()
select m, c, cf

UNDEF-API No name ’AsyncBolt5x0’ in
module ’neo4j._sync.io._bolt5’

Confine the search scope in all
names in the module

from Module m, Variable
v where m.inSource()
and v.getScope() =
m and m.getName() =
’neo4j._sync.io._bolt5’
select m,
v.getDefinition()

API No value for argument ’xmls’ in
function call ’dumpXML’

Return the information of the
function

from Module m, Function
f where m.inSource()
and m.contains(f) and
f.getName() = ’dumpXML’
select m, f

G Technical Details of Structural Query
System

G.1 The Design Principle

In COCOGEN, we employ the Structural Query
Language (SQL) to perform structured queries on
code repositories. The SQL syntax used here is
CodeQL, a specialized version designed for soft-
ware repository mining, capable of conducting
complex control-flow and data-flow analyses on
a set of code files.

We extracted 11 error codes from the compiler
(shown in Table 4), each corresponding to one
of four error categories as in Section 2.2. For
efficiency, two authors manually inspected the
most frequently occurring error codes, precom-
puted six data tables from the project graph, and
hard-coded the structural context retrieval proce-
dure for the following error codes: E0001 (syntax
error), E0602 (undefined-variable), E1101 (no-
member), E0213 (no-self-argument), and E0102

(function redefined). The tables to retrieve struc-
tural project context for these frequently occurred
errors are presented in Table 13.

Whenever the compiler reports an error, if it is
a frequently occurring error, its retrieval is done
from these precomputed data tables. Otherwise,
the COCOGEN invokes the LLM to generate an
SQL query statement, which is then executed on
the project graph.

In the CoderEval-Python benchmark, with iter-
ation rounds set to 3, related project contexts of
93.2% of errors are successfully retrieved. For the
remaining 6.8% of cases, there are two reasons for
failure: first, the LLM does not follow the demon-
strated CodeQL examples and generates queries
that are syntactically or semantically incorrect, thus
rejected by the CodeQL query system; second, the
query does not return anything because the spec-
ified conditions in the query are not satisfied in
project context.

2352

G.2 Demonstration Examples of Structural
Queries

We present a demonstration example in Section 3.3
to compose the structural query. The example fo-
cuses on identifying and addressing instances of
missing or incorrectly utilized context entries. We
detail several example error messages along with
their corresponding structural queries. A compre-
hensive list of these examples can be found in Ta-
ble 14. The four queries shown in the table are writ-
ten manually by one of the authors, and designed
to handle four representative types of compilation
errors. These sampled error messages are reported
by compilers when generating solutions without
project context. The specific four messages are
chosen randomly from the compilation log.

H Algorithm for Project Database
Construction

We present the comprehensive algorithm for
constructing the project database and generat-
ing code with COCOGEN. The algorithm for
building the project database is detailed in Al-
gorithm 1. It involves identifying source files
in the project by extracting all files that end
with a .py extension. To parse Python source
files, we employ the tree-sitter-python
parser for generating abstract syntax trees and
codeql-python to extract the property of a con-
text entry node. To encode passages to vectors, we
utilize text-embedding-ada-002, a text em-
bedding model provided by OpenAI and accessible
via online APIs (OpenAI, 2022).

Algorithm 1 Project Database Construction

Require: SOURCEFILESET: A set of project source files
Require: PARSER: A parser for source files
Require: ENCODER: A passage encoder transforms text to numerical vector
Ensure: databaseEntries: Entries in the project database

1: databaseEntries← ∅
2: for each sourceF ile in SOURCEFILESET do
3: nodesForV isit← ⟨⟩
4: propertyPrefixSeq ← ⟨⟩
5: astF ile← PARSER(sourceF ile)
6: nodesForV isit.ADD(astF ile.rootNode)
7: while nodesForV isit is not empty do
8: currentNode← nodesForV isit.POP()
9: if currentNode is PREFIXMARK then

10: propertyPrefixSeq.POP()
11: end if
12: if currentNode.type is in [VARIABLETYPE, FUNCTIONTYPE, CLASSTYPE] then
13: nodeProperty ← GETPROPERTIES(currentNode)
14: nodeSchema← ⟨propertyPrefixSeq, currentNode, nodeProperty⟩
15: nodeEmbedding ← ENCODER(nodeSchema)
16: databaseEntries.ADD([nodeSchema, nodeEmbedding])
17: propertyPrefixSeq.PUSH(currentNode)
18: nodesForV isit.PUSH(PREFIXMARK)
19: end if
20: for childNode in currentNode.CHILDS() do
21: nodesForV isit.PUSH(childNode)
22: end for
23: end while
24: end for

2353

