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Abstract

With the remarkable capabilities, large lan-
guage models (LLMs) have emerged as essen-
tial elements in numerous NLP applications,
while parameter-efficient finetuning, especially
LoRA, has gained popularity as a lightweight
approach for model customization. Meanwhile,
various dropout methods, initially designed
for full finetuning with all the parameters up-
dated, alleviates overfitting associated with ex-
cessive parameter redundancy. Hence, a possi-
ble contradiction arises from negligible train-
able parameters of LoRA and the effectiveness
of previous dropout methods, which has been
largely overlooked. To fill this gap, we first
confirm that parameter-efficient LoRA is also
overfitting-prone. We then revisit transformer-
specific dropout methods, and establish their
equivalence and distinctions mathematically
and empirically. Building upon this compar-
ative analysis, we introduce a unified frame-
work for a comprehensive investigation, which
instantiates these methods based on dropping
position, structural pattern and compensation
measure. Through this framework, we reveal
the new preferences and performance compar-
isons of them when involved with limited train-
able parameters. This framework also allows us
to amalgamate the most favorable aspects into
a novel dropout method named HiddenKey. Ex-
tensive experiments verify the remarkable su-
periority and sufficiency of HiddenKey across
multiple models and tasks, which highlights it
as the preferred approach for high-performance
and parameter-efficient finetuning of LLMs.

1 Introduction

Recently, transformers (Vaswani et al., 2017), such
as GPT-4 (OpenAI, 2023), PaLM 2 (Anil et al.,
2023) and LLaMA 2 (Touvron et al., 2023b), have
been rapidly expanded to billions of parameters,
leading to remarkable performance boost. When
customizing these models for downstream tasks,
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parameter-efficient fine-tuning (PEFT) (Houlsby
et al., 2019; Hu et al., 2021; Liu et al., 2022)
has been widely adopted as a lightweight method,
which generally freezes the majority of parameters
while only updating or adding negligible trainable
parameters. Among these methods, LoRA (Hu
et al., 2021) gains the most popularity due to its
high effectiveness, robustness and generality.

In parallel with this, dropout (Hinton et al., 2012)
has been widely adopted to mitigate overfitting,
which is generally caused by excessive parameter
redundancy. Its variants, including DropKey (Li
et al., 2023), DropAttention (Zehui et al., 2019) and
HiddenCut (Chen et al., 2021), have also demon-
strated superiority for transformers. With a speci-
fied probability, they randomly deactivate attention
logits, weights and hidden representations, respec-
tively. However, the effectiveness of these meth-
ods is only verified in full finetuning scenarios,
where all the parameters are updated and easily
lead to excessive redundancy. When it comes to
LoRA-based PEFT scenarios, a potential contra-
diction arises. Specifically, since overfitting pri-
marily stems from excessive parameter redundancy,
dropout may prove ineffective in LoRA-based fine-
tuning because of the extremely limited trainable
parameters. Besides, all the above methods are pro-
posed independently, lacking a clear guideline to
unify them systematically, which hinders compre-
hensive comparative analysis and the development
of more effective dropout methods.

In this study, we first conduct extensive exper-
iments and confirm that LoRA also suffers from
overfitting easily, which serves as a prerequisite
for our following analysis. As shown in Figure 5,
as the rank and trainable parameters increase, the
model’s performance initially improves but gradu-
ally deteriorates due to the intensifying overfitting.
Much more experiments in Sec. 4 provide further
evidence and affirm that this overfitting susceptibil-
ity can be improved with dropout methods. Besides,
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we compare the above transformer-specific dropout
methods mathematically and empirically. For the
first time, we find that DropKey and DropAtten-
tion share the equivalent forwarding process, while
the gradient stopping operator introduces gradient
noise into the backpropagation of DropAttention,
impairing the training stability and performance.

Based on the comparative analysis, we identify
three key dimensions for a dropout method and
derive a unified framework along dropping posi-
tion, structural pattern and compensation measure.
With this framework, empirical experiments firstly
reveal the new preferences of these methods in
LoRA scenarios. For example, span-wise Hidden-
Cut is no longer superior to the element-wise one
due to the limited tunable parameters. Secondly,
this framework enables the comprehensive com-
parisons among different methods. Empirically,
we find that DropKey performs the best followed
by HiddenCut, while DropAttention exhibits the
worst performance due to the gradient noise. As an
alternative compensation, Bidirectional Kullback-
Leibler (KL) divergence loss consistently achieves
performance gains, while Jensen-Shannon (JS) con-
sistency regularization loss becomes ineffective.

Guided by this framework, we also derive a new
dropout method named HiddenKey, which drops
attention logits column-wisely and hidden represen-
tations element-wisely, respectively, and augment
the vanilla loss with KL loss. It consistently ex-
hibits superiority across multiple models in both
natural language understanding (NLU) and gen-
eration (NLG) tasks, which also fills the largely
overlooked gap on the effect of dropout methods
on NLG tasks. Integrating with input and output
dropout does not provide further complementar-
ity, demonstrating the sufficiency of our method.
Hence, HiddenKey excels as the better method for
high-performance and parameter-efficient finetun-
ing of LLMs on both NLU and NLG tasks.

In summary, our contributions are mainly as fol-
lows:

• We present the first comprehensive investi-
gation to explore the potential contradiction
between various dropout methods and LoRA.

• We compare three typical transformer-specific
dropout methods theoretically and empirically,
and derive the core dimensions for designing
a dropout method.

• We further introduce a unified framework to

instantiate existing dropout methods, within
which we discover the new preferences and
performance comparison of these methods.

• A new dropout method named HiddenKey is
devised within our framework, exhibiting su-
perior effectiveness and sufficiency in mitigat-
ing LoRA’s susceptibility to overfitting.

2 Preliminaries

In this section, we revisit three transformer-specific
dropout methods shown in Figure 1, laying the
foundation for the subsequent analysis.

DropAttention. DropAttention (Zehui et al.,
2019) is the first dropout method specially designed
for self-attention mechanism. It randomly masks
elements or key columns of attention weights, en-
couraging the utilization of multiple contextualized
features instead of overfitting some specific pat-
terns. Following Eq. 1 and 2, normalized rescaling
replaces the traditional one to guarantee the sum
of attention weights to be one, and achieves better
performance for multiple NLP classification tasks.

wj = m · wj , m ∼ Bernoulli(p), (1)

w′
j =

wj

NoGrad(
∑l−1

j=0 wj)
, (2)

where p, l, wj , wj , and w′
j denote the dropout rate,

sequence length, original, masked, and rescaled
attention weights. NoGrad() and Bernoulli() rep-
resent the gradient stopping operator and sampling
from the Bernoulli distribution, respectively1.

DropKey. As a dropout-before-softmax scheme,
DropKey (Li et al., 2023) takes attention logits gj
instead of weights as the basic units, as formulated
in Eq. 3. Since the subsequent softmax() ensures
the sum of weights to be one, rescaling is no longer
necessary.

g′j = m+ gj , m =

{
0, with probability 1− p

−∞, with probability p
(3)

HiddenCut. In contrast, HiddenCut (Chen et al.,
2021) focuses on preventing the co-adaptation of
hidden representations in the feed-forward mod-
ule. The core idea is to cut single contiguous span,
which may contain more semantic information and
be more difficult to be restored. Besides, JS loss is
applied to encourage the perturbed representations
to be as close to those in inference as possible.

1Here we omit the subscript t for clarity. Although whether
the NoGrad() operator exists or not significantly impacts the
performance of DropAttention, it is overlooked in the original
paper. We present it here and will discuss both cases in detail.

1996



SoftMax

MatMul

Scale

Add & LayerNorm

FeedForward

MatMul

X

HiddenCut
Add & LayerNorm

*L DropAttention

DropKey

Figure 1: Illustration of transformer architecture and
typical transformer-specific dropout methods, namely
DropKey, DropAttention, and HiddenCut.

(a) element (b) column (c) span

Figure 2: Three structural sampling strategies, namely
element, column, and span. The grey and blue cells
represent masked and remaining entries, respectively. In
HiddenCut, rows and columns denote sequence length
(L) and hidden dimension (D), while representing keys
(K) and queries (Q) in DropKey and DropAttention.

3 Method

Firstly, we conduct a comparative analysis of the
above methods. Based on their similarity and differ-
ences, we then propose a unified framework along
dropping position, structural pattern and compen-
sation measure. Finally, this framework guides us
to derive a new dropout method named HiddenKey,
which exhibits superior performance empirically.

3.1 Mathematical and Empirical Comparison
Equivalent Forwarding between DropKey and
DropAttention. Despite the different details be-
tween DropKey and DropAttention, we show their
mathematical equivalence in forwarding. Let gu
and gm denote the unmasked and masked attention
logits, while wu and wm represent the correspond-
ing attention weights2. For DropKey, we have

g′m := −∞, g′u := gu, w′
m = 0, (4)

w′
u =

exp(g′u)∑l−1
i=0 exp(g

′
i)
, (5)

while for DropAttention, we have

w′
m := 0, w′

u =
exp(gu)∑l−1
i=0 exp(gi)

· 1∑l−1
i=0 wi

. (6)

2Only one masked element is considered here, but masking
multiple elements shares the same analysis.

Proved by Eq. 13 in Appendix C, Eq. 5 and Eq. 6
are strictly equal to each other. Hence, the final at-
tention weights (i.e., w′

u and w′
m) of DropKey are

the same as those of DropAttention, and so is the
following computation. Notably, normalized rescal-
ing plays an indispensable role in establishing this
equivalence, which diminishes the differences be-
tween these two methods during the forward pass.

Variation in Back-Propagation between Drop-
Key and DropAttention. Due to the equiva-
lent forward pass, the corresponding values of
∂O
∂w′

u
and ∂O

∂w′
m

remain the same for DropKey and
DropAttention, where O denotes the objective func-
tion. Meanwhile, because of the identical compu-
tation before attention logits, the analysis of back-
propagation focuses on the four partial derivatives
of w′

u and w′
m with respect to gu and gm, respec-

tively. For DropKey, we have

∂w′
u

∂gu
= exp(gu) ·

∑l−1
i=0,̸=m exp(gi)− exp(gu)

(
∑l−1

i=0,̸=m exp(gi))2
. (7)

For DropAttention with NoGrad(), we have

∂w′
u

∂gm
= − exp(gu) · exp(gm)∑l−1

i=0 exp(gi) ·
∑l−1

i=0,̸=m exp(gi)
, (8)

∂w′
u

∂gu
=

exp(gu) ·
∑l−1

i=0,̸=u exp(gi)
∑l−1

i=0 exp(gi) ·
∑l−1

i=0,̸=m exp(gi)
. (9)

As for other partial derivatives, their gradient flow
is disrupted by dropping operations. When the cor-
responding elements of attention logits and weights
are masked in DropKey and DropAttention, the
derivative of w′

u with respect to gu has proportional
relation, as shown in Eq. 10 and proven by Eq. 14.
Provably, k is always less than 1 and continuously
decreases with the increase of gm. In other words,
compared to DropAttention with NoGrad(), Drop-
Key can adaptively lower the gradients when a
large attention logit gm is discarded. This can pro-
vide DropKey with dropping-dependent compen-
sation capability, thereby stabilizing the training
process. For DropAttention with NoGrad(), the
partial derivative of w′

u with respect to gm is non-
zero and that with respect to gu depends on the
value of gm, even if wm is masked and gm is not
used for computation. This implies that a larger
dropout rate can introduce more gradient noise,
which is further validated by the inferior perfor-
mance in Sec. 4. In contrast, DropAttention with-
out NoGrad() shares the same back-propagation
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with DropKey, thereby exhibiting identical behav-
iors. Hence, unless otherwise stated, we will refer
to DropAttention with NoGrad() as DropAtten-
tion, and include DropAttention without NoGrad()
under DropKey for simplicity.

(
∂w′

u

∂gu
)DropKey = k · (∂w

′
u

∂gu
)DropAttention, (10)

k =

1− exp(gu)∑l−1
i=0, ̸=m

exp(gi)

1− exp(gu)∑l−1
i=0 exp(gi)

Comparison with HiddenCut. The commonal-
ity among these methods is that they all need to
select a specific type of data, decide what patterns
to mask, and consider how to reduce the gap be-
tween training and inference phases. In contrast,
their divergences are two-fold. First, their distinct
dropping positions and patterns lead to different
rescaling operators. Identical to the vanilla dropout,
element-wise HiddenCut amplifies hidden repre-
sentations by a factor of 1/(1 − p) for consistent
scales between training and testing, while normal-
ized rescaling is adopted by DropAttention. Due to
the subsequent softmax(), DropKey no longer uti-
lizes any rescaling method. The other difference is
that DropAttention and DropKey can be regarded
as operations on weight matrices, which are uti-
lized for the weighted summation of value vectors.
Instead, HiddenCut operates directly in the hidden
representations.

In summary, the comparative analysis of these
methods highlights their similarities and differ-
ences, leading to the identification of key dimen-
sions for designing a dropout method: dropping po-
sition, structural pattern and compensation measure.
Subsequently, these elements are incorporated into
our unified framework for further analysis.

3.2 A Unified Framework
Based on the above comparative analysis, we iden-
tify three key dimensions for a dropout method.
Here we elaborate them further and instantiate
these dropout methods along them below.

Dropping Position. For better generalization, a
robust model needs to learn noise-resilient features.
Hence, dropping position, determining where to
inject noise, emerges as a primary consideration
in designing dropout methods. For example, drop-
ping inputs acts like data augmentation, dropping
outputs encourages an ensemble of sub-classifiers,
and dropping intermediate representations disrupts
the co-adaptation of neighboring neurons. For a

transformer layer depicted in Figure 1, DropKey,
DropAttention and HiddenCut respectively drop at-
tention logits, weights and hidden representations,
covering the self-attention mechanism and feed-
forward module. Additionally, the same dropping
position may perform differently in full finetuning
and LoRA scenarios. In full finetuning, weights lo-
cated in the dropping position are directly adjusted
for better noise resilience. However, this adapta-
tion is more implicit for LoRA, because the directly
associated weights with the dropping position are
frozen. Specifically, LoRA, typically applied to the
key and value projection matrices (Hu et al., 2021),
requires multiple intermediate calculations (e.g.,
softmax) to influence attention logits and weights
(i.e., the dropping positions for DropAttention and
DropKey), while even requires inter-module com-
putation for hidden representations. This disparity
may potentially affect the effectiveness of existing
dropout methods in LoRA scenarios. Notably, dis-
tinct dropping positions do not necessarily indicate
differences. In specific cases, different positions
may also exhibit similar features, as discussed in
Sec. 3.1.

Structural Pattern. Structural pattern means the
style of units deactivated randomly, and determines
how the co-adaptation of neurons is disrupted,
thereby affecting the semantic information learned
by these units. For example, as shown in Fig-
ure 2(b), if column pattern is adopted in DropKey,
each value vector tend to possess as much con-
textual information as possible so that the output
vectors are minimally affected by the masked key
columns. Different patterns also result in varying
levels of difficulty in recovery (Zehui et al., 2019).
Generally, the span pattern is more challenging
than the column style, while the element one is the
simplest. Given the limited trainable parameters,
LoRA may struggle to handle the strong distur-
bances introduced by complex patterns. Therefore,
it may exhibit different preferences for structural
patterns from full finetuning. Besides, different
optimal patterns may be required for distinct posi-
tions, which will be thoroughly discussed in Sec. 4.

Compensation for Training and Inference Gap.
For better performance and deterministic outputs,
dropout is disabled in inference by default. How-
ever, this is not consistent with the training stage
and can lead to a gap between the actual and ideal
performance. Hence, another key consideration is
how to close the training and inference gap. Apart
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Sentence 2: 
Oil prices rise. 

+ Kullback–Leibler
Divergence Loss

Grad

NoGrad

ClassifierSoftMax FeedForward Add &
LayerNorm

······

······

Transformer Layer * L

ClassifierSoftMax FeedForward Add &
LayerNorm

Transformer Layer * L

······

······

Figure 3: Illustration of HiddenKey. It respectively drops columns and elements of attention logits and hidden
representations, and augments bidirectional KL loss to minimize the training and inference gap implicitly.

from rescaling associated with each method intrin-
sically, R-drop (Wu et al., 2021) leverages Eq. 11,
bidirectional KL divergence loss, to enforce the out-
put distributions to be more dropout-insensitive so
that the gap can be minimized implicitly. Alterna-
tively, HiddenCut replaces it with JS loss shown in
Eq. 12. With negligible tunable parameters, LoRA
is more easily optimized to reach its performance
ceiling. This compressed optimization space may
potentially render some existing schemes ineffec-
tive, which is also verified in the following sections.

LKL =
1

2
(DKL(P1∥P2) +DKL(P2∥P1)), (11)

LJS = DKL(P1∥P ), (12)

where P1, P2, and P represent two different out-
put distributions in the training stage and one in
inference with the same input, respectively. For the
sake of symmetry, KL loss calculates the bidirec-
tional distances, while JS loss uses the inference
distribution as reference.

3.3 HiddenKey
The proposed unified framework not only enables
us to analyze the critical choices along each dimen-
sion and their mutual influences, but also guides us
to design new dropout methods. As shown in Fig-
ure 3, we propose “HiddenKey”, which drops the at-
tention logits column-wisely in the attention mech-
anism and hidden representations element-wisely
in the feed-forward module along the dropping po-
sition and structural pattern dimensions. As for the
compensation measure to minimize the training and
inference gap, two forward passes in parallel are
performed so that an extra KL loss is deployed to
enhance the similarity of output distributions. For
classification tasks, the representations produced
by the classifier are used, while those produced
by the last transformer layer are used for regres-
sion tasks. Furthermore, the superiority over all

the aforementioned methods will be extensively
analyzed on diverse tasks and models below.

4 Experiments

4.1 General Setup

Models and Datasets. We implement compre-
hensive analysis on multiple tasks and models with
LoRA. The models start from RoBERTa-large (Liu
et al., 2019) and GPT2-Medium (Li and Liang,
2021), and scale up to LLaMA2-7B (Touvron et al.,
2023a). Besides, both NLU and NLG tasks are
covered. For NLU tasks, we utilize six datasets
from GLUE benchmark (Wang et al., 2018): SST-
2 (Socher et al., 2013), RTE (Wang et al., 2018),
MRPC (Dolan and Brockett, 2005), STS-B (Cer
et al., 2017), CoLA (Warstadt et al., 2018), and
QNLI (Rajpurkar et al., 2018). These datasets
are selected to cover diverse tasks and sizes, in-
cluding single sentence, similarity, paraphrase and
inference. For NLG tasks, we follow Hu et al.
(2021) and focus on E2E (Novikova et al., 2017)
and WebNLG (Gardent et al., 2017). More details
can be found in Appendix D.

Baseline. Due to the widespread popularity, we
use vanilla LoRA as the baseline, and keep most of
its configurations. Notably, low-rank decomposi-
tion with a rank of 8 and scalar of 16 is applied to
the key and value projection matrices. This results
in trainable parameters of 0.79M in the Roberta-
large model, accounting for 0.22% of the total pa-
rameters3. In comparison, these values are 0.39M
and 0.11% for GPT2-Medium, while 4.19M and
0.06% for LLaMA2-7B. More detailed configura-
tions are demonstrated in the Appendix E.
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Position
Pattern /
Compen.

RTE MRPC STS-B STS2
Avg.

Acc. Acc. Pearson. Acc.
Full Finetuning∗ - 86.60 90.90 92.40 96.40 91.58

Baseline - 84.48±0.98 89.95±0.50 91.96±0.48 95.99±0.25 90.60

HiddenCut
element 87.00±1.14 90.69±0.42 91.94±0.28 96.10±0.42 91.43
column 86.64±0.80 90.20±0.80 91.96±0.11 96.22±0.19 91.26

span 86.64±1.63 90.69±0.22 92.05±0.35 96.10±0.30 91.37

DropKey
element 87.00±1.08 90.93±1.06 92.21±0.21 96.22±0.25 91.59
column 87.36±1.70 90.93±0.40 92.25±0.13 96.22±0.24 91.69

span 86.28±0.94 90.69±0.69 92.21±0.21 96.22±0.25 91.35

DropAttention
element 85.56±11.73 90.20±3.07 92.03±0.27 95.76±0.30 90.89
column 85.56±1.80 90.20±0.71 92.11±0.28 95.87±0.21 90.94

span 86.28±0.60 89.95±0.61 92.21±0.36 96.10±0.39 91.14

HiddenKey−
- 87.70±0.91 90.90±0.72 92.28±0.19 96.22±0.13 91.78

+ KL 88.10±1.60 91.20±0.90 92.30±0.11 96.44±0.20 92.01
+ JS 87.70±1.72 90.90±0.47 92.24±0.21 96.22±0.24 91.77

+ input - 88.50±2.11 90.70±1.03 92.11±0.14 96.33±0.27 91.16
+ output - 87.70±2.24 90.70±1.20 92.19±0.11 96.22±0.15 90.95

Table 1: Performance of various dropping positions, structural patterns and compensation methods for RoBERTa-
large model on RTE, MRPC, STS-B and SST-2 datasets. “input” and “output” refer to the dropout of input and
output representations, respectively. The subscripts denote the standard deviation, while bold indicates the best
performance. “Compen.” and “Avg.” are abbreviations for compensation measures and the average results across
four datasets.

4.2 Main Results

We first experiment with RoBERTa-large on four
NLU datasets, and present the results in Table 1
and Figure 4. Generally, almost all methods can
outperform the baseline with a large margin. This
demonstrates that despite limited trainable parame-
ters, LoRA still suffers from overfitting and these
transformer-specific dropout methods can allevi-
ate this problem. We claim that limited trainable
parameters of LoRA still enable relatively large
model capacity. This can stem from two aspects:
(1) Even if the proportion is negligible, the number
of tunable parameters remains significant due to the
large size of foundation models. As mentioned ear-
lier, there are still 0.79M tunable parameters, even
if they only account for 0.22% of the whole model.
(2) Coupled with the base models, the expressive-
ness of these parameters is enlarged extremely, as
evidenced by the remarkable performance in Hu
et al. (2021). This excessive model capacity con-
tributes to the susceptibility to overfitting, despite
only a negligible portion of trainable parameters.

Different dropping positions prefer distinct struc-
tural patterns. As shown in Table 1, the optimal

3The classifier parameters are excluded here due to their
varying numbers for different tasks.

structure for DropKey is “column”, which deacti-
vates specific keys across all queries within a head,
thereby breaking the co-adaptation of value vectors
and achieving better performance. Oppositely, Li
et al. (2023) confirms the ineffectiveness of struc-
tural patterns in multiple CV tasks. This divergence
may arise from that NLP tasks have a more seman-
tically explicit token segmentation, while this prop-
erty is absent for CV tasks. In comparison, Hidden-
Cut only has one representation sequence instead
of multiple ones in the multi-head self-attention
module. Hence, “column” and “span” modes may
erase too much information, especially when se-
mantically important representations, such as emo-
tional and negation ones, are masked. This could
introduce excessive noise and even incorrect input-
label pairs for more limited LoRA scenarios, and
explains why element-wise HiddenCut achieves
better performance on average, different from the
span style for full finetuning (Chen et al., 2021).

These dropout methods exhibit different charac-
teristics in LoRA scenarios, and combining dif-
ferent positions can yield further improvement.
Specifically, with a small dropout rate, all methods
perform very similarly, fluctuating around the base-
line. However, as the dropout rate increases, Drop-
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Figure 4: Performance of RoBERTa-large with different dropout methods on four NLU datasets, namely RTE,
MRPC, SST-2 and STS-B. Markers and line styles differentiate various dropping positions, while the shades of color
represent the structural patterns. Pearson correlation is reported for STS-B, while accuracy is utilized for others.

Key consistently achieves the best performance on
four datasets, followed by HiddenCut. This might
be partially attributed to the closer proximity of
DropKey to LoRA. In contrast, despite the simi-
lar dropping positions and the same forward pass
as DropKey, DropAttention produces the worst re-
sults. This confirms our earlier analysis in Sec. 3.1
that NoGrad() operator leads to larger gradient
noise in back-propagation and rapid performance
degradation as the dropout rate increases. Consid-
ering their best performance, we further combine
element-wise HiddenCut with column-wise Drop-
Key, named HiddenKey−. On average, it achieves
additional improvement over any single dropout
mechanism. We also attempt to combine DropAt-
tention, but it does not result in any benefits.

As for the compensation measures to narrow the
gap between training and inference stages, KL loss
consistently achieves better performance than JS
loss. Specifically, compared to HiddenKey− (i.e.
HiddenKey without any additional loss), the intro-
duction of KL loss always provides extra perfor-
mance gains on all the datasets. In contrast, JS loss
does not have an apparent impact on the results,
even if Chen et al. (2021) claims its effectiveness
in full finetuning settings. This difference may
arise from the more capacity-limited LoRA sce-

narios and superb dropout methods, which jointly
squeeze the potential improvement space for aug-
mented loss. Therefore, with the validated superior-
ity, KL loss is incorporated into HiddenKey along
the third dimension of our proposed framework.
Due to the optimal practice along each dimension,
HiddenKey steadily achieves the best performance
among all the above methods and datasets.

4.3 Complementarity with Input and Output
Dropout

In addition to DropKey, DropAttention and Hid-
denCut, which cover the transformer layer, cutoff
is also applied to input embedding sequences for
data augmentation (Shen et al., 2020), and standard
dropout is used to the output representations for
a more robust classifier. To comprehensively ex-
plore the impact of dropout on the entire model,
we further investigate whether these methods could
further enhance the transformer-specific dropout.
The results at the end of Table 1 suggest that neither
of these methods achieve consistent improvement
over HiddenKey− across all the datasets, and both
of their average performance suffers a slight de-
crease. This indicates that HiddenKey has predom-
inantly captured the performance gains achieved
through dropout methods, while dropping input

Model Method BLEU ↑ NIST ↑ METEOR ↑ ROUGE_L ↑ CIDEr ↑

GPT2-Medium

Full Finetuning∗ 68.20 8.620 46.20 71.00 2.470
Baseline 68.50±0.90 8.615±0.09 46.43±0.26 71.08±0.25 2.490±0.02

HiddenCut 69.22±0.44 8.700±0.05 46.66±0.11 71.39±0.07 2.491±0.01

DropKey 68.78±0.75 8.651±0.08 46.53±0.24 71.40±0.33 2.486±0.01

HiddenKey− 69.35±0.48 8.726±0.04 46.60±0.29 71.61±0.26 2.510±0.00

HiddenKey 69.76±0.51 8.765±0.08 46.80±0.11 71.78±0.06 2.511±0.03

LLaMA2-7B
Baseline 66.71±0.65 8.463±0.09 44.82±0.26 70.10±0.46 2.371±0.01

HiddenKey 69.02±0.64 8.725±0.08 45.84±0.13 71.17±0.13 2.456±0.00

Table 2: Results of GPT2-Medium and LLaMA2-7B with various dropout methods on E2E NLG Challenge dataset.
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Method
A S U

BLEU ↑ METEOR ↑ TER ↓ BLEU ↑ METEOR ↑ TER ↓ BLEU ↑ METEOR ↑ TER ↓
Full Finetuning∗ 46.50 0.380 0.530 64.20 0.450 0.330 27.70 0.300 0.760

Baseline 54.78±0.16 0.411±0.00 0.395±0.00 62.30±0.47 0.420±0.04 0.331±0.00 45.53±0.21 0.376±0.00 0.464±0.00

HiddenCut 55.06±0.18 0.411±0.00 0.391±0.00 62.43±0.21 0.442±0.00 0.329±0.00 46.11±0.20 0.377±0.00 0.458±0.00

DropKey 55.22±0.34 0.411±0.00 0.389±0.00 62.47±0.17 0.441±0.00 0.328±0.00 46.39±0.75 0.378±0.00 0.455±0.01

HiddenKey− 55.26±0.20 0.411±0.00 0.388±0.00 62.57±0.24 0.441±0.00 0.328±0.00 46.36±0.34 0.378±0.00 0.454±0.00

HiddenKey 55.27±0.21 0.413±0.00 0.386±0.00 62.49±0.18 0.441±0.00 0.326±0.00 46.48±0.46 0.381±0.00 0.452±0.00

Table 3: Results of GPT2-Medium finetuned with different dropout methods on WebNLG dataset. “A”, “S” and “U”
correspond to the “All”, “Seen” and “Unseen” categories in the test set, respectively.

Method
CoLA QNLI

Matthew. Acc.

baseline 67.96±0.25 94.23±0.17

HiddenKey 69.91±0.52 95.04±0.11

Table 4: Results of RoBERTa-large finetuned with Hid-
denKey on CoLA and QNLI datasets.

or output does not contribute steady complemen-
tarity. This sufficiency hints that finetuning with
HiddenKey only is enough in LoRA scenarios.

4.4 Superiority on More NLU and NLG Tasks

More NLU Datasets. We further generalize Hid-
denKey to two extra NLU datasets, namely CoLA
and QNLI. As shown in Table 4, HiddenKey
steadily achieves 1.95 and 0.81 performance im-
provement over baselines on both of the datasets, re-
confirming HiddenKey’s superiority in NLU tasks.

NLG datasets. Following Hu et al. (2021), we
also experiment with GPT2-Medium on NLG tasks.
As shown in Table 2, HiddenKey consistently out-
performs full finetuning, LoRA baseline and other
dropout methods over all the five metrics on E2E
NLG Challenge dataset. Similarly in Table 3, on
the “All”, “Seen” and “Unseen” subsets of the
WebNLG dataset, HiddenKey gains 7/9 wins over
all other methods on BLEU, METEOR and TER
metrics. Hence, HiddenKey exhibits a performance
surge across diverse metrics, datasets and their sub-
sets for NLG tasks, as it has shown for NLU tasks.

4.5 Performance Boost on LLMs

With the dominance of LLMs, we also extend the
application of HiddenKey to LLaMA2-7B, one of
the most popular and open-sourced LLMs, on both
NLU and NLG tasks. As shown in Table 5, mod-
els finetuned with HiddenKey outperform those
without HiddenKey by a large margin on RTE and
MRPC datasets. Similarly, HiddenKey consistently

Method
RTE MRPC
Acc. Acc.

baseline 88.45±0.79 88.73±0.56

HiddenKey 90.25±1.05 89.46±0.60

Table 5: Results of LLaMA2-7B finetuned with Hid-
denKey on RTE and MRPC datasets.

exhibits significant superiority on E2E NLG dataset
across all metrics over baseline, shown at the end
of Table 2. This indicates that HiddenKey can also
function well with LLMs on diverse tasks.

4.6 Ablation Study

Based on our framework, we eliminate the compo-
nents of HiddenKey to demonstrate the necessity of
each dimension. As illustrated in Table 1, 2 and 3,
the substantial boost of HiddenKey− over previous
methods and baselines on both NLU and NLG tasks
indicates the significance of dropping positions and
patterns in mitigating the susceptibility to overfit-
ting in LoRA scenarios. Moreover, HiddenKey also
consistently outperforms HiddenKey−, emphasiz-
ing the importance of appropriate compensation
measures. These results provide strong evidence
for the effectiveness of our framework.

5 Conclusion

We investigate the possible contradiction between
the limited trainable parameters of LoRA and over-
fitting associated excessive parameter redundancy.
After confirming the overfitting-prone property of
LoRA, we analyze existing dropout methods the-
oretically and empirically, and further introduce a
unified framework for thorough comparison. This
also guides us to derive a new dropout method, Hid-
denKey. With its superiority and sufficiency across
multiple models and datasets, HiddenKey deserves
to be the recommended dropout method to alleviate
overfitting in LoRA-based scenarios.
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6 Limitation

The main limitation of this work is the poten-
tially longer training duration incurred by the Bidi-
rectional Kullback-Leibler (KL) divergence loss.
Specifically, the calculation of the KL loss requires
the output distributions of two forward passes. In
our implementation, as shown in Figure 3, we only
perform back-propagation on one of the branches,
resulting in approximately 50% longer training
time compared to the original training process.
However, we argue that this can be greatly re-
duced by parallelizing the two forward passes with
multiple processes. Alternatively, both branches
can be back-propagated simultaneously or sequen-
tially, before merging their gradient updates. This
pipeline can be regarded as utilizing the same batch
of samples twice, thereby roughly halving the num-
ber of iterations and resulting in similar total train-
ing time, which is left for future work. Furthermore,
it is worth noting that the training cost is one-time,
and the introduction of KL loss can significantly
improve models’ performance, which is highly ben-
eficial for performance-critical scenarios. On the
other hand, for training cost-sensitive scenarios, us-
ing only HiddenKey− (i.e. HiddenKey without KL
loss) can still outperform the baselines. Hence, we
claim that despite the potential increase in training
duration, HiddenKey and HiddenKey− do provide
available options for different scenarios.
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the research. To the best of our knowledge, there
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A Related work

During the finetuning phase, full-finetuning in-
volves updating all model parameters, resulting in a
slightly modified version. However, with the rapid
development of large language models (LLMs),
this approach becomes increasingly impractical due
to the high storage and inference expenses, particu-
larly in multitask and personalized settings (Wang
et al., 2023; Chen et al., 2023). As lightweight
alternatives, parameter-efficient finetuning (PEFT)
methods only introduce or retrain a negligible por-
tion of parameters, sharing most of the parameters
while preserving competitive performance as full-
finetuning (Houlsby et al., 2019; Lester et al., 2021;
Hu et al., 2021). For instance, Houlsby et al. (2019)
inserts and exclusively updates new adapters be-
tween pretrained layers, achieving remarkable per-
formance with limited trainable parameters. How-
ever, this method increases the model’s depth and
incurs higher time latency. Lester et al. (2021) pre-
fixes a learnable prompt to the input and feeds this
longer sequence into the frozen model. Neverthe-
less, this approach reduces the available sequence
length and is empirically shown to be sensitive
to initialization. Similarly, Li and Liang (2021)
attaches prefixed tokens to the key and value se-
quences, addressing the first drawback but still suf-
fering from the latter one. In contrast, BitFit (Za-
ken et al., 2021) only adjusts the biases, effectively
avoiding the aforementioned problems. However,
its limited capacity leads to inferior performance.
More recently, LoRA (Hu et al., 2021) imposes a
low-rank decomposition on weight updates, which
can be optionally merged into the original weights
during inference, and avoids all the aforementioned
issues.

Dropout (Hinton et al., 2012) randomly deacti-
vates each neuron with a specific probability dur-
ing training, which can prevent the co-adaptation
of neurons and has been extended to improve the
performance of transformer models (Zehui et al.,
2019; Chen et al., 2021; Li et al., 2023). Specifi-
cally, Zehui et al. (2019) proposes the first variant
specially designed for self-attention mechanism,
DropAttention, which drops the attention weights
randomly and applies normalized rescaling to en-
sure their sum to be one. Instead, HiddenCut (Chen
et al., 2021) applies contiguous span-style masks
to hidden representations in the feed-forward mod-
ule. Recently, Li et al. (2023) introduces a drop-
before-softmax scheme, HiddenKey, which drops

key units before the softmax layer so that the sum of
attention weights can be kept as one automatically.
However, it only focuses on computer vision tasks,
while totally neglecting NLP tasks that emphasizes
semantics and linguistic information. During in-
ference, dropout is usually disabled by default for
better performance and deterministic outputs. How-
ever, this is not consistent with the training stage
and can lead to a gap between the actual and ideal
performance. In order to address this divergence, R-
Drop (Wu et al., 2021) minimizes the bidirectional
Kullback-Leibler divergence between the output
distributions of two forward passes with dropout
for more noise-resilient outputs. In comparison,
Shen et al. (2020) narrows this gap by applying
Jensen-Shannon Divergence loss to enforce con-
sistent representations between outputs with and
without dropout.

B Overfitting-Prone Property of LoRA

As an illustrative example, Figure 5 shows the eval-
uation accuracy of LoRA with different ranks on
the RTE dataset. This clearly indicates that with the
increase of the rank and trainable parameters, the
performance of LoRA initially improves and then
deteriorates due to progressively excessive parame-
ter redundancy, demonstrating the susceptibility to
overfitting in LoRA scenarios.
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Figure 5: Evaluation accuracy of LoRA with respect to
the rank on RTE dataset.

C Mathematical Proofs

We prove the mathematical equivalence of w′
u for

DropKey and DropAttention as follows:

exp(gu)∑l−1
i=0 exp(gi)

· 1∑l−1
i=0 wi

=
exp(gu)∑l−1
i=0 exp(gi)

· 1

1− wm
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=
exp(gu)∑l−1
i=0 exp(gi)

· 1

1− exp(gm)∑l−1
i=0 exp(gi)

(13)

=
exp(gu)∑l−1

i=0 exp(gi)− exp(gm)

=
exp(gu)∑l−1

i=0,̸=m exp(gi)

=
exp(g′u)∑l−1
i=0 exp(g

′
i)

The proportional relationship of ∂w′
u

∂gu
between

DropKey and DropAttention can be derived with
the following equation:

(
∂w′

u
∂gu

)DropKey

(
∂w′

u
∂gu

)DropAttention

=
exp(gu) · (

∑l−1
i=0,̸=m exp(gi)− exp(gu))

(
∑l−1

i=0,̸=m exp(gi))2
(14)

·
∑l−1

i=0 exp(gi) ·
∑l−1

i=0,̸=m exp(gi)

exp(gu) ·
∑l−1

i=0,̸=u exp(gi)

=

∑l−1
i=0,̸=m exp(gi)− exp(gu)

∑l−1
i=0,̸=m exp(gi)

·
∑l−1

i=0 exp(gi)∑l−1
i=0, ̸=u exp(gi)

=

1− exp(gu)∑l−1
i=0, ̸=m

exp(gi)

1− exp(gu)∑l−1
i=0 exp(gi)

Denoting k as the result of Eq. 14, we have

k <

1− exp(gu)∑l−1
i=0, ̸=m

exp(gi)+exp(gm)

1− exp(gu)∑l−1
i=0 exp(gi)

(15)

= 1

D Dataset Details

For NLU tasks, (i) Stanford Sentiment Treebank
(SST-2) (Socher et al., 2013) is an English senti-
ment classification benchmark for a single sentence
task, predicting whether the sentiment of movie re-
views is positive or not. (ii) Recognizing Textual
Entailment (RTE) (Wang et al., 2018) presents an
inference task that predicts the entailment relation
between two sentences. (iii) Microsoft Research
Paraphrase Corpus (MRPC) (Dolan and Brockett,
2005) predicts the semantic equivalence between
two sentences, while (iv) Semantic Textual Similar-
ity Benchmark (STS-B) (Cer et al., 2017) predicts
the similarity between two sentences. The later two
tasks are involved with comparing and assessing
the similarity and paraphrasing of two sentences.
Notably, compared to the other classification tasks,

STS-B performs a regression task and thus encom-
passes a broad range of tasks, enhancing the gener-
alizability of our conclusions. Besides, additional
experiments are further conducted on (v) Corpus of
Linguistic Acceptability (CoLA) (Warstadt et al.,
2018), which aims to predict whether a sentence is
linguistically acceptable or not, and (vi) Question
Natural Language Inference (QNLI) (Rajpurkar
et al., 2018), which predicts whether a sentence
is the answer to a given question. For NLG tasks,
we focus on (vii) E2E NLG Challenge (Novikova
et al., 2017) and (viii) WebNLG (Gardent et al.,
2017). The former consists of sets of slot-value
pairs along with multiple corresponding natural lan-
guage references in the restaurant domain, while
the later is a dataset where models generate the cor-
responding description in form of natural language
text given a sequence of SUBJECT-PROPERTY-
OBJECT triples.

As for the evaluation metrics, we report the Pear-
son correlation for STS-B, Matthew’s correlation
for CoLA, and accuracy for other NLU datasets.
For NLG tasks, BLEU, NIST, METEOR, ROUGE-
L and CIDEr are used on the E2E NLG Challenge
dataset, while BLEU, METEOR and TER are eval-
uated separately for “Unseen”, “Seen” and “All”
categories in the test set of the WebNLG dataset.

E Hyperparameter Configuration

As shown in Table 6 and 7, we mainly follow the
setup of LoRA (Hu et al., 2021) with as mini-
mal changes as possible. However, based on our
pre-experiments, significant fluctuations of the re-
sults are observed when models are trained with
the original epochs, even if only random seeds
change. Therefore, we increase the number of train-
ing epochs for more steady results. We also use the
regular initialization instead of the MNLI check-
point for LoRA modules. Different from RoBERTa-
large and GPT2-Medium models, we employ FP16
mixed precision training for LLaMA2-7B to re-
duce the memory consumption, and set the epoch
to one. Besides, we utilize greedy search with
length penalty of 1.0 and “no repeat n-gram size”
of 0 for inference, which empirically outperforms
the settings of GPT2-Medium.

For the specific parameters in our experiments,
we disable dropout in baselines and iterate all
available dropout rate from {0.01, 0.02, 0.05, 0.1,
0.15, 0.2} for various dropout methods, which is
expanded with {0.25, 0.3} for clearer trend of
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Model RoBERTa-large LLaMA2-7B

Dataset RTE MRPC STS-B SST-2 CoLA QNLI RTE MRPC

Optimizer AdamW AdamW
Weight Decay 0.1 0.1
Warmup Ratio 0.06 0.06
LR Schedule Linear Linear
Learning Rate 4E-4 3E-4 3E-4 4E-4 2E-4 2E-4 5E-4

Epoch 30 30 10 10 40 10 10 8
Batch Size 64 32 32 64 32 32 64 32

Mac Seq. Len. 512 512 128 512 128 512 512
LoRA Rank rq = rv = 8 rq = rv = 8
LoRA Scalar 16 16

Table 6: Hyperparameters for RoBERTa-large and LLaMA2-7B models with LoRA on NLU datasets.

Dataset E2E NLG Challenge WebNLG

Training

Optimizer AdamW
Weight Decay 0.01
Warmup Step 500
LR Schedule Linear
Learning Rate 2E-4

Epoch 5
Batch Size 8

Label Smooth 0.1
LoRA Rank rq = rv = 4
LoRA Scalar 32

Inference

Beam Size 10
Length Penalty 0.9 0.8

No Repeat N-Gram Size 4
Repetition Penalty 1.0

Table 7: Hyperparameters for GPT2-Medium with
LoRA on NLG datasets.

performance in RTE dataset. To the best of our
knowledge, neither of HiddenCut, DropKey and
DropAttention implements experiments with a ca-
sual decoder-only transformer model before. Based
on our empirical observation, applying any of these
methods can only produce limited improvement or
even degradation on both NLU and NLG tasks, and
the results are extremely sensitive to the dropout
rate. This phenomenon might be caused by fragile
shallow forwarding pass. In other words, noise in-
troduced by dropout methods can be amplified with
the propagation and diminish the benefits brought
by dropout. Hence, we only introduce the drop-
ping in the latter half of layers in decoder-only
models and the apparent performance improve-
ment emerges again. Besides, our pre-experiments

demonstrate that a weight between 0.01 and 10 for
KL and JS loss generally yields the best results.
Therefore, we iterate the weight within {0.01, 0.02,
0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}. All experiments are
repeated 5 times on a NVIDIA V100 GPU to cal-
culate the median values for NLU tasks, while the
average values of three runs on a NVIDIA A100
GPU is reported for NLG tasks.

F Finetuning dynamics
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Figure 6: Finetuning loss and evaluation accuracy for
baseline, HiddenKey− and HiddenKey.

Beyond the superior performance of HiddenKey,
we also visualize the finetuning dynamics for a
deeper understanding. Figure 6 presents the av-
erage dynamic curves of training loss and evalua-
tion accuracy across five random seeds for multiple
methods on the RTE dataset. Compared to the base-
line whose training loss rapidly converges to near
zero, the introduction of HiddenKey− (i.e. column-
wise DropKey and element-wise HiddenCut) slows
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down this process and leads to larger final loss.
However, large final loss does not mean inferior per-
formance. Specifically, after reaching a fair peak
value, accuracy of the baseline deteriorates with the
continuous loss decline. This hints that the models
suffer from overfitting, which further supports our
earlier analysis. In contrast, HiddenKey− reaches
the peak accuracy slightly slowly but remains supe-
rior to the baseline. With the additional KL loss, the
accuracy keeps fluctuating upwards and achieves
the best performance. It can be anticipated that a
longer finetuning process would result in higher ac-
curacy for HiddenKey. In summary, LoRA-based
PEFT scenarios are still overfitting-prone, while
HiddenKey can provide excellent model regulariza-
tion in such settings, and continues improving the
performance when further finetuning is allowed.

G Statistical Significance Test

Model (Benchmark) Method p-value

Baseline 0.080

RoBERTa DropKey 0.059

(GLUE) HiddenCut 0.024

HiddenKey- 0.031

Baseline 0.044

GPT-2 DropKey 0.052

(E2E) HiddenCut 0.041

HiddenKey- 0.043

Table 8: P-values of HiddenKey versus alternative meth-
ods.

To assess the statistical significance of the results
presented in Table 1 and Table 2, we calculate the
p-values of HiddenKey comparing against alterna-
tive approaches, averaged on the benchmarks. As
shown in Table 8, the obtained p-values, all below
0.1 with the majority falling below 0.05, strongly
indicate the statistical significance of HiddenKey’s
superiority.
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