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Abstract

Spoken Named Entity Recognition (NER) aims
to extract entities from speech. The extracted
entities can help voice assistants better under-
stand user’s questions and instructions. How-
ever, current Chinese Spoken NER datasets
are laboratory-controlled data that are col-
lected by reading existing texts in quiet en-
vironments, rather than natural spoken data,
and the texts used for reading are also lim-
ited in topics. These limitations obstruct the
development of Spoken NER in more natural
and common real-world scenarios. To address
this gap, we introduce a real-world Chinese
Spoken NER dataset (RWCS-NER), encom-
passing open-domain daily conversations and
task-oriented intelligent cockpit instructions.
We compare several mainstream pipeline ap-
proaches on RWCS-NER. The results indicate
that the current methods, affected by Automatic
Speech Recognition (ASR) errors, do not per-
form satisfactorily in real settings. Aiming
to enhance Spoken NER in real-world scenar-
ios, we propose two approaches: self-training-
asr and mapping then distilling (MDistilling).
Experiments show that both approaches can
achieve significant improvements, particularly
MDistilling. Even compared with GPT4.0,
MDistilling still reaches better results. We be-
lieve that our work will advance the field of
Spoken NER in real-world settings.

1 Introduction

As one of the core tasks in Spoken Language Un-
derstanding, Spoken Named Entity Recognition
(NER) aims to extract entities like person names
(PER), locations (LOC), and organizations (ORG)
from speeches (Tur and De Mori, 2011). The
extracted entities can help voice assistants better
grasp the intent behind users’ questions or instruc-
tions, thereby benefiting various downstream natu-
ral language processing (NLP) tasks such as infor-
mation retrieval (Weston et al., 2019) and question
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answering (Chen et al., 2017). While significant ad-
vancements have been made in Chinese text-based
NER (Yu et al., 2020; Shen et al., 2023), Chinese
Spoken NER still faces substantial challenges. The
main issue lies in the disparity between current
research in Chinese Spoken NER and its applica-
tions in real-world scenarios. This gap hinders the
application and development of Spoken NER.

Firstly, a key challenge is that current Chi-
nese Spoken NER datasets do not closely match
real-world scenarios. For Chinese Spoken NER,
the only significant dataset currently available is
Aishell-NER, introduced by Chen et al. (2022).
This dataset was built upon the Automatic Speech
Recognition (ASR) dataset Aishell-1, which al-
ready included paired speech-text data. They uti-
lized the MSRA (Levow, 2006) guidelines to anno-
tate entities within the text. However, Aishell-NER
does not accurately reflect real-life conditions. On
the one hand, speeches in Aishell-NER are read-
ing speeches recorded in quiet environments. In
contrast, in applications like using Siri or other
voice assistants, human speech is natural and often
includes various background noises and informal
expressions like interjections, stutters, and gram-
matical errors. On the other hand, the Aishell-NER
dataset primarily encompasses topics related to fi-
nance and news, whereas conversations in real life
cover a broader range of subjects. These differ-
ences lead to a gap between the research on Aishell-
NER and its applications in real-world scenarios.

In this paper, we address the issue of the lack
of annotated Spoken NER datasets for real-world
scenarios by introducing a real-world Chinese Spo-
ken NER dataset, RWCS-NER. It covers two sce-
narios: open-domain daily conversation (DC) and
task-oriented intelligent cockpit instructions (ICI).
RWCS-NER facilitates the evaluation of Spoken
NER models in real-world contexts, thereby bridg-
ing the gap between Spoken NER researches and
its applications.
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Secondly, beyond the data shortage, current Spo-
ken NER models are not specifically tailored for
real-world scenarios and often underperform in
such environments. Spoken NER typically follows
a pipeline process where speech is first converted
into text by an ASR model, followed by the use of
an NER model to identify entities within the tran-
scribed text. Considering the scarcity of annotated
Spoken NER data, researchers have sought to lever-
age unlabeled data to help Spoken NER. Pasad
et al. (2022) successfully used the self-training
with unlabeled text data to help the NER model
in pipeline. However, their approach does not fully
align with real-world conditions. In practice, NER
is executed on ASR outputs, which inevitably con-
tain transcription errors from ASR. In contrast, in
the self-training approach by Pasad et al. (2022),
the NER models within the pipeline are trained
on clean texts, devoid of any ASR inaccuracies.
The discrepancy, known as exposure bias (Ran-
zato et al., 2015; Zhang et al., 2019), will lead the
model trained on clean text to struggle with the
error-prone text from ASR in real-world scenarios.
Furthermore, in the pipeline workflow, transcrip-
tion errors from ASR can propagate to the NER
stage, disrupting the NER model’s ability to ac-
curately identify entities. This issue is also not
considered in Pasad et al. (2022).

To help Spoken NER on texts with ASR errors
in real-world scenarios, we first introduce self-
training-asr by conducting self-training on ASR
outputs to mitigate the exposure bias issue. Fur-
thermore, to reduce the impact of ASR errors on
the NER model in the pipeline process, we propose
a novel mapping then distilling (MDistilling) ap-
proach. We then evaluate various approaches on
RWCS-NER. Experiments demonstrate that both
our self-training-asr and MDistilling approaches
achieve significant improvements. Notably, MDis-
tilling effectively alleviates the impact of ASR er-
rors on NER in the pipeline workflow. Finally,
we also evaluate the performance of LLMs, i.e.,
including Qwenl1.5 (Bai et al., 2023), Baichuan2
(Yang et al., 2023), GPT3.5, and GPT4.0 (Ouyang
et al., 2022; OpenAl, 2023), on our RWCS-NER.
Results show that GPT4.0 has reached performance
comparable to that of supervised models on clean
texts. But our MDistilling is more competitive than
GPT4.0 in real-world scenarios where texts come
from the ASR model. In summary, our work makes
the following contributions:

* We introduce a Chinese Spoken NER dataset,
RWCS-NER, tailored for two real-world scenar-
ios: open-domain daily conversation and task-
oriented intelligent driving. It can be used for
evaluating Spoken NER models in actual scenar-
ios. We will release our dataset and codes for free
at https://github.com/zsLin177/CSNER.

* We present benchmark results for several main-
stream approaches on RWCS-NER, alongside an
in-depth analysis of how different ASR errors af-
fect NER. These results show that, in real-world
settings, the performance of Spoken NER is far
from satisfactory, highlighting the necessity of
drawing more attention to this field.

* To help the Spoken NER models in real-world
scenarios, we propose two approaches, i.e., self-
training-asr and MDistilling. Results indicate
both our approaches achieve significant improve-
ments, especially MDistilling. Moreover, even in
comparison to GPT4.0, MDistilling maintains its
edge in real-world scenarios.

2 Related Work

2.1 Chinese Spoken NER Datasets

Compared to text-based NER, there are fewer
datasets for Chinese Spoken NER. In fact, both
Sui et al. (2021) and Chen et al. (2022) have anno-
tated Chinese datasets based on Aishell-1 (Bu et al.,
2017). The difference lies in the scope of annota-
tion: Sui et al. (2021) annotated entities only for a
subset of Aishell-1, whereas Chen et al. (2022) an-
notated the entire dataset. In this paper, we opt for
the larger-scale annotation from Chen et al. (2022)
as the representative Chinese Spoken NER dataset,
Aishell-NER. However, both the two datasets are
based on the Aishell-1 ASR dataset, where the
audios are reading speeches recorded in quiet en-
vironment. Additionally, the content in Aishell-1
mainly comes from the news and finance domain.
These factors prevent Aishell-NER from accurately
representing the performance of Spoken NER in
real-world settings. Therefore, our focus is on con-
structing datasets tailored for real-world scenarios.

2.2 Pipeline vs. End-to-end

To mitigate the impact of ASR errors on NER in
the pipeline process, recent studies have proposed
end-to-end approaches that simultaneously gener-
ate text and entity labels from speech (Ghannay
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et al., 2018; Yadav et al., 2020). End-to-end ap-
proach integrates special entity markers into the to-
ken vocabulary of ASR model to denote the bound-
ary of entities. For instance, in Chen et al. (2022),
brackets are used to denote LOC entities. The train-
ing and inference target of the raw ASR model is
transformed from “I come from New York™ to “I
come from (New York)”. Then, the ASR model
becomes an end-to-end model, which can generate
transcribed text from the input speech and identify
entities within it.

Although end-to-end model can avoid the error
propagation problem, its performance is still infe-
rior to that of the pipeline model (Shon et al., 2022).
This is because pipeline approaches can leverage
the powerful representational capabilities of pre-
trained large language models (LLMs) when per-
forming NER on texts. Recently, Pasad et al. (2022)
propose to use unlabeled data to help the end-to-
end model, which surpasses the pipeline model.
However, this requires the prior development of
an enhanced pipeline model using unlabeled data.
Then they use the pipeline model to predict pseudo
labels. The end-to-end model then learning from
these labels to achieve superior performance.

In summary, while both pipeline and end-to-end
have their pros and cons, the ability of the pipeline
approach to leverage LL.Ms generally allows it to
achieve commendable performance, making it the
predominant method in practice. In this paper, we
focus on investigating the pipeline approach.

3 Construction of RWCS-NER

In this section, we detail the construction process of
our dataset. We consider two typical real-world sce-
narios: open-domain daily conversation (DC) and
task-oriented intelligent cockpit instruction (ICI).
DC typically involves dialogues between individ-
uals about various topics. In contrast, ICI involve
interactions between humans and machines, where
humans interact with machines to accomplish cer-
tain tasks during driving.

Our selection of DC is driven by its prevalence in
the conversation scenarios, encompassing a range
of spoken expressions like interjections, stuttering,
and grammatical errors, which are absent in formal
written text. ICI is chosen due to the rising trend
of intelligent driving and the increasing reliance on
speech instructions for controlling in-car devices.
Effective entity recognition in these speech instruc-
tions is pivotal for in-car systems to assist users. In

addition, ICI data is relatively scarce and, to our
knowledge, no publicly accessible NER dataset for
intelligent cockpit instruction exists.

3.1 Data Selection

DC. DC is built upon MagicData-RAMC (Yang
et al., 2022), an open-source ASR dataset compris-
ing daily conversation speeches recorded from na-
tive speakers. This dataset preserves a multitude of
spoken phenomena in both speech and transcribed
text, such as interjections and stutterings. Since
entities appear less frequently in some dialogues ,
we focus on selecting dialogues that have a higher
occurrence of entities.

Specifically, we employ a Roberta-CRF NER
model, which was trained on the MSRA-NER
(Levow, 2006), to identify entities in all dialogues.
We then filter out dialogues with fewer entities. Af-
ter this, we carefully choose dialogues from the
remaining set to ensure that the selected conversa-
tions cover a variety of topics. Finally, we choose
13 dialogues covering 8 distinct topics, totaling
1,559 utterances for annotation'.

ICI. The ICI dataset is built upon the ICSRC
dataset (Zhang et al., 2022), which was recently
released for ASR competitions in the intelligent
driving. The dataset comprises instructions rele-
vant to intelligent driving, such as “turn on the air
conditioner”, “navigate to a location”, and “call
someone”.

Unlike DC, the ICI dataset, being task-driven,
exhibits a higher frequency of entities in its in-
structions, like location names in navigation in-
structions or personal names in “call someone” in-
structions. Therefore, we randomly select 3000
utterances from ICSRC for annotation.

3.2 Annotation Process

During the annotation process, we adopt a double-
blind procedure, in which each utterance is inde-
pendently annotated by two annotators. A third
annotator is tasked with comparing the two anno-
tations. If the two annotations are consistent, the
annotation is adopted as the final answer. Oth-
erwise, the third annotator have to make a final
decision. During the annotation process, utterances
containing personal information are discarded to

"Detailed statistics of the selected topics are shown in
Appendix A.
We build our annotation platform using Doccano.
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protect privacy. We pay the annotators based on
the quality and quantity of their annotations.

DC. When anotating DC, as in previous stud-
ies (Sui et al., 2021; Chen et al., 2022), we focus
on three types of entities: PER, LOC, and ORG.
We follow the widely recognized MSRA (Levow,
2006) guidelines for Chinese NER.

ICI. For ICI, due to its unique smart driving sce-
nario, we notice that besides the typical entities like
LOC, PER, and ORG, other entities such as device
names and song names are also crucial. Recogniz-
ing these entities can aid the smart driving system
in accurately executing user’s commands. Addi-
tionally, we notice that certain entities tend to ap-
pear in specific types of instructions. For instance,
song names are commonly found in instructions for
playing music. Consequently, discerning the type
of an instruction can substantially assist annotators
in accurately identifying entities. So, we design a
new two-step annotation guideline for ICI.

In the first step, annotators determine the label
of each instruction based on its function and pur-
pose. We define five instruction labels: Naviga-
tion (NAV), Air Conditioning Instructions (AIC),
Calls (CAL), Music Instructions (MUS), and Oth-
ers (OTH). For instance, NAV includes user in-
structions related to directions, such as “navigate
to a location” or “avoid highways”. OTH refers
to content that does not belong to the other four
labels.

After determining the label of each instruction,
the second step involves annotators identifying en-
tity labels. We define seven entity labels in total. In
addition to the general labels like PER, LOC, and
ORG, we introduce labels tailored to the intelligent
driving context: Device Name (DEV), Song Name
(SON), Music Attribute (M-att), and Air Condi-
tioning Attribute (A-att). For example, the most
commonly used devices in speech instructions, i.e.,
conditioner and music/speaker will be labeled as
DEV. Detailed descriptions for instruction and en-
tity labels are shown in Appendix E.

Finally, in the DC and ICI datasets, we manually
annotate 2862 and 2291 entities, respectively.

3.3 Data Analysis

Inter-annotator consistency. To assess inter-
annotator consistency, we employ Cohen’s Kappa
k (Cohen, 1960) as our metric. The value of «,
ranging from O to 1, indicates the level of agree-
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Figure 1: The distribution of labels in DC and ICI.

ment, with higher values signifying greater consis-
tency.

In DC, the & score of entity labels is 0.82, and in
ICI, it reaches 0.88, demonstrating relatively high
inter-annotator agreement. Although it might seem
that the DC, with only three types of entity labels,
should have a higher kappa compared to the ICI,
which has seven types of entity labels, the reality is
actually the opposite. On one hand, the complexity
of utterances in DC exceeds that in ICI due to the
inclusion of various colloquial expressions. On
the other hand, the length of utterances in DC is
significantly longer than in ICI. Together, these
aspects make annotating DC more challenging than
ICI, consequently leading to a lower x score among
annotators.

Label distribution. Figure 1 shows the distribu-
tion of labels in DC and ICI. Notably, the PER
label is especially dominant in DC, constituting
51.9% of the labels. This prevalence is attributed to
the more unstructured nature of daily conversations
as opposed to ICI. During some discussions, it is
common for individuals to pause and repeat names
when mentioning others, leading to the elevated oc-
currence of the PER label in DC. We also observe
that the ORG label is less frequent in ICI because
organizations are seldom mentioned in driving in-
structions. Additionally, we can see that the four
new entity labels defined for ICI make up a signifi-
cant part, accounting for 42.5% of the labels, with
A-att being the most prevalent at 17.2%.

In ICI, each instruction is assigned an instruc-
tion label. As shown in Figure 1, the four main
instruction labels are distributed relatively evenly,
collectively constituting 58.9% of all labels. We
note that the OTH label comprises 41.1% of the
dataset. This prevalence is attributed to the ICI
dataset being a subset of the ICSRC dataset (Zhang
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et al., 2022), which was originally designed for
evaluating the speech recognition accuracy of ASR
models. The dataset encompasses a substantial
amount of non-instructional content, like reading
news, all categorized under the OTH label.

4 Our Approach

4.1 Self-training-asr

Nowadays, Chinese NER models have made great
progress on formal text, such as News, thanks to
the abundant annotated training data. However,
when it comes to the spoken text, the NER perfor-
mance drops drastically due to the lack of NER
annotations for spoken text in real-world scenarios.
Considering the abundance of unlabeled spoken
speech-text data, we follow Pasad et al. (2022) and
propose self-training-asr on these data to help Spo-
ken NER in real-world scenarios.

Unlike Pasad et al. (2022), who perform self-
training using clean, gold text (referred to as self-
training-gold), we engage in self-training on ASR
output text. This choice is driven by the fact that,
in real-world situations, NER models predict on
ASR outputs, which might have transcription er-
rors. Models trained solely on gold text would
struggle to handle texts with ASR-induced noise in
real-world scenarios. This challenge is known as
exposure bias (Zhang et al., 2019).

The core principle of self-training involves using
the model itself to predict unlabeled data, then treat-
ing these predictions as pseudo labels. The pseudo
labels are incorporated back into the labeled data,
and the model is retrained with this augmented
dataset. This process can be iterated multiple times
until model convergence (Yarowsky, 1995; Rotman
and Reichart, 2019; Xu et al., 2021).

Specifically, in our self-training-asr we convert
spoken speeches into transcribed texts using an
ASR model, and then use the transcribed texts as
unlabeled data D,. As depicted in Figure 2(a), dur-
ing the ¢'" iteration, we use the NER model §* !,
obtained from the last iteration, to predict on Dy,
resulting in pseudo labels D,. These pseudo labels
are then merged with the source labeled data D?.
Then, the NER model is retrained on the merged
dataset, yielding a new model #?. In the first itera-
tion, we train an NER model on the D* as 6.

4.2 MbDistilling

While self-training-asr improves the model’s ro-
bustness in real-world scenarios by training directly
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(a) Self-training-asr.
(b) MDistilling.

Figure 2: Frameworks of our approaches.

on transcribed text, it doesn’t explicitly consider
the impact of errors in ASR outputs on NER pre-
dictions. In self-training-asr, the NER model pre-
dicts labels from transcribed text and uses these
predicted labels to train the next round’s model.
However, errors in the transcribed text can lead to
incorrect entities predicted by NER, and learning
from these flawed entity labels can further impair
the NER model.

To analyze the impact of ASR errors on NER,
we broadly categorize ASR errors into two types:
entity errors and non-entity errors. Entity errors oc-
cur within the text of the entities themselves (e.g.,
the LOC entity “dt % (Beijing)” being transcribed
as “dt#% (north pole)”), while non-entity errors oc-
cur in other parts of the text. Entity errors directly
result in the NER model failing to recall the origi-
nal entity, which we believe cannot be rescued by
the NER model in the pipeline. Therefore, our core
idea is mitigating the impact of non-entity errors
on NER, aiming to ensure that the NER model can
still accurately identify entities as more as possi-
ble amidst the existence of non-entity errors. This
guides us to propose the MDistilling. As illustrated
in Figure 2(b), MDistilling has three stages:

Stage 1: Producing Silver Labels. Due to the
lack of labeled data for Spoken NER in real-world
scenarios, inspired by traditional distillation (Hin-
ton et al., 2015), we use a model trained on error-
free text as the teacher model §7¢%"¢" to predict
pseudo labels Dg from the gold Spoken text data
D,. Since gteacher is trained without ASR errors
and ﬁg is predicted from clean text, we regard ﬁg
as silver labels unaffected by ASR errors.

Stage 2: Mapping. To enable the model to learn
correct labels from transcribed error-containing
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Figure 3: An example of mapping entities between the
gold text“db ® & F B & A & 93 7T (Beijing is the
most famous city in China.)” and the wrongly tran-
scribed text. Green boxes denote entities. Red charac-
ters represent errors in transcription.

text, we map the silver labels ﬁg to the ASR out-
puts to get ﬁmap. We employ the maximum seg-
mentation matching method to map labels. For
instance, as depicted in Figure 3, given a gold text
x4 and its ASR output z,, Dg has two LOC entities
“3t % and “F E” in z,. We then find identical
text strings in x, and label the matched spans with
corresponding entity labels. Incorrectly transcribed
entity text like “dt#%” is disregarded. And the
wrongly transcribed non-entity text “& % 44" has
no effect on entity labels. As a result, ﬁmap re-
moves entity labels that are irrecoverable due to
entity errors, retaining only those stemming from
the silver labels and unaffected by non-entity er-
1Or1S.

Stage 3: Distilling. Merge D® with ﬁmap to cre-
ate the augmented labeled dataset. The student
model §5tu@ent ig then trained using this dataset.
Through this process, not only is the gold knowl-
edge from the teacher model distilled into the stu-
dent model, but the student model also gains the
ability to predict correct labels from noisy text, re-
ducing the impact of non-entity errors on NER.

5 Experiments

5.1 Experimental settings

Model Settings. We follow the pipeline work-
flow in this work. The pipeline involves two parts,
i.e., ASR model and NER model.

We use the popular conformer-based (Gulati
et al., 2020) CTC/AED (Hori et al., 2017) model
as the ASR model. It contains a encoder with 6
conformer layers and a decoder with 4 transformer
layers. A 6-gram language model is used during
decoding to get better hypothesis 3.

NER has been extensively researched with var-
ious approaches (Panchendrarajan and Amaresan,
2018; Yu et al., 2020; Shen et al., 2023). Among
them, the most prevalent approach is treating NER

*Due to space constraints, we have included the detailed
experimental parameter settings in Appendix C.

as a sequence labeling task. So, we implement
a BERT-based (102M) (Devlin et al., 2019) CRF
model and a stronger ROBERTa-based (325M) (Cui
et al., 2021) model as our baseline NER models. In
self-training and MDistilling, we use the RoOBERTa
CRF model as the backbone model.

Datasets. In training of ASR model, in addition
to the speech-text data from our RWCS-NER train-
ing sets, we incorporate about 1300 hours of open-
source Chinese speech-text data to enhance its per-
formance. These extra datasets are merged with
the RWCS-NER training sets for ASR model train-
ing. Details of the additional open-source ASR
data used are provided in Table 6.

As for the training of NER model, due to the
lack of real-world Spoken NER training sets, most
current NER models are trained on well-structured
written text. Therefore, we employ the commonly
used Chinese NER dataset MSRA (Levow, 2006)
from the news domain. It is utilized for fine-tuning
BERT and RoBERTa models as NER baseline mod-
els. Additionally, it serves as the annotated data
from the source domain in the self-training and
MDistilling approaches.

To evaluate on our RWCS-NER, we split our
annotated datasets into development and test sets.
The remaining unannotated speech-text data is used
as unlabeled training set. Specific details are shown
in Table 2. Additionally, we also assess our NER
baseline on the MSRA test and Aishell-NER test.

Comparison Approaches. In addition to com-
paring with BERT and RoBERTa baselines trained
only on written news text, we also compare
with the self-training-gold method used by Pasad
et al. (2022). Furthermore, we conduct compar-
isons with LLMs, including Qwen1.5 (Bai et al.,
2023), Baichuan2 (Yang et al., 2023), GPT3.5,
and GPT4.0 (Ouyang et al., 2022; OpenAl, 2023).
The specific settings for LLMs experiments can
be found in Appendix D. To ensure a fair com-
parison, we utilize the same ASR model to obtain
transcribed text for all methods.

Metrics. For NER evaluation, in line with Pasad
et al. (2022), we employ Precision (P), Recall (R),
and F1 Score as our metrics.

For ASR, besides the most commonly used CER,
we also apply the Named Entity Accuracy (NEA)
metric to to analyze the performance of ASR on
entity texts. NEA is defined as the percentage of
correctly transcribed named entity phrases. An
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DC.Dcv DC.Tcst ICI.DOV ICI.Tcst
Model P R FI P R FI P R Fl P R FI
On Transcribed Text
BERT 63.82 54.46 58.77 68.63 58.16 62.96 42.02 35.29 38.36 41.42 34.08 37.39
ROBERTa 65.80 55.19 60.03 69.15 58.45 63.35 41.01 34.35 37.39 41.98 35.20 38.29
self-training-gold 67.51 56.19 61.33 71.20 59.69 64.94 40.68 36.47 38.46 42.34 36.88 39.42
self-training-asr ~ 70.96 55.19 62.09 73.04 59.75 65.73 42.22 35.76 38.73 42.52 35.99 38.98
MDistilling 70.48 56.74 62.87 73.73 60.94 66.73 45.96 34.82 39.63 48.07 34.87 40.42
Baichuan2-13B 51.61 27.69 36.04 52.74 31.63 39.55 22.12 32.94 26.47 22.64 31.73 2642
Qwenl.5-14B  43.40 28.14 34.14 45.61 36.22 4038 21.08 35.76 26.53 23.41 35.54 28.23
Qwenl.5-72B  51.93 52.64 52.28 55.93 55.33 55.63 26.68 40.24 32.08 27.97 38.79 32.50
GPT3.5 63.49 46.72 53.83 65.08 47.34 54.81 27.91 38.35 32.31 29.89 3823 33.55
GPT4.0 71.52 50.55 59.23 74.39 55.67 63.68 37.15 37.41 37.28 38.52 39.69 39.09
On Gold Text

BERT 81.10 83.24 82.16 82.84 82.37 82.61 79.44 73.65 76.43 80.82 72.76 76.58
ROBERTa 86.24 86.79 86.52 86.61 83.48 84.53 80.98 74.12 77.40 78.56 71.08 74.63
self-training-gold 88.32 88.16 88.24 87.32 84.89 86.09 84.54 79.76 82.08 79.67 76.46 78.03
Baichuan2-13B 58.87 38.07 46.24 62.81 41.27 49.81 51.44 75.76 61.27 51.70 73.32 60.64
Qwenl.5-14B 5895 44.08 50.44 61.20 50.96 55.61 48.34 78.59 59.86 49.59 75.34 59.81
Qwenl.5-72B  69.08 81.79 74.90 75.17 83.05 78.91 59.44 85.18 70.02 60.88 83.41 70.39
GPT3.5 7827 71.86 74.93 78.73 71.15 74.75 60.00 82.59 69.50 63.64 83.18 72.11
GPT4.0 86.47 83.24 84.83 §7.42 82.37 84.82 79.50 83.06 81.24 §1.38 85.76 83.52

Table 1: Spoken NER results on our RWCS-NER.

RWCS-NER Labeled Utterance  Entity
Train X 93,580 -
DC Dev v 559 1,098
Test v 1,000 1,764
Train X 14,878 -
ICI Dev v 1,000 752
Test v 2,000 1,539

Table 2: Split of DC and ICIL.

entity phrase is considered correctly transcribed
only if all its characters are accurately converted in
the right order.

5.2 Main Results

Results of Baselines. We first compare the re-
sults of BERT and RoBERTa models. To gain a
clear perception of the current performance of Spo-
ken NER on our RWCS-NER datasets, we also
evaluate on the Aishell-NER, which is collected
by reading texts in ideal scenarios. On Aishell-
NER, BERT and RoBERTa achieve F1 scores of
72.22 and 72.89 respectively. However, as we can
see from the upper part of Table 1, both models
have significant drops on the DC and ICI domains.
Specifically, on DC, there is a decline of about 10
in F1 score, and on ICI, the decline was even more
pronounced, exceeding 30. This shows that current
models underperform in real-world scenarios.
Regarding the self-training-gold, compared to
the RoBERTa baseline, we observe improvements

Metric Aishell Test DC . pev DC . Test ICI pev ICI Test
CER 4.25 13.86 1298 9.60 10.50
NEA 83.47 63.11 67.97 46.35 46.08

Table 3: CER | and NEA 1 on Aishell and our datasets.

of F1 scores on the DC and ICI test sets by 1.59
and 1.13 respectively. However, overall, the perfor-
mance of current spoken NER models in real-world
scenarios remains unsatisfactory. This underscores
the challenging nature of our datasets and indicates
substantial room for improvement in Spoken NER,
particularly in real-world scenarios.

Looking into Table 3, we can see that the de-
crease in real-world scenarios could be mainly at-
tributed to the ASR model’s difficulty in transcrib-
ing entity text. Although, the ASR model main-
tains a relatively low error rate across the overall
text. However, when it comes to entity text, the
ASR model’s accuracy is notably lower, with NEA
reaching only 67.97% and 46.08% on DC and ICI,
respectively. As mentioned in section 4.2, errors in
entity text directly lead to the loss of these entities
in NER, and such errors are not correctable within
the pipeline workflow.

Results of Self-training-asr. To alleviate the ex-
posure bias caused by discrepancies between train-
ing and prediction, we introduce the self-training-
asr approach. From Table 1, we observe that self-
training-asr shows improvements over self-training-

1878



Gold NonNE
STA MD

86.76 87.33
62.69 62.99

ASR NonNE
STA MD

84.99 86.89
62.09 62.87

Gold or ASR

Gold NE
ASR NE

Table 4: Effect of different types of errors on NER F1.
STA: self-training-asr; MD: MDistilling.

gold on most datasets. Notably, on the DC test set,
there’s an increase of 1 point in the F1. This sug-
gests that conducting self-training on transcribed
text can effectively make the NER model more
adaptable to transcribed text.

However, we notice a slight lag in self-training-
asr compared to self-training-gold on the ICI test.
We attribute this to the poor performance of ASR
on ICI, where the impact of ASR errors is particu-
larly severe.

Results of MDistilling. To minimize the impact
of ASR errors, especially non-entity errors, we in-
troduce MDistilling, which trains the model to pre-
dict correct entities from the transcribed noisy text.
From Table 1 we can see that, MDistilling demon-
strates significant improvements than self-training-
asr. On the DC and ICI test sets, MDistilling’s F1
scores are higher than those of self-training-asr by
1 and 1.44 points, respectively.

On the DC dataset, we notice considerable im-
provements in both Precision (P) and Recall (R) for
NER. On the ICI dataset, MDistilling significantly
enhances the Precision value (by approximately
4.5), effectively reducing incorrect predictions by
the model. Although this also results in a slight
decrease in the Recall value (by about 1), the over-
all F1 score still demonstrates the effectiveness of
MDistilling in mitigating the impact of ASR errors.

5.3 Analysis

Effect of different error types. As discussed in
Section 4.2, MDistilling is designed to reduce the
interference of non-entity errors in transcribed texts
on NER. Therefore, we conduct a more detailed
analysis of the effects of non-entity and entity er-
rors. In Table 4, we categorize the text into entity
and non-entity sections. Subsequently, we delve
into understanding how gold entity/non-entity text
and ASR entity/non-entity text impact NER.
Comparing the first and second rows of the table,
we observe a significant drop in NER performance
when ASR-predicted entity text is used. This indi-
cates that errors in entity text are the primary con-
tributors to the decline. Next, we examine the effect

of non-entity text. Taking self-training-asr as an
example, the F1 is 86.76 with gold entity and non-
entity text but drops by 1.77 with ASR-predicted
non-entity text. In contrast, MDistilling shows
only a 0.44 of decrease. A similar phenomenon
is also observed when using ASR-predicted entity
text. This suggests that non-entity errors also affect
NER, and the impact on MDistilling is less than
that on self-training-asr.

Through the analysis, we find that MDistilling
effectively mitigates the impact of non-entity er-
rors. This validates our motivation for proposing
MDistilling.

Using gold text vs. transcribed text. Apart
from ASR errors, there is also an effect from cross-
domain issue arising due to differences between the
training and testing domains. Therefore, we con-
duct experiments in an ideal scenario using gold
text to analyze the impact of cross-domain issues.
It also shows the upper bound of Spoken NER in
the absence of ASR errors.

First, we test on Aishell-NER. BERT and
RoBERTa achieve F1 scores of 86.58 and 87.59,
respectively. However, as seen in the lower part of
Table 1, even in the absence of ASR errors, both
models underperform on our DC and ICI datasets.
The F1 scores decrease by 4 and 10 points on the
DC and ICI test sets, respectively. Hence, even in
an ideal scenario without ASR errors, the cross-
domain issue also affects the performance of Spo-
ken NER in real-world scenarios.

5.4 Comparison with LLMs

In experiments with LLMs, we task them with iden-
tifying entities and their types in input sentences.
From the top half of Table 1, it is evident that even
the most powerful model, GPT4.0, falls behind
our MDistilling in real-world scenarios. However,
in ideal conditions without ASR errors, Qwen1.5-
72B and GPT3.5 achieve results comparable to
supervised models. Notably, GPT4.0 outperforms
self-training-gold by 5.5 in F1 on the ICI test. This
indicates that ASR errors in real-world scenarios
significantly impact LLM performance. Consider-
ing the expensive cost of LLMs, our MDistilling
proves to be a better choice in real-world scenarios.

Secondly, we observe that Qwenl.5-72B has
achieved results close to GPT3.5 on our RWCS-
NER dataset. This suggests that it is feasible to
replace GPT3.5 with open-source LLMs.

1879



6 Conclusion

In this paper, we present RWCS-NER, a Chinese
Spoken NER dataset designed for real-world sce-
narios, focusing on daily conversation and intelli-
gent driving. To boost the performance of NER
in the pipeline, especially when dealing with ASR
noise, we introduce two novel approaches: self-
training-asr and MDistilling. We compared our
approaches with mainstream pipeline models, in-
cluding GPTs, on RWCS-NER. Our findings indi-
cate that both our approaches, particularly MDistill-
ing, significantly enhance performance. However,
on the whole view, these approaches still leaves
room for improvement on RWCS-NER. Our work
contributes to the advancement of Chinese Spoken
NER by providing new data and approaches, aim-
ing to spotlight the importance of Spoken NER in
real-world applications.

Limitations

In this paper, we have only annotated development
and test sets to evaluate the performance of Chinese
Spoken NER in real-world scenarios. Given that
Chinese Spoken NER data is still in short supply,
we plan to release more higher-quality dataset in
the future. Additionally, due to the lack of a rel-
evant training set, we did not evaluate the newly
annotated entity categories in the ICI dataset.

On the other hand, while the pipeline approach
currently shows clear advantages in Spoken NER,
end-to-end approach also possess potential, such as
easier deployment. Therefore, we will also explore
improving the performance of end-to-end approach
in real-world scenarios in our future work.
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Appendices

A Statistics of the Topics in DC

When selecting dialogues from MagicData-RAMC,
to ensure that the dataset covers a broader range
of topics, we also take into consideration the top-
ics of the dialogues. As a result, the DC dataset
encompasses the following eight topics.

Topic Utterance Token Duration (min)
Family Life 71 2,698 11.5
Military 94 6,956 27.5
Humanities 154 18,169 73.2
Digital Devices 98 6,370 23.8
Sports 312 13,912 50.3
Art 546 19,752 77.6
Entertainment 271 17,317 26.1
Politics & Law 13 7,150 27.7
Total 1,559 82,324 317.7

Table 5: Statistics of the DC dataset.

B Datasets Used for Training ASR
Models

When training the ASR model, in addition to uti-
lizing the unlabeled training sets corresponding to
DC and ICI datasets, we have also incorporated
additional open-source ASR data. The datasets we
used are listed in Table 6.

C Parameter Settings

For ASR models, we follow the most popular set-
tings, including 80-dimensional log Mel filterbank
features as input, 6-gram language model for de-
coding among others. We build the ASR model

Dataset Duration (h) Address
Aishell 178 openslr.org/33
ST-CMDS 110 openslr.org/38

Primewords 99 openslr.org/47

aidatatang 200 openslr.org/62
MagicData 755 openslr.org/68
Total 1,342

Table 6: Datasets used for training ASR models.

ASR NER
encoder blocks 6 encoder dropout .33
decoder blocks 4 scorer dropout 0.2
hidden size 512 | scorer hidden size 800
learning rate 2e-3 | learning rate Se-4
batch size 16 | batch size 64
warmup steps 25000 | warmup steps 1500
epoch 80 | epoch 20
ctc weight 0.3 | self-training T’ 5
beam size 15
length Penalty -3
log Mel 80
window size 25ms
window shift 10ms
gram of LM 6

Table 7: Parameter settings.

based on the WeNet toolkit (Yao et al., 2021). We
set the random seed to 777 to train the ASR model
only once.

For the BERT and RoBERTa NER models, two
linear layers are added on top of the encoder to
compute the emission scores in CRF. We choose
seeds randomly to run NER models for 2 times
and report the best results. The detailed parameter
settings are shown in Table 7.

D Details about LLMs

The prompt we used is formed as follows: You
are an excellent linguist. Your task is to identify
person entities, location entities, and organization
entities in the given sentences. Return the answers
in the following format: person: A B, location: C,
organization: D. Separate each entity type with a
space. If there are no entities of a particular type,
return an empty string. And the specific versions
of GPTs we used are gpt-3.5-turbo-1106 and gpt-4-
1106-preview.

In conducting few-shot experiments on LLMs,
we employ an in-context learning (ICL) approach
(Dong et al., 2022). Initially, we utilize the NER
model obtained through self-training-gold to make
predictions on unlabeled data, resulting in De. Dur-
ing testing, for a given input sentence x, we com-
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k-shot P R F1

0-shot 73.61 76.23 74.90
1-shot 78.27 71.86 74.93
2-shot 78.22 68.67 73.13
3-shot 76.30 62.75 68.87

Table 8: Effect of k in ICL few-shot.

pute the similarity between x and each sentence E;
in F based on OpenATI’s embedding model. When
selecting k-shot ICL examples, we consider not
only the semantic similarity of sentences but also
the quantity of entities contained in E;. Specifi-
cally, the criterion for selecting examples, denoted
as vy 4, is defined as follows:

Ugi = Sz + 0.1 x N; (D)

Here, s, ; represents the semantic similarity be-
tween x and Ei, and NV; denotes the number of
entities in £ Finally, we select the top k examples
based on the highest v, ; values for use in the ICL.
To determine the value of k, we conduct exper-
iments using GPT-3.5 on the dev set of DC. The
experimental results are presented in Table 8. We
observe that a larger value of k£ does not necessar-
ily yield better results. We attribute this to the fact
that when selecting more examples in ICL, those
containing entities constitute a minority. Model is
taught to predict fewer entities, resulting in a de-
crease in recall. We speculate that choosing exam-
ples with more entities but relatively lower seman-
tic similarity might alleviate this issue. However,
this is not the primary focus of this work, and we
plan to explore it further in future research. In the
end, we set k = 1 for all few-shot experiments.

E Definition of Labels in ICI

Due to the specific task-oriented nature of ICI, we
devise a new two-step guideline. In the first step,
we assign instruction labels to each utterance based
on the objective of the instruction. In the second
step, we identify entities within the instructions.
We define a total of four instruction labels, and in
addition to PER, ORG, and LOC, we introduce
four new entity labels. The specific meanings and
examples of these labels are outlined in Table 9.
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Labels Meaning Example
Instruction Labels

RSB A HIE
Navigate me to the library
Y. 2 LEY:d
Set the temperature to ten degrees
R E R KB
Send a message to Mr. Li saying...
R KA IR
Play Jay Chou’s song
LEREARGRA
Tell me tomorrow’s weather

NAV Instructions related to the point of interest to the user.
AIC Instructions related to the air conditioner.

CAL Instructions related to contacting someone.
MUS Instructions related to music or speaker settings.

OTH Instructions that do not belong to above four categories.

Entity Labels
ZiE) 4R E
DEV Device names. «‘fEL. (= FD. VSt A
Set the (air conditioner) to ten degrees
#Ha (FowRriE)
SON Song names. Play (My Heart Will Go On)
. . e, =) A k
M-att Attributes related to music or speakers. * (FE) AR .
Set the (volume) to maximum
| A KX
A-att Attributes related to air conditioner. A HRERX)

Turn on the (heating mode)

Table 9: The definition of labels in ICI. Entities corresponding to the entity labels are enclosed in parentheses.
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