
Proceedings of the 3rd Workshop on NLP Applications to Field Linguistics (Field Matters 2024), pages 43–51
August 16, 2024 ©2024 Association for Computational Linguistics

A Comparative Analysis of Speaker Diarization Models: Creating a Dataset
for German Dialectal Speech

Lea Fischbach
Research Center Deutscher Sprachatlas

Marburg, Germany
Lea.Fischbach@uni-marburg.de

Abstract

Speaker diarization is a critical task in the field
of computer science, aiming to assign times-
tamps and speaker labels to audio segments.
The aim of these tests in this Publication is to
find a pretrained speaker diarization pipeline ca-
pable of distinguishing dialectal speakers from
each other and an explorer. To achieve this,
three pipelines, namely Pyannote, CLEAVER
and NeMo, are tested and compared, across var-
ious segmentation and parameterization strate-
gies. The study considers multiple scenar-
ios, such as the impact of threshold values for
speaker recognition and overlap handling on
classification accuracy. Additionally, this study
aims to create a dataset for German dialect iden-
tification (DID) based on the findings from this
research.

1 Introduction

Speaker diarization (SD) models are essential in
various applications, including speech-to-text sys-
tems. Since existing SD systems may not always
meet specific requirements, comparing multiple
models is necessary to identify the most suitable
one, aiding both our research and guiding other
researchers.
The annual DIHARD Challenge, focusing on
SD for challenging audio files, has been held
since 2018 (Ryant et al., 2020). However, as
demonstrated in this contribution to the Challenge
(Horiguchi et al., 2021) and in an paper, which
provides an overview of SD systems (Tranter and
Reynolds, 2006), the commonly used evaluation
metric is the one called diarization error rate (DER),
based on False Alarm, Missed Detection, and
Speaker Confusion. In our case this metric is not
applicable due to the nature of our ground truth
data. The recordings used are from the REDE cor-
pus (Schmidt et al., 2020ff.), featuring 1-2 elderly
male speakers translating sentences into their lo-
cal dialect and an explorer providing this sentences

beforehand in Standard German. Our manually seg-
mented ground truth data only contains these trans-
lated sentences from the dialectal speaker, how-
ever the original recordings include additional ut-
terances from the dialectal speaker, between these
sentences, that we aim to retain. Using DER could
distort results because the SD model might cor-
rectly identify an dialectal speaker during these in-
tervals not captured in the ground truth data. There-
fore, we bypass DER and use a dialectal classifica-
tion model, comparing its accuracy on our manu-
ally segmented ground truth data (the resulting per-
formance is our baseline) with the accuracy from
the model on audio files created by the different
SD pipelines. With clearly separated speakers, the
recordings used for testing the model contain only
the desired dialectal speaker and thus the model
should perform better, because the explorer does
not speak any dialect and thus would interfere with
classification.
We utilize SD models including Pyannote (Bredin
et al., 2020; Bredin and Laurent, 2021) (v2.1),
CLEAVER1, and NVIDIA NeMo (Harper et al.),
highlighting their strengths, weaknesses, and key
features. This comparative analysis provides valu-
able insights, saving researchers time and effort in
selecting the most suitable model. The goal is to
establish a dataset for German dialect identification
(DID), advancing research in this field.

2 Overview

Speaker diarization (SD) is the task of assigning
timestamps and corresponding speaker labels to
an audio track. In general, pipelines designed
to accomplish this task consist of four sub-tasks.
Depending on the categorization and assignment,
there can be even more sub-tasks, as seen in works
such as (Tranter and Reynolds, 2006), where all

1https://www.oxfordwaveresearch.com/products/
cleaver/

43

https://www.oxfordwaveresearch.com/products/cleaver/
https://www.oxfordwaveresearch.com/products/cleaver/


possible sub-tasks are analyzed, or in (Park et al.,
2022) where pre- and post-processing also consti-
tute sub-tasks.
The first of the four sub-tasks is Voice Activity
Detection (VAD), which identifies when speech
is present and removes non-speech sections from
the audio. This is followed by segmentation, also
known as Speaker Change Detection (SCD), which
recognizes speaker transitions and divides the au-
dio into individual speaker segments. Next, local
speaker embeddings (SE) are extracted using a pre-
trained model. These embeddings are then utilized
in a clustering algorithm, where speakers with sim-
ilar embeddings are grouped together to label the
speakers globally.

2.1 Pyannote

Pyannote is an open-source library built on Py-
Torch. There is a key difference between their
model and many others: they use short audio
chunks but with a higher temporal resolution of
16ms (Bredin and Laurent, 2021). This means that
every 16ms, the model calculates the probability
of each possible speaker being active. The use of
shorter audio chunks plays a crucial role because
they typically involve fewer speakers and exhibit
less speaker variability, simplifying the task.
Another distinctive feature of Pyannote is its con-
sideration of concurrent speakers. To account for
this, a SE for an individual speaker is constructed
only from the (concatenated) segments in which
that speaker exclusively speaks. They refer to this
approach as "overlap-aware" (Bredin, 2023). How-
ever, the accuracy of these segments depends on
the primary segmentation task.

2.2 CLEAVER

Oxford Wave Research’s CLEAVER (Cluster Es-
timation And Versatile Extraction of Regions) dif-
fers in that it utilizes phonetic features. For the
SCD, it relies on pitch, which is extracted using
Praat (Boersma and Weenink, 2023; Alexander and
Forth, 2012). Whenever this pitch significantly de-
viates, either in time or frequency, a speaker change
is detected, resulting in individual segments. Sub-
sequently, using a statistical model, the most dis-
tinct segments are identified. These segments then
undergo clustering, where all other segments are
assigned to one of them. Following this, another
clustering step takes place, where segments pre-
vious assigned to their respective speakers form
the new start SE. This process continues until the

clusters no longer change.

2.3 NeMo

NeMo (Neural Modules) is an open-source library
developed by NVIDIA, built on PyTorch. This
framework includes various tools in the field of
Natural Language Processing. Its processes are op-
timized to work with a CUDA-compatible GPU2.
Although NeMo is designed to be framework-
agnostic, it currently supports only PyTorch as a
backend.
A unique aspect of NeMo’s SD pipeline is the in-
clusion of a "neural diarizer" after the clustering
step3. This diarizer is applied to the speaker pro-
files obtained from clustering and is a trainable
neural model. It assigns speaker labels even to
overlapping speakers, which cannot be achieved
with clustering alone. The process involves using
a clustering diarizer to estimate the speakers pro-
files and the number of speakers by employing a
pairwise (two-speaker) unit model for both training
and inference.
Another advantage of NeMo is the concept of Mul-
tiscale Segmentation3. Normally, a speaker em-
bedding (SE) is generated for each speaker seg-
ment. If long segments (over 3 seconds) are used,
the speaker profile is reliable, but temporal infor-
mation is lost since speaker changes can only be
detected every 3 seconds. When short segments
(0.5˜3.0 seconds) are used, the speaker profile de-
pends on a brief utterance by the speaker, making
the SE unreliable. To address this issue, Multi-
scale Segmentation is employed. Segmentations
of different lengths, which overlap, are utilized.
For example, the audio is divided into segments of
0.5 seconds, 0.75 seconds, etc. Information from
each segmentation is then combined and used for
global speaker labels. Additionally, the smallest
segmentation level is used as the temporal resolu-
tion, allowing the model to more accurately capture
rapid changes in speaker activity.

3 Experimental Setup

In this section, we outline our experimental setup
and the exploration of various parameters for our
study. We analyze a total of 20 different Ger-

2https://docs.nvidia.com/deeplearning/
nemo/user-guide/docs/en/stable/asr/speaker_
diarization/intro.html

3https://github.com/NVIDIA/NeMo/blob/main/
tutorials/speaker_tasks/Speaker_Diarization_
Inference.ipynb

44

https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speaker_diarization/intro.html
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speaker_diarization/intro.html
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speaker_diarization/intro.html
https://github.com/NVIDIA/NeMo/blob/main/tutorials/speaker_tasks/Speaker_Diarization_Inference.ipynb
https://github.com/NVIDIA/NeMo/blob/main/tutorials/speaker_tasks/Speaker_Diarization_Inference.ipynb
https://github.com/NVIDIA/NeMo/blob/main/tutorials/speaker_tasks/Speaker_Diarization_Inference.ipynb


man dialects, classified according to Wiesinger
(Wiesinger, 1983), amounting to 60.5 hours of au-
dio data. Our focus narrows down to two specific
dialects, contributing a combined 11.75 hours of
audio, which are already annotated and clearly seg-
mented, allowing them to serve as ground truth.
We establish a baseline by assessing the model’s
accuracy on these manually segmented dialects.
The entire pipeline4, from the normalization of the
audios to obtaining the classification accuracy, is
depicted in Figure 1. As a first step, all audio files
undergo preprocessing to standardize their format.
For this we chose a sample rate of of 16kHz driven
by the requirements of Googles TRILLsson models
(Shor and Venugopalan, 2022), where the largest
model is employed for extracting feature embed-
dings. To extract feature embeddings, the audio
segments resulting from Speaker diarization (SD)
are concatenated per speaker and then divided into
segments of 3 seconds each. These segments are
then processed through a small convolutional neu-
ral network (CNN). The CNN model architecture
comprises three dense layers with LeakyReLU ac-
tivations and dropout layers to mitigate overfitting.
For validating and testing the dialect classification
model, we randomly selected two speakers from
each dialect. Since the results vary depending on
the chosen speakers, the steps of dividing the data
into training, validation, and test sets and running
the model are repeated 250 times, selecting new
random speakers for each run. We then compute
the mean accuracy out of these 250 runs. This num-
ber of runs has proven sufficient in previous tests to
detect significant differences between experiments.
For testing if the differences of the experiments
are significant we use the Mann-Whitney U test
(Mann and Whitney, 1947). We examine whether
there is a significant difference between the base-
line and the models accuracy using the resulting
audios from various SD models with their default
settings. Additionally, we evaluate whether there is
a significant difference between runs using the re-
sulting audios with the standard settings of each SD
pipeline (called standard pipeline) and runs using
the resulting audios with parameter adjustments for
the SD pipelines or different segment extraction
methods. This is indicated by the p-value in the
tables, which always refers to the top row of each
table. If the distribution of accuracy for the respec-

4https://github.com/WoLFi22/
DialectClassificationPipeline

tive experiment is significantly better than that of
the top row, the p-value is bolded.
Parameter adjustments are explained in the upcom-
ing subsections for each SD pipeline, while ex-
traction methods are tested in the same manner
for each SD pipeline. In this context, an extrac-
tion method means specifying a threshold in sec-
onds, where only the resulting segments of the
SD pipeline longer than this threshold are retained.
This threshold helps remove non-contiguous utter-
ances, such as clearing one’s throat, if they haven’t
already been eliminated by the SD pipeline. We
then incrementally increase the threshold to assess
whether the results improve or worsen.

3.1 Pyannote

To test Pyannote with different parameters and seg-
ment extraction methods, we only specify the num-
ber of speakers between 1 and 4 in the standard
settings. We then compare these standard settings
with various segment extraction methods, which
consider only segments longer than a set thresh-
old and remove overlapping segments where mul-
tiple speakers talk simultaneously. We also eval-
uate the model’s performance when we specify
the exact number of speakers, increase the speaker
recognition threshold (SR-TH) to make the model
more confident in classifying speakers, and set the
min_duration_off parameter to 0, meaning no
intra-speaker gaps are bridged.

3.2 CLEAVER

Since we used only the demo version of CLEAVER,
different parameters cannot be tested. In this demo
version, an audio file is uploaded to the server via
an API, and a segment is selected for each occur-
ring speaker in which only that speaker is active.
The results are then presented visually and can be
downloaded as a CSV file.

3.3 NeMo

NVIDIA NeMo provides three different configu-
ration YAML files (a human-readable data format
used for configuration), each created during model
training with different recordings. Detailed infor-
mation about the used parameters in the YAML
files is available on their website5. The general
YAML file is optimized for balanced performance
across various domains. The meeting YAML file

5https://docs.nvidia.com/deeplearning/nemo/
user-guide/docs/en/main/asr/speaker_diarization/
configs.html

45

https://github.com/WoLFi22/DialectClassificationPipeline
https://github.com/WoLFi22/DialectClassificationPipeline
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speaker_diarization/configs.html
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speaker_diarization/configs.html
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speaker_diarization/configs.html


is designed for meetings with 3-5 speakers, and
the telephonic YAML file is suited for telephone
recordings involving 2-8 speakers, as stated in
the comments in the corresponding YAML files.
Parameters modified in the YAML files include
ignore_overlap (whether overlapping speech is
ignored), oracle_num_speakers (whether to use
the exact number of speakers from the manifest
file), and min_duration_off (the threshold for fill-
ing speech gaps within a speaker). This last param-
eter is akin to Pyannotes min_duration_off pa-
rameter. Other adjusted parameters include onset
and offset. The onset parameter determines the
threshold for identifying the start and end of speech
segments, while the offset parameter determines
the threshold for identifying the end of speech. Fi-
nally, pad_onset specifies the duration added be-
fore each speech segment.

4 Results

Table 1 presents the results of the standard pipelines
(SP). The column Avg. #Segments refers to the av-
erage count of segments, assigned to the dialectal
speaker after speaker diarization (SD), per original
audio file. Similarly, Avg. Sec. represents the aver-
age duration of these segments. The column Mean
Accuracy represents the average accuracy across
250 runs using different train/validation/test data
splits.The SP of Pyannote, CLEAVER, and NeMo
with the telephonic YAML file perform similarly
well. CLEAVER generally extracts more segments
than the other two models, but these segments are
shorter on average. This is shown in Figure 2 (a),
which displays a portion of a file with ground truth
labels at the top and the labels of the respective
SPs below, with overlapping segments shaded in
gray. This figure also highlights that Pyannote is
the only model by default that detects overlaps,
though it struggles with identifying segments with-
out speech.
NeMo with the telephonic YAML file initially
yields the best results. Figure 2 (a) also shows
that the segments from NeMo telephonic closely
align with the ground truth segments. With the
general YAML file, segments are often too long,
as reflected in the higher average seconds shown
in Table 1 and also visible in Figure 2 (a). The
meeting YAML file improves this but still does not
match the segmentation quality of the telephonic
YAML file. This is likely because the used record-
ings resemble a telephone conversation, typically

involving two speakers who occasionally overlap
and speak in succession.

4.1 Pyannote

Specifying the exact number of speakers for seg-
mentation with Pyannote makes little difference, as
shown by the nearly identical values in the first and
second rows of Table 2. Figure 2 (b) also shows
that the segments of the three speakers are almost
identical. However, a speaker was occasionally
misclassified as another when we provided the ex-
act number of speakers. Thus, providing the exact
number of speakers seemed to confuse the model,
and during clustering, more distant embeddings
were assigned to the same speaker because of the
predefined number of clusters.
Removing overlapping segments results in a slight,
but not significant, improvement in accuracy. With-
out bridging intra-speaker gaps results in further
subdividing previously connected segments. This
leads to more segments of shorter duration, as in-
dicated in Table 2 and shown in Figure 2 (b), but
it does not significantly affect the classification
models accuracy. When the speaker recognition
threshold (SR-TH) is set to 0.8, a significant im-
provement in classification is observed. With this
setting, embeddings are assigned to a speaker only
when the model is more confident, resulting in bet-
ter recognition of larger speaker gaps, as shown in
Figure 2 (b).

4.2 CLEAVER

For CLEAVER we can only modify the segment
extraction method. However, there is no signifi-
cant difference between the results with different
segment extraction thresholds, as shown in Table
3. The only observed difference is that segments
become longer as the threshold increases, while the
number of segments decreases accordingly.

4.3 NeMo

Specifying the exact number of speakers for the
audio files makes little difference with NeMo (tele-
phonic). This is evident in Figure 2 (c), where the
segments from NeMo closely match those with the
exact number of speakers, indicating that the speak-
ers were already well recognized. When adding
overlap, overlapping speakers are still not detected
and the resulting segments are the same as before.
The reason for this is unclear and cannot be deter-
mined at this time. When intra-speaker gaps are not
filled, previously connected segments are further

46



subdivided, resulting in more segments on average
with a shorter duration. However, this does not im-
pact the accuracy of the classification model since
the parameter is set to 0.2 by default for the tele-
phonic YAML file, meaning only speaker gaps of
200ms are bridged. Reducing the parameter to 0.0
makes virtually no difference, as all segments of
a speaker are concatenated for classification. The
same applies to increasing the parameter to 0.5.
When increasing the onset and corresponding off-
set thresholds for recognizing the start and end of
speech segments, on average more but shorter seg-
ments are generated. As shown in Figure 2 (c),
individual long segments are divided into multiple
shorter segments as the threshold increases, align-
ing more closely with the ground truth data. Conse-
quently, the mean accuracy significantly improves
starting from a threshold of 0.5 for both parameters.
Without padding on the onset, segments simply be-
gin later, as clearly visible in Figure 2 (c). As a
result, segments are shorter on average, and more
segments are created since some segments are with-
out padding no longer connected. However, this
does not affect performance.
Regarding the segment extraction method, re-
moving segments shorter than 0.5 to 1.0 sec-
onds proves significantly better than the standard
method, where all segments are retained. This im-
provement may be attributed to NeMo recognizing
and labeling short speech segments, such as cough-
ing or unclear brief expressions, which are filtered
out with the extraction method.

5 Conclusion

This study investigated the performance of Speaker
diarization (SD) models, Pyannote, CLEAVER,
and NeMo, using various parameters and segmen-
tation strategies. Our findings highlight the signifi-
cant impact of model choice, segmentation method,
and parameter settings on the accuracy and effec-
tiveness of SD systems.
For our audio data and classification task, NeMo
telephonic, using a higher threshold value of 0.5
for the onset and offset parameter and employ-
ing the extraction method that ignores segments
shorter than 1.0 second, achieves the highest accu-
racy at 90.6%. The baseline, composed of manually
segmented recordings, achieves a slightly higher
accuracy of 91.4%. Achieving baseline accuracy
through automatic segmentation based solely on
SD poses challenges in our case, because manually

segmented recordings contain only relevant dialec-
tal speech, while automatically generated ones also
include free, sometimes Standard German, speech
by dialectal speakers.
Although NeMo performs slightly better than Pyan-
note, where segments shorter than 0.5 seconds were
ignored or the speaker recognition threshold (SR-
TH) was increased, the difference is not substantial.
Generally, however, it can be said that thanks to
the concept of multiscale segmentation, NeMo also
identifies shorter segments that are no longer rec-
ognized by Pyannote. Removing shorter segments
resulting from speaker diarization, typically less
than one second in duration, consistently improved
accuracy. These segments are likely too short to
contain coherent utterances from one speaker and
instead often include background noise or filler
words.
Since CLEAVER performs similarly well to Pyan-
note and NeMo without further adjustments,
CLEAVER is a good alternative for those who pre-
fer a visual representation.
It is also important to consider that perfect seg-
mentation is not always necessary for practical pur-
poses. Higher accuracy is of course better, but even
slightly less accurate segmentation can still save
time compared to manual segmentation. When
adjusting the speaker recognition thresholds and
the thresholds for identifying the start and end of
speech segments, a balance must be struck between
capturing every part of the audio where the de-
sired speaker speaks (accepting more noise and
larger speaker pauses or occasional misidentified
speakers) and achieving higher precision (poten-
tially missing some parts of the speakers speech
and failing to assign some segments to the correct
speaker).
With these insights, recordings from the REDE cor-
pus can now be processed to create a new dataset
for German dialect classification.

Acknowledgements

This research is supported by the Academy of Sci-
ence and Literature Mainz (grant REDE 0404),
the Federal Ministry of Education and Research
of Germany (BMBF) (grant AnDy), and the Re-
search Center Deutscher Sprachatlas in Marburg.
Furthermore, thanks are due to Oxford Wave Re-
search Ltd for granting access to the demo version
of CLEAVER.

47



References
Anil Alexander and Oscar Forth. 2012. Blind speaker

clustering using phonetic and spectral features in
simulated and realistic police interviews.

Paul Boersma and David Weenink. 2023. Praat: doing
phonetics by computer [Computer program]. http:
//www.praat.org/.

Hervé Bredin. 2023. pyannote.audio 2.1 speaker di-
arization pipeline: principle, benchmark, and recipe.
INTERSPEECH 2023.

Hervé Bredin and Antoine Laurent. 2021. End-to-end
speaker segmentation for overlap-aware resegmenta-
tion. pages 3111–3115.

Hervé Bredin, Ruiqing Yin, Juan Manuel Coria, Gre-
gory Gelly, Pavel Korshunov, Marvin Lavechin,
Diego Fustes, Hadrien Titeux, Wassim Bouaziz, and
Marie-Philippe Gill. 2020. Pyannote.audio: Neural
building blocks for speaker diarization. In ICASSP
2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 7124–7128.

Eric Harper, Somshubra Majumdar, Oleksii Kuchaiev,
Li Jason, Yang Zhang, Evelina Bakhturina, Vahid
Noroozi, Sandeep Subramanian, Koluguri Nithin,
Huang Jocelyn, Fei Jia, Jagadeesh Balam, Xuesong
Yang, Micha Livne, Yi Dong, Sean Naren, and Boris
Ginsburg. NeMo: a toolkit for Conversational AI
and Large Language Models.

Shota Horiguchi, Nelson Yalta, Paola Garcia, Yuki
Takashima, Yawen Xue, Desh Raj, Zili Huang,
Yusuke Fujita, Shinji Watanabe, and Sanjeev Khudan-
pur. 2021. The hitachi-jhu dihard iii system: Com-
petitive end-to-end neural diarization and x-vector
clustering systems combined by dover-lap. Preprint,
arXiv:2102.01363.

H. B. Mann and D. R. Whitney. 1947. On a Test of
Whether one of Two Random Variables is Stochas-
tically Larger than the Other. The Annals of Mathe-
matical Statistics, 18(1):50 – 60.

Tae Jin Park, Naoyuki Kanda, Dimitrios Dimitri-
adis, Kyu J. Han, Shinji Watanabe, and Shrikanth
Narayanan. 2022. A review of speaker diarization:
Recent advances with deep learning. Computer
Speech & Language, 72:101317.

Neville Ryant, Kenneth Church, Christopher Cieri,
Jun Du, Sriram Ganapathy, and Mark Liberman.
2020. Third dihard challenge evaluation plan. arXiv
preprint arXiv:2006.05815.

Jürgen Erich Schmidt, Joachim Herrgen, Roland
Kehrein, and Alfred Lameli. 2020ff. Regional-
sprache.de (REDE III). Forschungsplattform zu den
modernen Regionalsprachen des Deutschen. Mar-
burg: Forschungszentrum Deutscher Sprachatlas.

Joel Shor and Subhashini Venugopalan. 2022. TRILLs-
son: Distilled Universal Paralinguistic Speech Rep-
resentations. In Proc. Interspeech 2022, pages 356–
360.

S.E. Tranter and D.A. Reynolds. 2006. An overview of
automatic speaker diarization systems. IEEE Trans-
actions on Audio, Speech, and Language Processing,
14(5):1557–1565.

Peter Wiesinger. 1983. Die einteilung der deutschen
dialekte. In Werner Besch, editor, Dialektologie: Ein
Handbuch zur deutschen und allgemeinen Dialekt-
forschung, volume 1.2 of Handbücher zur Sprach-
und Kommunikationswissenschaft, pages 807–900.
Berlin/New York: de Gruyter, Berlin, New York.

48

https://api.semanticscholar.org/CorpusID:110339731
https://api.semanticscholar.org/CorpusID:110339731
https://api.semanticscholar.org/CorpusID:110339731
http://www.praat.org/
http://www.praat.org/
https://api.semanticscholar.org/CorpusID:260906702
https://api.semanticscholar.org/CorpusID:260906702
https://doi.org/10.21437/Interspeech.2021-560
https://doi.org/10.21437/Interspeech.2021-560
https://doi.org/10.21437/Interspeech.2021-560
https://doi.org/10.1109/ICASSP40776.2020.9052974
https://doi.org/10.1109/ICASSP40776.2020.9052974
https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/NeMo
https://arxiv.org/abs/2102.01363
https://arxiv.org/abs/2102.01363
https://arxiv.org/abs/2102.01363
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1016/j.csl.2021.101317
https://doi.org/10.1016/j.csl.2021.101317
https://doi.org/10.21437/Interspeech.2022-118
https://doi.org/10.21437/Interspeech.2022-118
https://doi.org/10.21437/Interspeech.2022-118
https://doi.org/10.1109/TASL.2006.878256
https://doi.org/10.1109/TASL.2006.878256
https://doi.org/10.1515/9783110203332.807
https://doi.org/10.1515/9783110203332.807


A Appendix

Figure 1: Visualization of used Pipeline

Model Avg. #Segments Avg. Time Mean Accuracy
Baseline 85.257 1.974s 0.914
Pyannote 132.923 2.907s 0.878
CLEAVER 178.553 1.497s 0.877
NeMo general 139.205 3.251s 0.862
NeMo meeting 138.231 2.873s 0.867
NeMo telephonic 206.077 1.688s 0.880

Table 1: Results of standard pipelines

49



(a) standard pipelines

(b) Pyannote

(c) NeMo

Figure 2: Part of one Audio visualized after speaker diarization for the different models and parameters.

Params Extract. Method Avg. #Segments Avg. Time Mean Acc. p-value
SP - 132.923 2.907s 0.878 -
exact num. of speakers - 132.87 2.85s 0.882 0.28
- 0.2sec. 130.10 2.97s 0.888 0.11
- 0.5sec. 123.33 3.12s 0.889 0.05
- 1.0sec. 111.33 3.35s 0.884 0.20
- without overlap 134.31 2.64s 0.877 0.74
no gap-filling - 167.49 2.30s 0.874 0.61
SR-TH 0.8 - 140.31 2.39s 0.890 0.01
SR-TH 0.8 0.5sec 126.28 2.60s 0.890 0.02

Table 2: Results from Pyannote

Params Extract. Method Avg. #Segments Avg. Time Mean Acc. p-value
SP - 178.553 1.497s 0.877 -
- 0.2sec. 162.97 1.62s 0.885 0.74
- 0.5sec. 134.13 1.88s 0.880 0.79
- 1.0sec. 101.74 2.21s 0.881 0.25

Table 3: Results from CLEAVER

50



Params Extract. Method Avg. #Segments Avg. Time Mean Acc. p-value
SP (telephonic) - 206.077 1.688s 0.880 -
exact num. of speakers - 207.39 1.70s 0.879 0.44
- 0.2sec. 204.41 1.70s 0.882 0.24
- 0.5sec. 184.13 1.83s 0.893 0.04
- 1.0sec. 133.62 2.18s 0.894 0.01
- 1.5sec. 95.03 2.52s 0.883 0.19
with overlap - 206.08 1.69s 0.880 0.38
onset/offset 0.01 - 185.59 1.99s 0.882 0.31
onset/offset 0.5 - 239.67 1.24s 0.902 0.00
onset/offset 0.9 - 300.82 0.76s 0.891 0.00
no gap-filling - 257.13 1.35s 0.884 0.13
fill gaps (0.5sec) - 163.21 2.26s 0.873 0.88
without pad_onset - 230.31 1.41s 0.889 0.05
onset/offset 0.5 1.0sec. 112.28 1.87s 0.906 0.00

Table 4: Results from NeMo (telephonic)

51


