Zero-Shot Learning and Key Points Are All You Need for Automated
Fact-Checking

Mohammad Ghiasvand Mohammadkhani!, Ali Ghiasvand Mohammadkhani?
Hamid Beigy®
! Amirkabir University of Technology, 2Shahid Soltani 4 High School
3Sharif University of Technology
mohammad. ghiasvand@aut.ac.ir, aghiasvandm@gmail.com, beigy@sharif.edu

Abstract

Automated fact-checking is an important task
because determining the accurate status of a
proposed claim within the vast amount of in-
formation available online is a critical chal-
lenge. This challenge requires robust evalu-
ation to prevent the spread of false information.
Modern large language models (LLMs) have
demonstrated high capability in performing a
diverse range of Natural Language Processing
(NLP) tasks. By utilizing proper prompting
strategies, their versatility—due to their under-
standing of large context sizes and zero-shot
learning ability—enables them to simulate hu-
man problem-solving intuition and move to-
wards being an alternative to humans for solv-
ing problems. In this work, we introduce a
straightforward framework based on Zero-Shot
Learning and Key Points (ZSL-KeP) for au-
tomated fact-checking, which despite its sim-
plicity, performed well on the AVeriTeC shared
task dataset by robustly improving the baseline
and achieving 10" place.

1 Introduction

The AVeriTeC task (Schlichtkrull et al., 2024) is de-
signed to encourage the development of advanced
frameworks for automated fact-checking, a criti-
cal task in NLP. With the rapid spread of informa-
tion and misinformation online, automated fact-
checking is increasingly important. Given the
time-consuming nature of manual fact-checking,
building an effective neural language model-based
framework is valuable for saving time and costs,
improving performance, and supporting human
judgment. Significant efforts are being made to
automate this process within digital tools or LLMs
(Nakov et al., 2021).

LLMs with billions of parameters offer extensive
knowledge and strong reasoning capabilities that

!Code and data released at https://github.com/
mghiasvand1/ZSL-KeP

86

can be customized for various tasks. Designing
effective and appropriate prompts is crucial in this
customization process. Recent utilization of LLMs
can mainly be divided into two categories: fine-
tuning and In-Context Learning (ICL). Given the
enormous size of LLMs and the high computational
cost associated with fine-tuning them, utilizing ICL
through zero-shot or few-shot prompting is much
more efficient.

Explaining the reasoning behind a decision is
crucial for user trust in automated fact-checking,
as users need to understand the evidence behind
the model’s verdict (Guo et al., 2022). This work
employs Large Language Models (LLMs) with
Zero-Shot Learning (ZSL), which offer advantages
over simpler, classification-based models due to
their long context windows and high reasoning
capabilities. Besides using powerful LLMs and
effective prompting, accurate retrieval of relevant
information is vital. This involves hierarchical,
step-by-step prompting and decomposition-based
retrieval methods (Zhang and Gao, 2023). This
paper describes the novel approach implemented
by our team, MA-Bros-H, for the AVeriTeC shared
task, which integrates ZSL and key point utilization
within a unified and straightforward framework.

2 Related Works

To highlight a few recent research efforts in auto-
mated fact-checking, it is notable that (Kotonya
and Toni, 2020) provided explainability through
summarization, and (Lee et al., 2020) utilized the
internal knowledge of pretrained language models
such as BERT (Devlin, 2018) within their frame-
work. Additionally, (Lee et al., 2021) employed
few-shot prompting for fact-checking, (Zhang and
Gao, 2023) introduced a hierarchical, step-by-step
prompting method that involves claim decomposi-
tion followed by step-by-step reasoning to predict
the final verdict, and (Kim et al., 2024) proposed

Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 86-90
November 15, 2024 ©2024 Association for Computational Linguistics

https://github.com/mghiasvand1/ZSL-KeP
https://github.com/mghiasvand1/ZSL-KeP

-

~

Zero-Shot
Prompting

A

Key_Point 1 —>

Key_Point n —>

l

.

evidence
top_k + ref @
e
> justification
Zero-Shot
4 Prompting
verdict

/

Figure 1: ZSL-KeP Framework Illustration

a multi-agent debate strategy for explainable fact-
checking.

3 Methodology

This section provides a detailed overview of the
problem definition of AVeriTeC task, as well as the
operational procedure of our ZSL-KeP model, as
outlined in Figure 1.

3.1 Problem Definition

Since our method is explicitly based on zero-
shot prompting, we use only the test data to ex-
ecute our framework, ignoring the train and val-
idation datasets. For each data point in the test
dataset, a claim is provided, and a verdict must
be predicted from the labels “Supported”, “Re-
futed”, “Not Enough Evidence”, and “Conflicting
Evidence/Cherry-Picking”. Additionally, for each
claim, a JSON file called a knowledge store is pro-
vided. This file contains numerous URLs with
scraped texts, including some gold documents that
assist in selecting the accurate label. The expected
output includes a verdict for the input claim and
adequate, yet non-redundant, evidence, preferably
in the form of question-answer pairs, along with
the corresponding URL and scraped text for each
pair to justify the source of each proposed question-
answer pair. It is noteworthy that the answer type
for each question can be “Extractive”, “Abstrac-
tive”, “Boolean” or “Unanswerable’.

3.2 ZSL-KeP Framework

Our ZSL-KeP framework is a procedure that con-
tains multiple steps detailed below. However,
compared to the baseline method proposed in
(Schlichtkrull et al., 2024), our method is much
more straightforward, containing fewer steps than
the baseline, does not require any fine-tuning, and
is simpler to implement.

87

3.2.1 Zero-Shot Key Points Construction

In the first step, we receive the claim as input
and aim to construct key points based on the re-
ceived claim using ZSL with our chosen LLM. The
primary objective of forming key points is that
even a simple claim can contain several key points.
When searching and retrieving information from
the knowledge store, more extensive retrieval typ-
ically yields more comprehensive information. A
claim might not return many helpful documents
when queried directly, but by constructing diverse
key points from it, we can obtain more relevant and
diverse information. As shown in the prompting
template in Appendix A, we limit the number of
primitive key points to four. For these distinct key
points, we ask the LLM to identify and return pairs
of key points whose combinations result in valu-
able and richer key points. This process aims to
construct an extensive set of key points based on
the input claim, facilitating more divergent retrieval
in the next step.

3.2.2 Extensive Retrieval with References

As mentioned, for each claim, we have a large
knowledge store consisting of various URLs with
their scraped texts, among which the gold docu-
ments for selecting the best and correct verdict are
present. In the previous step, we constructed sev-
eral key points for each claim, either of a normal
type or paired, as explained earlier. If the number
of constructed key points is n, we treat these key
points as a list of queries. We append the main
input claim to this list and use BM25 (Robertson
et al., 2009) to retrieve results for each of the n + 1
queries with a different fop_k parameter for each
query. For each selected retrieval result, since each
JSON file contains many URLs and each URL has
several scraped texts, we construct an ID by con-
catenating the URL index within the JSON file

Method

| Qonly Q+A | AVeriTeC score

AVeriTeC Baseline (Schlichtkrull et al., 2024) |

024 0.0 | 0.11

ZSL-KeP (Ours)

| 038 024 0.27

Table 1: Main results include retrieval scores for both questions alone and for questions with answers, as well as the AVeriTeC

score for the baseline and our proposed method.

with an underscore, followed by the index of the
scraped text within the list. For each retrieval docu-
ment, we attach the text “<ID>" (where ID is the
constructed corresponding ID) to the document.
After retrieving and appending all these documents
for each query, we separate them with a newline
character. Finally, we concatenate all groups of
retrievals, separating them with two newline char-
acters and several dashes in between, to form a
unified retrieval string for the input claim.

3.2.3 Zero-Shot Prediction

In this stage, which is the final step of our frame-
work, we use ZSL to generate evidence, followed
by a justification and, finally, a verdict. We pass
the original claim along with the unified retrieval
string formed in the previous step as input, exactly
as shown in Appendix A; However, due to the lim-
ited context window of the LLM we are using,
errors may arise. In such cases, we reduce the
number of documents in the unified retrieval string
and prompt the LLLM again with a shorter input
length. The reason we include only the retrievals in
the unified retrieval string and omit the key points
is that we want to avoid influencing the evidence
construction process—specifically, the creation of
question-answer pairs—in our strategy. We aim to
keep this process dynamic, based on the available
selected knowledge and the claim’s purpose.

Since the number of adequate question-answer
pairs available as evidence for any claim may vary,
we limit the LLM to providing at most 4 pairs
to avoid penalties from additional, non-essential
question-answer pairs in our prompt. The justifica-
tion is needed to reason about the verdict based on
the evidence and to directly write the predicted ver-
dict afterward. Since the task requires the URL and
scraped text for each item of evidence, we instruct
the LLM to provide the citation ID when answer-
ing questions. This ensures that we can show the
source for our verdict and each question-answer
pair.

88

4 Experiments and Results

4.1 Experimental Setup

In this work, we utilized the Llama-3-70B model
for both steps described in Sections 3.2.1 and 3.2.3,
using the Groq API%. Additionally, we set the tem-
perature to 0 to ensure reproducibility and top_p to
0.8. For key point construction, we set max_length
to 512, and for zero-shot prediction, we set it to
1024. In the retrieval step using BM25, we set
top_k to 70 for the original claim and to 12 for
other queries, which include key points from both
normal and combined forms. For zero-shot pre-
diction, which is the third step of the strategy, if a
rate limit occurs due to input length limitations, we
retain only the first 55 documents for the original
claim and 9 documents for key point retrievals.

4.2 Evaluation Metrics

The AVeriTeC scoring follows a similar approach
to FEVER (Thorne et al., 2018) and considers the
correctness of the verdict label conditioned on the
correctness of the evidence retrieved. The label
will only be considered correct if it mathches with
the gold label and the Hungarian meteor score be-
tween the predicted evidence and the gold evidence
is at least 0.25. However, Unlike in FEVER us-
ing a closed source of evidence such as Wikipedia,
AVERITEC is intended for use with evidence re-
trieved from the open web. Since the same evidence
may be found in different sources, we cannot rely
on exact matching to score retrieved evidence. As
such, the shared task evaluation strategy instead
rely on approximate matching. Specifically, the
Hungarian Algorithm (Kuhn, 1955) is used to find
an optimal matching of provided evidence to anno-
tated evidence.

4.3 Main Results

Despite our framework’s straightforward proce-
dure, which does not require any fine-tuning and
only utilizes ZSL, as depicted in Table 1, it ro-
bustly improves the baseline in both retrieval

Zhttps://grog.com/

scores—calculated for questions alone and for
questions with answers—and the AVeriTeC score.
This includes improvements of 0.14, 0.04, and
0.16 in retrieval scores for questions only, re-
trieval scores for questions with answers, and the
AVeriTeC score, respectively. Based on these re-
sults, by using an open-source LLM, our frame-
work has achieved a 10" rank among all 23 system
result submissions.

5 Conclusion

In this paper, we introduced ZSL-KeP, an effec-
tive yet straightforward framework for automated
fact-checking. We utilized the ZSL capability of
LLMs and constructed key points for extensive
retrieval to generate evidence in a question-and-
answer pairs format, along with a final verdict. By
relying solely on the ICL capability of LLMs, our
strategy operates without requiring any fine-tuning
and is more straightforward compared to the base-
line. Our framework sets a new benchmark, in-
dicating promising avenues for future research in
related topics.

6 Limitations

While our work shows strong performance, it has
some limitations that suggest areas for future re-
search. Our method improves diversity by using
zero-shot key points for retrieval, but the limited
input length of our LLM, constrained by time and
budget limitations, prevented us from retrieving a
larger document set. Additionally, a more powerful
LLM could enhance accuracy in generating evi-
dence and verdicts. Addressing these issues could
significantly improve our framework’s results.

References

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational
Linguistics, 10:178-206.

Kyungha Kim, Sangyun Lee, Kung-Hsiang Huang,
Hou Pong Chan, Manling Li, and Heng Ji. 2024. Can
llms produce faithful explanations for fact-checking?
towards faithful explainable fact-checking via multi-
agent debate. arXiv preprint arXiv:2402.07401.

Neema Kotonya and Francesca Toni. 2020. Explainable
automated fact-checking for public health claims. In

89

Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7740-7754.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-

terly, 2(1-2):83-97.

Nayeon Lee, Yejin Bang, Andrea Madotto, and Pascale
Fung. 2021. Towards few-shot fact-checking via
perplexity. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1971-1981.

Nayeon Lee, Belinda Z Li, Sinong Wang, Wen-Tau
Yih, Hao Ma, and Madian Khabsa. 2020. Language
models as fact checkers? ACL 2020, page 36.

P Nakov, D Corney, M Hasanain, F Alam, T Elsayed,
A Barron-Cedeno, P Papotti, S Shaar, G Da San Mar-
tino, et al. 2021. Automated fact-checking for as-
sisting human fact-checkers. In IJCAI, pages 4551-
4558. International Joint Conferences on Artificial
Intelligence.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm?25 and be-

yond. Foundations and Trends® in Information Re-
trieval, 3(4):333-3809.

Michael Schlichtkrull, Zhijiang Guo, and Andreas Vla-
chos. 2024. Averitec: A dataset for real-world claim
verification with evidence from the web. Advances
in Neural Information Processing Systems, 36.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
809-819.

Xuan Zhang and Wei Gao. 2023. Towards llm-based
fact verification on news claims with a hierarchical
step-by-step prompting method. In Proceedings of
the 13th International Joint Conference on Natural
Language Processing and the 3rd Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
996-1011.

A Prompt Templates

This section provides all of the prompting tem-
plates used within the strategy. Figure 2 illus-
trates the full prompts for section 3.2.1, while the
prompts for section 3.2.3 are shown in Figure 3. It
is noteworthy that in the user messages, the tags
“<claim>" and “<retrieval>" are replaced by the
original claim and the unified retrieval string, re-
spectively.

[System]
You're a helpful assistant with expertise in understanding the concepts of a given claim and writing subclaims that
decompose the main claim well.

[User]

Based on the given claim, your task is to extract several distinct key points (2 to 4, depending on the claim's length
and complexity) without paraphrasing, in the format of short sentences. Focus on key points that support the
main intent of the claim, rather than unnecessary details. Then, only if the number of key points is more than two,
identify the pairs of key points whose combination leads to new and richer key points, and return a single
coherent short text as a representation of each combination without paraphrasing. Provide your response
explicitly in the format of {"key_points": [], "combined_key_points": []}.

Claim: <claim>

Figure 2: The Prompts for Zero-Shot Key Points Construction

~
[System]
You are a helpful assistant with expertise in creating evidence through suitable question-answer pairs based on a
given claim and the available key points within the retrieved knowledge, and in providing an accurate verdict for
that claim.
[User]
Your task is to accurately determine a correct verdict for a given claim from the labels "Refuted", "Supported",
"Not Enough Evidence", or "Conflicting Evidence/Cherry-Picking". You need to provide 1 to 4 necessary and
helpful question-answer (QA) pairs. Each QA pair should be well-constructed, focusing on different important
parts of the claim and utilizing the retrieved knowledge effectively to guide accurate decision-making. Therefore,
you need to break down the claim into its distinct and most important subclaims, focusing on these individual
components, as well as considering direct questions related to the main claim if the retrieved knowledge is
sufficient. Your answers can only be in the forms of extractive (preferred), abstractive, or unanswerable.
Extractive answers are those directly pulled from the text, while abstractive answers summarize or infer
information based on the text. Unanswerable type is very rare, and in this case, set the answer to "No answer
could be found." and the citation_id to "". Each piece of text in the retrieved knowledge has a <citation_id> at its
end, where the placeholder is replaced by the main citation ID. For each proposed answer to all answerable
guestions in your evidence, you must include exactly one citation ID (if there are multiple citation_id, select only
one) solely within the "citation_id" field. After providing evidence, you must also provide a concise justification
explaining how the evidence and the retrieved knowledge support the selected label for the claim. Provide your
answer explicitly in the following format without any other change or additional feedback:
{
"evidence": [
{
"question": "question",
"answer": "answer",
"citation_id": "<citation_id>"
2
l
"justification": "justification",
"pred_label": "pred_label"
}
Claim:
<claim>
Retrieved Knowledge:
<retrieval>
J

Figure 3: The Prompts for Zero-Shot Prediction

90

