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Abstract

Enterprise retrieval augmented generation
(RAG) offers a highly flexible framework for
combining powerful large language models
(LLMs) with internal, possibly temporally
changing, documents. In RAG, documents
are first chunked. Relevant chunks are then
retrieved for a user query, which are passed
as context to a synthesizer LLM to generate
the query response. However, the retrieval step
can limit performance, as incorrect chunks can
lead the synthesizer LLM to generate a false
response. This work applies a zero-shot adapta-
tion of standard dense retrieval steps for more
accurate chunk recall. Specifically, a chunk
is first decomposed into atomic statements. A
set of synthetic questions are then generated
on these atoms (with the chunk as the context).
Dense retrieval involves finding the closest set
of synthetic questions, and associated chunks,
to the user query. It is found that retrieval with
the atoms leads to higher recall than retrieval
with chunks. Further performance gain is ob-
served with retrieval using the synthetic ques-
tions generated over the atoms. Higher recall
at the retrieval step enables higher performance
of the enterprise LLM using the RAG pipeline.

1 Introduction

Since the popularized ChatGPT as an instruction-
finetuned large language model (LLM) deployed at
scale to the lay market, there has been a substantial
uptake on the interest of businesses to incorporate
LLMs in their products for a variety of downstream
tasks (Bahrini et al., 2023; Castelvecchi, 2023; Ba-
dini et al., 2023; Kim and Min, 2024). For most
companies, they are interested in using such mod-
els as enterprise LLMs where the model can handle
queries related to proprietary on-premise data.

It has been repeatedly demonstrated that these
LLMs have general (public) knowledge implic-
itly embedded in their parametric memory which
can be extracted upon querying (Yu et al., 2023a).

However, the LLMs do not have implicit knowl-
edge about a specific enterprise’s textual database
in a custom domain and hence are prone to hal-
lucinate in such situations (Xu et al., 2024b; Yu
et al., 2023b). Additionally, the transformer-based
(Vaswani et al., 2017) LLMs typically have a lim-
ited context window (due to quadratic order in cost
of the attention mechanism), which means informa-
tion for a specific company to be queried over can-
not be directly fed-in as a prompt to the LLM. Due
to limited budget, it is typically not feasible to fine-
tune LLMs on a specific enterprise’s data. In par-
ticular, with evolving data from ongoing projects,
it is challenging to maintain a constantly updated
company-specific LLM finetuned on new data with-
out catastrophic forgetting (Luo et al., 2023).

To tackle this issue, and with retrieval augmented
generation (RAG) proposed by Lewis et al. (2020),
RAG-inspired systems have rapidly become the de-
facto as a zero-shot solution for enterprise LLMs.
At the essence, there are 2 steps: 1. retrieval and
2. synthesis. Documents are split into indepen-
dent chunks, and a retrieval process is applied to
identify the relevant chunks to a given query. The
retrieved chunks (which should fit into the context
window) with the query are passed as the prompt
to the synthesizer LLM to get the desired response.

Currently, the bottleneck for most enterprise
LLMs is the retrieval step, where the correct in-
formation is not retrieved for the LLM to answer
the question (Arora et al., 2023). Hence, this work
focuses on building upon zero-shot approaches to
improve the retrieval step for RAG. A potential
limitation of the RAG set-up is that an embedding
model is used to retrieve the relevant chunks effi-
ciently when given a query. Each pre-calculated
chunk has its corresponding embedding stored in
memory, which allows the closes chunks to be re-
trieved by embedding the incoming query into the
same space. However, there is a mismatch in trying
to match the space of queries and chunks as each
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chunk can carry a large amount of information.
Instead, our work looks to represent each chunk

as a set of atomic pieces of information. Min et al.
(2023) introduced atomization of text for improv-
ing the assessment of summary consistency. These
atoms can be structural (e.g. sentences of a chunk)
or unstructured where a set of atoms is generated
for any chunk. By embedding the atoms instead of
the chunks themselves, the relevant atoms can in-
stead be identified (that correspond to a specific set
of chunks) for the posed query in the embedding
space. The atomic breakdown of the chunk enables
more accurate retrieval.

We further identify that even with the atomic
embedding representations of the chunk, a given
atom and the query do not necessarily best align for
retrieval as the former is a statement with a piece of
information while the latter is a question about
locating a missing piece of information. Thus,
we propose generating synthetic atomic questions.
Each atom has a set of questions generated, which
in turn are embedded. Therefore, the embedded
incoming query is used to identify the closest set of
atomic questions which in turn point to the relevant
set of chunks to be passed to the synthesizer LLM
in the RAG pipeline. As enterprise RAG operates
over a closed set of documents, the generation of
the atoms and corresponding synthetic questions
is a one-off cost. Similarly, the increased set of
embeddings to search over for the closest matches
for the query embedding is of less concern given
the various very efficient algorithms for embedding
search such as FAISS (Douze et al., 2024).

Current information retrieval approaches applied
to the RAG pipeline look at improving the quality
of dense retrieval through generation augmented
retrieval (GAR), where a query is rewritten for high
recall retrieval. However, we focus our attention
on representing the chunks more efficiently for re-
trieval (information retrieval literature explore such
approaches - see Section 2. The contributions: an
exploration of how the retrieval step in the enter-
prise RAG pipeline is improved with structured and
unstructured atomic representation of a document
chunk and further improvement with the generation
of atomic questions.

2 Related Work

Recently, several works have extended RAG (Zhao
et al., 2024). Many approaches finetune the com-
ponents of the RAG pipeline. For example, Siri-

wardhana et al. (2023) explore adapting end-to-end
RAG systems for open-domain question-answering
while Zhang et al. (2024) introduce RAFT for fine-
tuning RAG systems on specific domains by learn-
ing to exclude distractor documents. Additionally,
Siriwardhana et al. (2021); Lin et al. (2023) jointly
train the retriever and the generator for target do-
mains. However, our work focuses on exploring
zero-shot solutions as finetuning can be a computa-
tionally infeasible procedure for many enterprises.

In terms of zero-shot approaches, there have
been several extensions proposed. Gao et al.
(2023a) propose hypothetical document embedding
(HyDE) where an LLM is used to transform the
input query into an answer form (hallucinations are
acceptable) for improved dense retrieval over the
chunks. Similarly, Wang et al. (2023b) suggest a
query expansion approach termed query2doc where
an LLM is used to expand the query (Jagerman
et al., 2023) with a pseudo-generated document,
which they demonstrate to be effective for dense re-
trieval. Alternatively, we propose approaches that
focus on modifying the knowledge base on which
retrieval is performed rather than modifying the
user queries as is common in GAR (Shen et al.,
2023; Feng et al., 2023; Arora et al., 2023).

Song et al. (2024) retrieve a superfluous num-
ber of chunks during the retrieval step. They then
re-rank the retrieved chunks with a re-ranker sys-
tem to identify the most relevant set. Similarly,
Wang et al. (2023c) propose FILCO to filter out
the retrieved documents as an additional step in the
RAG pipeline. Sun et al. (2023) explore the zero-
shot use of LLMs as alternatives for traditional
re-rankers. Arora et al. (2023) additionally incorpo-
rate the re-rank steps with GAR in an iterative feed-
back loop. Leveraging the comparative abilities of
LLMs, Qin et al. (2023) propose using pairwise
comparisons for the re-ranking of retrieved docu-
ments. Alternatively, Sarthi et al. (2024) propose
RAPTOR as an iterative technique to pass a summa-
rized context (based on the retrieved documents) to
the synthesizer. Iter-RetGen by Shao et al. (2023)
follow a similar iterative summarization strategy
with LLMs. Finally, ActiveRAG (Xu et al., 2024a)
encourages the synthesizer to consider parametric
memory rather than just relying on the set of re-
trieved documents. Gao et al. (2023b) summarize
all advanced RAG approaches as additional pre-
retrieval or post-retrieval steps. Pre-retrieval steps
include query routing, query re-writing and query
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expansion. Post-retrieval steps include re-ranking
summarization and fusion. The synthetic question
retrieval over atomized units from the document set
is a form of pre-retrieval that operates on the knowl-
edge store rather than on the user query. Hence,
our work remains complementary with all forms of
post-retrieval RAG. See Appendix Figure 3.

Traditionally, retrieval of relevant documents for
a given query has been well studied (Hambarde
and Proenca, 2023) with approaches such as BM25
(Robertson et al., 2009). In recent years, dense
retrieval approaches have dominated as efficient
retrieval processes where queries and documents
are represented as dense vectors (embeddings) and
documents are retrieved based on the similarity
between these vectors. Semantically meaningful
vectors have been possible with the series of regu-
larly updated sentence transformers for generating
general purpose embeddings including Sentence-
BERT (Reimers and Gurevych, 2019), ConSERT
(Yan et al., 2021), SimCSE (Gao et al., 2021), Dif-
fCSE (Chuang et al., 2022), sentence-T5 (Ni et al.,
2022) and E5 (Wang et al., 2022). More recently,
there have been a series of more powerful embed-
ding models that adapt instruction-finetuned lan-
guage models as embedders (Li et al., 2023; Meng
et al., 2024; Muennighoff et al., 2024; Wang et al.,
2023a; BehnamGhader et al., 2024). Therefore,
this work restricts exploration to dense retrieval.

In recent information retrieval literature, Chen
et al. (2023) explore what granularity should be
used for retrieval. They introduce the concept of
breaking a passage into atomic expressions where
each encapsulates a single factoid. Zhang et al.
(2022) argue a document consists of many diverse
details. Hence, they propose representing a docu-
ment using multiple (diverse) embeddings to cap-
ture different views of the same content. Gospodi-
nov et al. (2023) investigate for Doc2Query, a
method of expanding the content of a document,
how hallucinations can be minimized in the gener-
ated queries over a document. Our work connects
these concepts for specifically generating multiple
synthetic questions over atoms in enterprise RAG.
This work is a bridge between methods explored in
information retrieval and the RAG community.

3 Retrieval for RAG

In enterprise RAG systems, the core pipeline can
be summarized as follows.

1. Split: Given a textual corpus of documents,

a set of chunks are generated by splitting all
text into distinct paragraphs.

2. Retrieve: For a given user query, the relevant
set of chunks are retrieved.

3. Synthesize: The original query and the re-
trieved chunks are passed to a synthesis model
to generate a response to the query using the
provided chunk information as the context.

Here, the focus is on improving the retrieval step
of the enterprise RAG pipeline. For the scope of
the data considered in this work, we assume that
the answer to a specific query is present in only
one chunk (i.e. there are no unanswerable queries
and multiple chunks are not required to deduce the
answer to a question). Therefore, the retrieval step
task can be defined as follows:

Task Let R(q; c) ∈ 0, 1 denote an oracle
relevancy function that returns 1 if a chunk, c,
contains the answer to the user query q and 0
otherwise. Given a set of N chunks, {c}1:N ,
and a user query q, retrieve chunk ck such that
R(q; ck) = 1 but

∑
i ̸=k R(q; ci) = 0.

Next, we describe the various approaches
for the retrieval step of enterprise RAG systems.
The focus is on zero-shot approaches that can be
applied without any training and we assume we
have no-cost in accessing the relevancy function.

3.1 Standard

In the standard retrieval set-up for the RAG
pipeline, dense retrieval is used for identifying
the most relevant chunk to the user query. Let
E (·) denote a sentence embedding model. The
embedding model has been trained to produce se-
mantically meaningful vector representations of
natural language text (see Section 2 for the evolu-
tion of sentence transformers). All of the document
chunks and the query are embedded into the high-
dimensional space such that:

ci = E (ci) ,∀i ∈ [1, N ] (1)

q = E(q) (2)

Then the chunk, ck̂, is selected such that ck̂ and
q have the shortest cosine distance between all
chunk embeddings and the query embedding. The
cosine distance between a pair of vectors a and b
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Figure 1: Question-based retrieval using atomic units for enterprise RAG.

is defined as cos[a,b] = 1− aTb/|a||b|.

[chunk] k̂ = argmin
k

cos[q, ck] (3)

One shortcoming of the standard retrieval approach
in RAG is that query embeddings are compared
against chunk embeddings. However, the seman-
tic embedding representation of a query does not
necessarily align with the semantic embedding rep-
resentation of the chunk that needs to be retrieved.
Hence, dense retrieval can lead to the incorrect
chunk being retrieved. The following sections de-
scribe modifications to the dense retrieval of the
chunks to increase the recall rate.

3.2 Generation augmented retrieval

As a baseline, the HyDE approach (Gao et al.,
2023a) is used as a form of GAR (see Section 2) 1.
The approach requires the query, q to be re-written
to q′ where q′ aims to be a complete hypothesized
answer to the query. For example, What is the cap-
ital of India? is rewritten to The capital of India
is London. Note, the answer of the query is not
important. Instead the form of the answer should
hopefully match the nature of the real answer e.g.
London and New Delhi are both places. Now, the
standard retrieval approach is applied from Equa-
tion 3 with q′ = E(q′) as the embedding of the
re-written query.

[hyde] k̂ = argmin
k

cos[q′, ck] (4)

1There are several GAR approaches. We find the form of
HyDE works best for this dataset from preliminary experi-
ments and hence select it as an appropriate baseline for GAR
in RAG.

Intuitively, with an answer-like sequence present
in the embedded query, there is a greater likelihood
of matching with the relevant chunk. Typically, the
re-writing process is achieved zero-shot with an
LLM by relying on its parametric answer (at the
rewriting stage, hallucinations are not a concern).
Henceforth, this approach is referred to as HyDE.

3.3 Atomic
A query is typically searching for a specific piece
of information in a chunk. The embedding repre-
sentation of the chunk can be viewed as an average
representation of all the different pieces of informa-
tion present in the chunk. Often, the pieces of in-
formation in the same chunk can be distinct, which
can lead to the query embedding being distant from
the target chunk embedding with the answer.

Therefore, we explore atomic retrieval. Here,
the chunk text is partitioned into a set of atomic
statements (referred henceforth as atoms) such that

ck → {a(k)1 , . . . a(k)nk
},∀k (5)

With a = E(a), the query embedding is compared
against the atomic embeddings. The closest atomic
embedding is used to identify the corresponding
chunk to be retrieved. The expectation is that indi-
vidual atomic embeddings are more likely to align
with a query’s embedding in the vector space.

[atom] k̂, ĵ = argmin
k,j

cos[q,a
(k)
j ] (6)

For evaluation, k̂ is of interest and ĵ is discarded.
In this work two forms of atoms are considered:

• Structured: Each sentence in the chunk is a
separate atom.
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• Unstructured: An atom generation system is
asked to generate atomic statements that best
capture all the information in the chunk. See
Section 4.2 for a description of the specific
atom generation system.

Despite atomizing a chunk of text, there is risk
of the query not necessarily matching the target
atom in the embedding space as the atom contains
semantic information about the answer while the
query does not. Therefore, we propose an exten-
sion called atomic questions. For a given atom,
a set of synthetic questions are generated that are
best answered by the atom given the chunk as the
context information. Hence,

a
(k)
j → {y(j,k)1 , . . . y(j,k)nj,k

},∀j, k (7)

[question] k̂, ĵ, î = argmin
k,j,i

cos[q,y
(k,j)
i ]

(8)
As before, only k̂ is of interest for evaluation. Fig-
ure 1 summarizes the RAG pipeline with question-
based retrieval using atomic units. Effectively, each
chunk can be summarized by a set of questions that
probe different pieces of information.

4 Experiments

4.1 Data

SQuAD BiPaR

# total chunks 2, 067 375
# total queries 10, 570 1, 500
# queries / chunk 5.1±2.3 4.0±0.0

# words / query 10.2±3.6 7.2±2.9

# words / chunk 122.8±54.8 181.1±52.8

# sentences / chunk 6.6±3.1 14.2±5.7

Table 1: Statistics of datasets.

SQuAD (Rajpurkar et al., 2016) is a popular choice
as an extractive reading comprehension dataset con-
sisting of triples of contexts, questions and answer
extracts. The contexts are sourced across a wide
variety of Wikipedia articles. We re-structure the
validation split of the SQuAD dataset for the task
of retrieval in RAG as follows. As all questions are
answerable (unlike SQuAD 2.0 (Rajpurkar et al.,
2018)), we assume that the answer to a given ques-
tion must be present in its corresponding context
passage. We additionally assume that the answer
to a specific question is not present in any other
context. Therefore, we shuffle all the contexts such
that the task requires retrieval of the appropriate

context for a given question. Once a particular con-
text is retrieved, it is the role of the synthesizer in
the RAG pipeline to generate the required answer.
Remaining consistent with the terminology of re-
trieval in RAG, contexts are viewed as chunks and
the questions are termed queries. The collection
of chunks are effectively the pre-split texts from a
knowledge store, which in this case is Wikipedia.

Table 1 summarizes the statistics of the re-
structured SQuAD validation set for assessing the
RAG framework. In total there are 2,067 chunks
with 10,570 queries, resulting in approximately 5
queries per chunk. The number of sentences within
each chunk vary with a single standard deviation
of 3.1 about 6.6. As mentioned, in Section 3.3,
the sentences of a chunk are treated as structured
atoms. Overall, the re-structured dataset allows us
to explore whether we can improve the retrieval of
chunks for queries over a fixed knowledge store.

Additionally, we consider BiPaR (Jing et al.,
2019) for evaluating the RAG framework. BiPaR
is a manually annotated dataset of bilingual paral-
lel texts in a novel-like style, created to facilitate
monolingual, multilingual, and cross-lingual read-
ing comprehension tasks. We focus on only the
English texts over the test split. In a similar vain
to SQuAD, the knowledge store is constructed by
shuffling the contexts for all queries. Table 1 sum-
marizes the main details. It is particularly useful to
consider BiPaR for enterprise RAG as the informa-
tion content of the context is based on extracts from
novels. As the stories are fictional and not factual,
the parametric memory of an LLM cannot expect
to know the answers to the queries. Therefore, Bi-
PaR mimics the set-up of proprietary knowledge
stores for enterprises where retrieval is necessary
to identify the relevant information for a query.

4.2 Model details

Task Prompt

Query re-
writing

Please write a full sentence answer to
the following question. {query}

Unstructured
atom genera-
tion

Please breakdown the following para-
graph into stand-alone atomic facts. Re-
turn each fact on a new line. {chunk}

Question gen-
eration

Generate a single closed-answer ques-
tion using: {chunk} The answer should
be present in: {atom}

Table 2: ChatGPT prompts for zero-shot tasks.

For generating the embedding representations, the
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embedder E(·) is selected as all-mpnet-base-v2 2

from Huggingface. This embedder is a popular
choice for enterprise RAG (the default in LlamaIn-
dex 3 for open-source LLMs) as it performs well on
the MTEB (Muennighoff et al., 2023) leaderboard
despite its small size of 110M parameters. We ad-
ditionally present results using the e5-base-v2 4

embedder (Wang et al., 2022), which has topped
the MTEB leaderboard for models of the base size.

Instruction-tuned LLMs (Touvron et al., 2023;
Jiang et al., 2023) have demonstrated impressive ca-
pabilities across a diverse range of tasks. Therefore,
for HyDE, the query re-writing process is achieved
with zero-shot usage of ChatGPT 3.5 Turbo 5. Sim-
ilarly, ChatGPT is used for generating atomic state-
ments from a chunk of text as described in Section
3.3. Finally, we make use of the same model to au-
tomatically generate questions on the atoms. Table
2 summarizes the prompts for each of these tasks
6. The question generation system is applied for a
maximum of 15 times on each atom 7 at which the
performance plateaus (see Section 5).

4.3 Evaluation

In information retrieval, there is a large number of
metrics proposed for assessing retrieval capabilities
(Arora et al., 2016). Here, we focus on calculating
R@K (recall at K). R@K calculates the fraction
of queries for which the correct chunk is within
the top K chunks when retrieval is performed. We
specifically present R@1, R@2 and R@5. Note,
R@1 checks for the exact match while R@2 and
R@5 are more lenient. We do not consider other
retrieval measures that account for the ordering
of the documents retrieved as in the scope of this
work there is only 1 relevant chunk for each query.
For RAG, it is of interest to return multiple chunks
from the retrieval step and leave the job of finding
the correct answer amongst the retrieved chunks to
the synthesizer. The limit on this approach is the
context window of the synthesizer. For example
the context window for ChatGPT 3.5 is 16K tokens.
Hence, we consider moderately high K for R@K.

2https://huggingface.co/sentence-trans
formers/all-mpnet-base-v2

3https://www.llamaindex.ai/
4https://huggingface.co/intfloat/e5-b

ase-v2
5https://platform.openai.com/docs/mod

els
6Manual prompt engineering was performed to identify

the appropriate prompts to achieve sensible results.
7https://github.com/VatsalRaina/QARAG

5 Results

Table 3 presents the recall rates with various zero-
shot approaches of the retrieval step using SQuAD
and BiPaR with 2 different embedders.

Let’s take a look first at the all-mpnet-base-v2
embedder for SQuAD. Operating at the chunk
scale, where the raw text is embedded for dense re-
trieval, the standard RAG achieves a recall of 65.5%
with the top 1, which increases to 89.3% when con-
sidering the top 5 chunks retrieved. By applying
GAR with the HyDE baseline at the chunk scale,
we do not observe gains. As discussed in Section
3.3, the text chunk contains several semantic pieces
of information while the re-written query remains
related to a single semantic piece of information.
Hence, it is challenging for the HyDE approach to
improve recall at the chunk scale.

By splitting a chunk into structured atoms (sen-
tences), Table 3 further shows the recall by embed-
ding the atomic text or the corresponding synthetic
questions generated on those atoms (Equations 6
and 8 respectively). Additionally, the HyDE ap-
proach is applied with the atomic embeddings, us-
ing the rewritten query instead of the original from
Equation 6. Embedding the atomic text instead of
the chunk text observes significant gains, reach-
ing 70.2% for R@1 and 90.6% for R@5. As the
length of a sentence in a chunk is closer in length
to the re-written query, the HyDE approach on the
structured atoms further boosts the recall rates. An
additional gain is again observed by performing
dense retrieval with the set of generated questions,
achieving up to 73.8% for R@1.

The final rows of Table 3 for SQuAD with all-
mpnet-base-v2 further demonstrates the benefits
of using unstructured atoms in place of the struc-
tured atoms. A sentence from a chunk contains
more granular information than the whole chunk
but is not necessarily constrained to one piece of
atomic information. Therefore, by re-writing the
chunk into a series of independent atoms, dense
retrieval between the query and the set of atomic
embeddings leads to higher recall rates. As with
the structured atoms, the HyDE approach leads to
further performance gains with the unstructured
atoms. Finally, we observe the best performance
across all three recall rates by applying dense re-
trieval using the generated questions on the atoms.
It is clear that higher recall retrieval is possible by
matching queries with questions as they can expect
to be of the same form rather than attempting to
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Dataset Item all-mpnet-base-v2 e5-base-v2
R@1 R@2 R@5 R@1 R@2 R@5

SQuAD

Chunk Text 65.5 78.9 89.3 76.2 87.1 94.4
HyDE 65.2 77.9 88.9 66.4 79.9 91.1

Atom-Structured
Text 70.2 81.4 90.6 80.1 89.3 95.1
HyDE 71.5 82.3 91.1 73.7 84.6 93.0
Question 73.8 83.5 91.2 78.1 87.2 93.8

Atom-Unstructured
Text 72.6 83.9 91.9 80.0 88.3 94.6
HyDE 73.1 83.7 91.7 73.9 84.4 92.3
Question 76.3 85.4 92.6 80.2 88.6 94.5

BiPaR

Chunk Text 33.7 43.1 54.7 42.1 52.6 63.7
HyDE 31.2 41.2 51.7 36.6 47.4 58.9

Atom-Structured
Text 42.6 52.3 65.4 47.7 57.8 69.5
HyDE 40.1 50.1 62.1 43.5 52.1 64.9
Question 53.8 63.4 73.3 55.9 64.8 75.3

Atom-Unstructured
Text 43.9 54.3 66.9 49.7 58.1 69.1
HyDE 41.7 52.5 64.6 43.0 51.7 63.7
Question 53.7 61.9 72.9 55.3 64.1 74.5

Table 3: Retrieval performance for enterprise RAG. All recall rates are represented as percentages.

match queries with chunks.
Considering the higher performing embedder e5-

base-v2 on SQuAD, the trends are less clear due to
a stronger baseline. We observe that for R@1 that
atomic question retrieval with unstructured atoms
has the best performance, but drops to second and
third highest for R@2 and R@5 respectively.

Let’s now consider BiPaR from Table 3. Very
similar trends are observed for both all-mpnet-base-
v2 and e5-base-v2 embedders on this dataset. It
is noticeable that HyDE at both the chunk, struc-
tured atoms and unstructured atoms struggles to
outperform the equivalent text. This deviation in
the trend observed in SQuAD is expected as BiPaR
is based on fictional stories while SQuAD is based
on factual Wikipedia articles. Hence, the halluci-
nated answers generated by HyDE are unlikely to
help with retrieving relevant chunks which do not
correspond to the re-written query (see Appendix
Section A for more analysis about HyDE). In con-
trast, for public factual information (as in SQuAD),
the hypothesized answer generated by a powerful
LLM is more likely to be the correct answer than a
hallucination. Question-based retrieval operating
on atoms demonstrates significant gains over the
baseline for BiPaR. For example, using e5-base-v2
improves R@1 by approximately 14%.

In general, for the re-formatted SQuAD dataset,
Table 1 states there are 2,067 unique chunks. There-
fore, the standard retrieval approach for RAG leads
to storing 2,067 chunk embeddings. In contrast, the
atomic retrieval has substantially larger number of

embeddings stored. Using structured atoms, there
are 13,630 sentences in total while there are 16,793
unstructured atoms across the corpus. By consid-
ering the synthetic question generation strategy de-
scribed in Section 4.2, question retrieval strategies
require 13, 630× 15 and 16, 793× 15 embeddings
to be stored in memory for structured atoms and
unstructured atoms respectively. A similar increase
in the storage of embeddings apply for the BiPaR
dataset. Hence, it is of interest to explore how the
number of questions required for each atom can be
reduced to remove the redundant ones.

Figure 2 presents how the performance varies
with the number of synthetically generated ques-
tions on the unstructured atoms. For each recall rate
(R@1, R@2 and R@5), two profiles are indicated:
1. a random selection of synthetic questions for
the atoms of each chunk; 2. an optimally diverse
selection of synthetic questions for the atoms of
each chunk. The optimally diverse set of questions
is selected as follows. A threshold, τ is selected
on the pairwise cosine distance. For the full set
of atomic questions generated, the pairwise cosine
distances of the question embeddings is calculated
for each chunk. If any pairwise cosine distance is
below τ , one of the questions is purged. The pro-
cess if repeated until all questions in the remaining
set have pairwise cosine distances of their embed-
dings above τ . By sweeping τ , the total number of
synthetic questions across the corpus changes. One
can hence expect that a chunk with more informa-
tion will have a more diverse set of questions.
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(a) SQuAD: all-mpnet-base-v2 (b) SQuAD: e5-base-v2

(c) BiPaR: all-mpnet-base-v2 (d) BiPaR: e5-base-v2

Figure 2: Efficient unstructured atomic question retrieval. See Appendix Figure 4, Section B.1 for additional models.

Figure 2 shows that a significant number of ques-
tions are redundant across the SQuAD and BiPaR
chunks. By removing more than half of the ques-
tions (and hence halving the storage cost), perfor-
mance can be maintained at the maximal value for
each of the recall rates. In the extreme setting, with
only 20% of the questions retained, there is only a
marginal decrease in recall when using the optimal
set. Thus, despite a larger storage cost with atomic
question retrieval compared to standard enterprise
RAG, the performance boost can be justified with
an efficient choice of synthetic questions to retain.
See Appendix Section B.2 for unanswerability anal-
ysis of the generated questions.

6 Conclusions

RAG systems are a popular framework for enter-
prises for automated querying over company doc-
uments. However, poor recall of relevant chunks
with dense retrieval causes errors to propagate to
the synthesizer LLM. Previous works have focused

on extensions involving generation augmented re-
trieval where the query is re-written at inference
time to improve recall. Conversely, we explore
adaptations to the storage of the chunks. The re-
trieval step for RAG can be refined in a zero-shot
manner by 1) atomizing the chunks and 2) gen-
erating questions on the atoms. Significant im-
provements are observed on the BiPaR and SQuAD
datasets with this approach as partitioning a chunk
into atomic pieces of information allows dense re-
trieval with the query to be more effective. More-
over, operating in the question space, the query
embedding aligns better with the synthetic ques-
tions of the target chunk. We further demonstrate
that the storage cost of a large number of synthetic
question embeddings can be dramatically reduced
by only storing a diverse set of questions for each
chunk. Question-based retrieval using atomic units
will enable the deployment of higher performing
enterprise RAG systems without relying on any
additional training.
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8 Limitations

In this work, we have made several assumptions
which do not necessarily hold in real enterprises.
Our work focuses on only closed queries where
a single atom contains the answer. It would be
interesting to extend the approach to handle multi-
hop situations by generating synthetic questions on
pairs or collections of atoms. Additionally, we have
focused the presentation of our results on SQuAD
and BiPaR. It will be useful to consider additional
standard information retrieval benchmarks such as
the BEIR datasets (Thakur et al., 2021). We specif-
ically focus on small-scale datasets due to limita-
tions in the available computational budget. We do
emphasise that small-scale datasets often mimic the
size of datasets in enterprises, which emphasises
our focus on enterprise RAG. We further empha-
sise that for the use case of enterprise RAG, queries
are over proprietary information. Most mainstream
information retrieval datasets are based on public
factual information, which is not convincing for
the enterprise set-up. BiPaR (our choice of dataset)
is based on information from stories (non-factual),
which is more aligned with the concept of propri-
etary information.
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Model nDCG@1 nDCG@3 nDCG@5 nDCG@10 R@10

BM25 18 30 35 40 67
all-MiniLM-L6-v2 29 43 48 53 79
BGE-base 37 54 59 61 85
E5-base-v2 41 57 61 64 87

E5-base-v2 (ours) 36 51 54 58 82
+ HyDE 42 57 61 63 85

all-mpnet-base-v2 37 51 56 61 87
+ HyDE 39 56 60 63 88

Table 4: Baselines for ClapNQ with HyDE.

Figure 3: Adapted diagram from Gao et al. (2023b) to summarize existing RAG approaches. We highlight in red
our contribution to the advanced RAG panel. Specifically, we modify the documents before they are indexed using
atomization and synthetic question generation.
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A Drawback of HyDE

In the main paper, we observed that HyDE per-
forms well for SQuAD but is less impressive for
BiPaR. This Section aims to revisit how HyDE
operates to explain the difference. Qualitatively,
HyDE uses the parametric memory of an LLM to
re-write the query as a complete sentence that an-
swers the query. The re-written query is then used
to retrieve the relevant chunks. The HyDE paper
emphasizes that it doesn’t matter if the answer is
hallucinated as the form of the hypothetical answer
can expect to be aligned with the chunk containing
the correct answer.

However, it is clear that HyDE struggles on Bi-
PaR while working well on SQuAD. We suspect
the reason for this discrepancy is that SQuAD is
based on publicly known factual information from
Wikipedia while BiPaR is based on fictional sto-
ries. Therefore, when HyDE is applied on SQuAD,
the hypothesized answer often is simply the cor-
rect answer itself, leading to an artificial boost in
the retrieval performance. The correct answer is
generated typically by the parametric memory of
a powerful LLM used for the query re-writing. In
contrast, as the answers to the queries in BiPaR
are not within the scope of general knowledge, the
hypothesized answer from HyDE does not help in
boosting the retrieval performance.

In order to investigate the dependence of HyDE
on factual information for improving retrieval per-
formance, we do additional analysis. We select
CLAPNQ (Rosenthal et al., 2024) as a recently
curated RAG dataset where the knowledge store
is based on publicly available information (like
SQuAD). Additionally, CLAPNQ has been exclu-
sively designed for long-form answers. Therefore,
we expect HyDE to demonstrate significant perfor-
mance gains on this dataset as the hypothesized
answer is likely to be the correct answer with high
overlap with the target chunk due to the length of
the answer. We show our results as follows in Ta-
ble 4. The top 5 rows are quoted directly from
Rosenthal et al. (2024). As well as recall, we report
nDCG (Järvelin and Kekäläinen, 2002) here as a
standard retrieval metric used in Rosenthal et al.
(2024) where the order of the retrieved chunks is
accounted for in calculating the performance. It is
clear for both of our implementations that HyDE
demonstrates retrieval performance gains on this
challenging RAG dataset.

B Additional Results

B.1 Open-source question generation systems

Figure 2 is presented using ChatGPT as the ques-
tion generation system over the unstructured atoms.
Here, we extend the results to explore the behaviour
of generating questions over structured atoms from
the BiPaR dataset using open-source large language
models for the question generation systems. We
focus on the all-mpnet-base-v2 as the embedding
system for retrieval.

The plots of the randomly selected questions
and the corresponding optimal lines is presented in
Figure 4. Here, the Flan-T5 (Chung et al., 2024)
model series is selected as open-source models for
question generation. It is clear that for the selected
open-source models, the optimal lines envelope the
randomly selected questions in a manner similar to
the closed-source ChatGPT model. However, we
do note that with a small sample of questions, the
randomly selected set of questions outperforms the
optimally diverse set for the Flan-T5 models. See
Section B.2 for the justification for this observation.

Table 5 provides the summary statistics for the
normalized area under each of these curves (nAUC)
where the x axis is scaled to be between 0 and 1.

B.2 Unanswerability analysis

A potential concern of the generated questions from
a given question generation system is that we as-
sume the question is appropriate for the atom on
which it was generated. A form of appropriateness
is captured by the unanswerability of the question.
We aim to measure the unanswerability of the gen-
erated questions to understand to what degree they
are appropriate.

SQuAD 2.0 (Rajpurkar et al., 2018) is annotated
with answerable and unanswerable questions over
reading comprehension contexts. Hence, we use
the validation split of this dataset to assess a zero-
shot Flan-T5-Large as an unanswerability system.
SQuAD 2.0 validation split consists of 5,928 an-
swerable questions and 5,945 unanswerable ques-
tions. There are 2,067 context paragraphs in total.

The system is prompted to return yes if a ques-
tion is unanswerable and no if unanswerable. As
is common with instruction-tuned models for clas-
sification tasks, a binary probability distribution
is formed by applying Softmax to the logits asso-
ciated with the yes and no tokens from the token
vocabulary of the model. This system is able to
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(a) R@1 (b) R@2 (c) R@5

Figure 4: Comparing question generation systems using retrieval on BiPaR with all-mpnet-base-v2 embedder and
including optimal question selection.

Retrieval - random Retrieval - pruned
System R@1 nAUC R@2 nAUC R@5 nAUC R@1 nAUC R@2 nAUC R@5 nAUC

chatgpt-3.5 0.474 0.574 0.670 0.444 0.528 0.616
flan-t5-large 0.414 0.500 0.610 0.382 0.461 0.561
flan-t5-base 0.370 0.460 0.572 0.349 0.426 0.531
flan-t5-small 0.363 0.455 0.562 0.341 0.421 0.523

Table 5: Comparison of question generation systems applied to contexts from BiPaR using all-mpnet-base-v2.

(a) R@1 (b) R@2 (c) R@5

Figure 5: Answerability rates for optimal (pruned) and random lines for specifically flan-t5-small as the question
generation system.

achieve an F1 score of 86.5 with a precision and
recall of 83.0 and 90.3 respectively.

Therefore, Figure 5 presents the answerability
rates for the optimal and random lines for the dif-
ferent recall rates using the Flan-T5-Small sys-
tem. It is clear that the answerability of the set
of questions for the optimal set (referred to here as
pruned) drops dramatically with fewer questions.
This is somewhat expected because the optimal
set of questions are selected to be as diverse as
possible from each other. Thus, it is more likely
that obscure (unanswerable) questions are selected
from the pool of generated questions if diversity is
the criteria for optimization.

C Licenses

SQuAD is shared under the attribution-sharealike
4.0 international (CC BY-SA 4.0) license. BiPaR
is shared under the attribution-noncommercial 4.0
international (CC BY-NC 4.0) license. CLAPNQ
is shared under the Apache-2.0 license.
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