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Abstract

Information retrieval (IR) methods, like re-
trieval augmented generation, are fundamen-
tal to modern applications but often lack sta-
tistical guarantees. Conformal prediction ad-
dresses this by retrieving sets guaranteed to
include relevant information, yet existing ap-
proaches produce large-sized sets, incurring
high computational costs and slow response
times. In this work, we introduce a score re-
finement method that applies a simple mono-
tone transformation to retrieval scores, leading
to significantly smaller conformal sets while
maintaining their statistical guarantees. Exper-
iments on various BEIR benchmarks validate
the effectiveness of our approach in producing
compact sets containing relevant information.

1 Introduction

Information retrieval (IR) methods lie at the heart
of numerous modern applications, ranging from
search engines and recommendation systems to
question-answering platforms and decision sup-
port tools. These methods facilitate the identifi-
cation and extraction of relevant information from
vast collections of data, enabling users to access
the knowledge they seek efficiently and effectively.
A popular example of IR is Retrieval Augmented
Generation (RAG), a technique for reducing hal-
lucinations in large language models (LLMs) by
grounding their responses on factual information
retrieved from external sources.

While IR methods have been widely adopted,
they traditionally lack statistical guarantees on the
relevance of retrieved information. This limita-
tion can lead to uncertainty regarding the reliabil-
ity and correctness of the retrieved information.
Conformal prediction (Angelopoulos and Bates,
2021; Angelopoulos et al., 2021) is an uncertainty
quantification framework that can be used with
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any underlying model to construct sets that are sta-
tistically guaranteed to contain the ground truth
with a user-specified probability. Conformal pre-
diction has expanded far beyond its initial classifi-
cation focus (Vovk et al., 2005; Angelopoulos and
Bates, 2021; Ringel et al., 2024), now encompass-
ing diverse applications like regression, image-to-
image translation (Angelopoulos et al., 2022b; Ku-
tiel et al., 2023), and foundation models (Gui et al.,
2024), advancing to enable control of any mono-
tone risk function (Angelopoulos et al., 2022a). In
the context of IR, recent methods (Xu et al., 2024;
Li et al., 2023; Angelopoulos et al., 2023) have
incorporated conformal prediction into ranked re-
trieval systems to ensure the reliability and quality
of retrieved items. However, existing conformal
methods often produce excessively large retrieved
sets, implying high computational costs and slower
response times.

In this work, we address this limitation by in-
troducing a novel score refinement method that
employs a simple yet effective monotone transfor-
mation, inspired by ranking measures, to adjust
the scores of any given information retrieval sys-
tem. By applying standard conformal prediction
methods to these refined scores, we deliver signifi-
cantly smaller retrieved sets while preserving their
statistical guarantees, striking a crucial balance be-
tween efficiency and accuracy. An illustration of
the proposed pipeline is shown in Figure 1. We
validate the effectiveness of our method through
experiments on three of BEIR (Thakur et al., 2021)
benchmark datasets, demonstrating its ability to
outperform competing approaches in producing
compact sets that contain the relevant information.

2 Background

To lay the groundwork for our work, we present a
simplified description of the operation of informa-
tion retrieval systems and how conformal inference
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Figure 1: Retrieval Pipeline. The query is first embedded using a semantic embedder, and then the topN candidates
are retrieved from a vector store. Crucially, their corresponding scores then undergo a refinement transformation
before being passed through a conformal prediction method that outputs an adaptive set of documents.

can be seamlessly integrated within this context.

2.1 Information Retrieval: Overview
Consider a large information database D =
{d1, d2, ..., dN}. At inference time, an IR model
R : Q → D accepts a query q ∈ Q as input
and returns a subset of candidates S ⊂ D. To do
this, the IR model computes a semantic embedding
eq = E(q) for the query and compares it to pre-
computed embeddings ei = E(di) for each item in
the database using a similarity metric:

si = sim(eq, ei), (1)

where E is the chosen representation model (e.g.,
a neural network encoder) and sim is a similarity
metric, such as cosine similarity. Subsequently, the
items are typically ranked based on their similar-
ity scores, and the top ranked items are retrieved,
forming the following set

SK ,
{
di ∈ D : si ≥ s(K)

}
(2)

where s(K) denotes theKth largest similarity score,
for a predefined K > 0 constant across all queries.

The approach above suffers from two key limi-
tations. First, using a fixed K can be problematic:
it might be too restrictive for some queries, lead-
ing to the omission of relevant information, while
for others, it might be too permissive, resulting in
the retrieval of numerous redundant or irrelevant
items. The latter scenario significantly impacts
efficiency and prolongs response times. Second,
this approach lacks guarantees that truly relevant
information, such as a specific item d∗ within the
database D, will be included in the retrieved set S.

2.2 Conformal Prediction for Retrieval
Conformal prediction can be seamlessly integrated
into IR systems by constructing calibrated predic-
tion sets designed to include, on average, the de-
sired information with a user-specified high proba-
bility. Formally, given a query q and its correspond-
ing similarity scores si, we construct a prediction

set parameterized by τ > 0 as follows:

Cτ (q) , {di ∈ D : ci ≤ τ}, (3)

where ci , −si represents a non-conformity score.
To appropriately set the value of τ , we utilize a held-
out calibration dataset DC consisting of n samples
(qi, di) ∈ Q×D drawn exchangeably from an un-
derlying distribution P . Here, qi represents a query
whose most relevant information is assumed to be
a single item di from the database, for simplicity.
Given a user-chosen error rate α ∈ [0, 1], we set
τ as the (n+1)(1−α)

n -th quantile of the calibration
non-conformity scores. This ensures that for a new
exchangeable test sample (qn+1, dn+1), we have
the following marginal coverage guarantee:

P
(
dn+1 ∈ Cτ (qn+1)

)
≥ 1− α (4)

for any distribution P . The probability above is
marginal (averaged) over all n+ 1 calibration and
test samples. This ensures that the IR model re-
trieves sets of adaptive size, guaranteed to contain
the relevant information at least α-fraction of the
time, thereby overcoming the limitation above.

While the conformal sets above use a calibrated
threshold, other parameterizations are possible,
such as setting the calibration parameter to the set
size K, as in (2). Furthermore, it is important to
note that the description above merely presents
conformal prediction in its simplest, most common
form. However, there have been significant ad-
vancements in the field in recent years, leading to
the development of more involved and efficient con-
formal methods (Romano et al., 2020; Angelopou-
los et al., 2020) and to extensions that provide guar-
antees beyond marginal coverage (Angelopoulos
et al., 2022a; Fisch et al., 2020; Li et al., 2023).

3 Method

Integrating conformal prediction to IR systems en-
hances their reliability by providing statistical guar-
antees. However, CP methods prioritize trustwor-
thiness and are not optimized for efficiency, thus
they often produce excessively large retrieval sets.
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Following the above, our goal is to improve the
predictive efficiency of CP methods by reducing
the average size of the retrieved sets Eq

[
|Cτ (q)|

]
,

while maintaining their coverage guarantees. In
contrast to approaches that focus on improving the
IR model or developing more efficient conformal
methods, we propose an alternative approach that
introduces an intermediate step of score refinement.
Specifically, given a query q and its scores S =
{s1, s2, . . . , sN}, we adjust them prior to employ-
ing conformal prediction T (S) = {t1, t2, . . . , tN}.

In designing the transformation T , we identify
that scores from different queries can vary signif-
icantly in scale. This can cause the calibration
threshold τ to be dominated by queries with small
scores, leading to excessively large prediction sets.
To mitigate this issue, we first normalize the re-
trieval scores by dividing them by their maximum,
ensuring that scores across all queries are compa-
rable in scale. We remark that the maximum score
smax can be interpreted as the IR model’s confi-
dence. When this value is small, it suggests a lack
of relevant information for the given query, suggest-
ing that ideally no items should be retrieved. Thus,
normalization in such scenarios may be counter-
productive, resulting in irrelevant items. However,
we assume the corpus is sufficiently extensive to
contain at least one relevant item for any query, an
assumption particularly valid for the calibration.

Next, assume without loss of generality that
the scores are sorted in decreasing order: S =
{s(1), s(2), . . . , s(N)}, where s(r) is the rth largest
score and r ≥ 1 represents its rank. Inspired by
ranking measures (Yining et al., 2013), we define
our transformation as follows

T (s(r), r) ,
s(r)

smax
W (r) (5)

where W (r) ∈ [0, 1] is a discount function that
penalizes scores based on their rank. We specifi-
cally employ the inverse logarithm decay W (r) =

1
log(1+r) , which offers a balance between empha-
sis on top items and exploration of lower-ranked
items. To offer additional flexibility, we introduce
a hyperparameter λ ∈ [0, 1]:

T (s(r), r) ,
s(r)

smax

1

log(1 + rλ)
. (6)

We tune λ by performing a search over a sequence
of values to minimize the set size on a validation
set. Note the transformation is monotone, preserv-
ing the IR model’s induced order and maintaining

its core functionality. Furthermore, it is simple to
implement, computationally efficient, and easily
integrated into existing systems. As demonstrated
in the following section, the proposed transforma-
tion is highly effective in reducing the size of the
conformal retrieved sets.

4 Experiments

4.1 Setup
Datasets For our evaluation, we utilized
BEIR (Thakur et al., 2021), a large collection of
information retrieval benchmarks. Specifically, we
focus on the following datasets: FEVER (Thorne
et al., 2018), SCIFACT (Wadden et al., 2020), and
FIQA (Maia et al., 2018). Data statistics are pre-
sented at Table 1. It is important to note that each
query within these datasets may have multiple rele-
vant documents within the corpus. For this study,
we adopted a pragmatic approach, considering the
document with the highest score among the rele-
vant documents as the ground truth. This ensures
that a successful retrieval implies at least one rele-
vant document is present in the inference set.

To simulate real-world production environments,
we employ a vector store, specifically FAISS-
GPU (Johnson et al., 2019) for its efficiency and
performance in handling large-scale databases. We
retrieve the top 2, 000 documents for each query
and apply our refinement process exclusively to
these initially retrieved documents.

Dataset #Corpus #Calibration #Test

FEVER 5,416,568 6,666 6,666
SCIFACT 5,183 150∗ 150∗

FIQA 57,638 500 648

Table 1: Data Summary. #Corpus indicates the number
of documents, while #Calibration and #Test indicate
the number of queries. As SCIFACT lacks a calibra-
tion set, we randomly split its test set into calibration
and test subsets.

Embedders Initial semantic scores were derived
using deep sentence embedders, which encode tex-
tual input into a fixed-dimensional latent space
where semantic similarity is represented by vector
proximity. We employ two models: BGE-large-
1.5 (Xiao et al., 2023) (326M parameters) and E5-
Mistral-7b model (Wang et al., 2023) (7B parame-
ters). BGE-large-1.5 is a smaller model with a la-
tent representation dimension of 1024, whereas E5-
Mistral, a finetuned encoder version of the mistral-
7b model, has a latent representation dimension

188



0 0.2 0.4 0.6 0.8 1

30

40

50

λ

A
vg

.G
rp

.S
iz

e

Figure 2: Impact of λ value on average group size using
BGE-large-1.5 on SCIFACT with α = 0.05.
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Figure 3: Performance comparison using BGE-large-
1.5 on FEVER dataset across various values of α.

of 4096. The semantic score between a query q
and a candidate document d is the cosine similarity
between their respective latent representations.
Competitors For our method, we employ the
Vanilla CP method (Vovk et al., 2005), applying it
to the refined retrieval scores. We compared our
approach to three established approaches: Baseline,
which applies Vanilla CP directly to the retrieval
scores without modification; TopK, which utilizes
Vanilla CP but calibrates to a fixed set sizeK for all
queries; APS (Romano et al., 2020) and RAPS (An-
gelopoulos et al., 2020), which introduce novel
conformity scores.

4.2 Results

We first conduct experiments on the smaller SCI-
FACT dataset to optimize the hyperparameter λ.
The results, shown in Figure 2, reveal a favorable
value for λ, prompting us to set α = 0.05.

Dataset α Method Emp. Cov. Avg. Grp. Size

FIQA 0.1

Baseline 0.89 417.77
APS 0.89 119.76
TopK 0.87 90.0
Ours 0.86 56.72

0.05

Baseline 0.94 846.0
APS 0.94 477.27
TopK 0.92 259.0
Ours 0.92 190.5

0.03

Baseline 0.96 1206.93
APS 0.98 1393.96
TopK 0.94 480.0
Ours 0.95 347.16

SCIFACT 0.1

Baseline 0.91 231.17
APS 0.91 30.82
TopK 0.91 31.0
Ours 0.85 14.07

0.05

Baseline 0.97 760.75
APS 0.92 91.23
TopK 0.92 91.0
Ours 0.89 29.59

0.03

Baseline 0.98 1211.11
APS 0.95 276.15
TopK 0.95 279.0
Ours 0.97 160.66

Table 2: Performance comparison using BGE-large-1.5
on FIQA and SCIFACT across various values of α.

Next, we conduct experiments on the large-
scale FEVER dataset. As illustrated in Figure 3,
our score refinement method consistently outper-
forms other approaches by producing significantly
smaller retrieved sets in experiments with BGE-
large-1.5 across various values of α, while main-
taining comparable, albeit slightly lower, empirical
coverage. Results for the other datasets are sum-
marized in Table 2, consistent with our previous
findings. We note that RAPS produced compara-
ble results to APS, so we omit them for brevity.
Additional results using E5-Mistral, which exhibit
similar trends, are presented in Table 3 of the ap-
pendix, along with an ablation study comparing
other simple transformations.

5 Conclusion

We addressed the challenge of large prediction sets
in conformal prediction for IR by introducing a
novel score refinement method. Our experiments
on the BEIR benchmark demonstrated its effective-
ness in generating compact, statistically reliable
prediction sets, enabling the deployment of confor-
mal prediction in real-world IR systems without
sacrificing performance.

6 Limitations

The conclusions of this study could be further
strengthened by evaluating the method on a wider
range of datasets and employing diverse embed-
ding models. Currently, our method does not han-

189



dle cases where no relevant information exists in
the database, potentially limiting its applicability.
Additionally, while we introduced a simple transfor-
mation, exploring more involved or even parameter-
ized functions, e.g. neural networks, could further
enhance efficiency and statistical guarantees.

References
Anastasios Angelopoulos, Stephen Bates, Jitendra Ma-

lik, and Michael I Jordan. 2020. Uncertainty sets for
image classifiers using conformal prediction. arXiv
preprint arXiv:2009.14193.

Anastasios N Angelopoulos and Stephen Bates. 2021.
A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv
preprint arXiv:2107.07511.

Anastasios N Angelopoulos, Stephen Bates, Em-
manuel J Candès, Michael I Jordan, and Lihua Lei.
2021. Learn then test: Calibrating predictive al-
gorithms to achieve risk control. arXiv preprint
arXiv:2110.01052.

Anastasios N Angelopoulos, Stephen Bates, Adam
Fisch, Lihua Lei, and Tal Schuster. 2022a. Confor-
mal risk control. arXiv preprint arXiv:2208.02814.

Anastasios N Angelopoulos, Amit Pal Kohli, Stephen
Bates, Michael Jordan, Jitendra Malik, Thayer Al-
shaabi, Srigokul Upadhyayula, and Yaniv Romano.
2022b. Image-to-image regression with distribution-
free uncertainty quantification and applications in
imaging. In International Conference on Machine
Learning, pages 717–730. PMLR.

Anastasios N Angelopoulos, Karl Krauth, Stephen
Bates, Yixin Wang, and Michael I Jordan. 2023.
Recommendation systems with distribution-free re-
liability guarantees. In Conformal and Probabilis-
tic Prediction with Applications, pages 175–193.
PMLR.

Adam Fisch, Tal Schuster, Tommi Jaakkola, and
Regina Barzilay. 2020. Efficient conformal predic-
tion via cascaded inference with expanded admis-
sion. arXiv preprint arXiv:2007.03114.

Yu Gui, Ying Jin, and Zhimei Ren. 2024. Con-
formal alignment: Knowing when to trust foun-
dation models with guarantees. arXiv preprint
arXiv:2405.10301.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Gilad Kutiel, Regev Cohen, Michael Elad, Daniel
Freedman, and Ehud Rivlin. 2023. Conformal pre-
diction masks: Visualizing uncertainty in medical
imaging. In International Workshop on Trustworthy
Machine Learning for Healthcare, pages 163–176.
Springer.

Shuo Li, Sangdon Park, Insup Lee, and Osbert Bastani.
2023. Trac: Trustworthy retrieval augmented chat-
bot. arXiv preprint arXiv:2307.04642.

Macedo Maia, Siegfried Handschuh, André Freitas,
Brian Davis, Ross McDermott, Manel Zarrouk, and
Alexandra Balahur. 2018. Www’18 open challenge:
financial opinion mining and question answering. In
Companion proceedings of the the web conference
2018, pages 1941–1942.

Liran Ringel, Regev Cohen, Daniel Freedman, Michael
Elad, and Yaniv Romano. 2024. Early time clas-
sification with accumulated accuracy gap control.
arXiv preprint arXiv:2402.00857.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes.
2020. Classification with valid and adaptive cover-
age. Advances in Neural Information Processing
Systems, 33:3581–3591.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evalua-
tion of information retrieval models. In Thirty-fifth
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 2).

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. arXiv preprint arXiv:1803.05355.

Vladimir Vovk, Alexander Gammerman, and Glenn
Shafer. 2005. Algorithmic learning in a random
world, volume 29. Springer.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan,
and Hannaneh Hajishirzi. 2020. Fact or fic-
tion: Verifying scientific claims. arXiv preprint
arXiv:2004.14974.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2023. Improving
text embeddings with large language models. arXiv
preprint arXiv:2401.00368.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. Preprint,
arXiv:2309.07597.

Yunpeng Xu, Wenge Guo, and Zhi Wei. 2024.
Conformal ranked retrieval. arXiv preprint
arXiv:2404.17769.

Wang Yining, Wang Liwei, Li Yuanzhi, He Di, Chen
Wei, and Liu Tie-Yan. 2013. A theoretical analysis
of ndcg ranking measures. In Proceedings of the
26th annual conference on learning theory.

190

https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597


A Additional Experiments

Here evaluate our method with the E5-Mistral em-
bedder on SCIFACT and FIQA datasets. Results,
presented in Table 3, show our method consis-
tently outperforms competitors. Moreover, using
E5-Mistral leads to improved performance in both
empirical coverage and average group size com-
pared to BGE-large-1.5.

In addition to the aforementioned experiments,
we compared our method against alternative trans-
formations: Max Score, where scores are normal-
ized by dividing each by the maximum score, and
Z-Score, which standardizes the initial retrieved
scores. The results, summarized in Table 4, show
that our score refinement transformation outper-
forms these other refinement methods in the vast
majority of cases.

Dataset α Method Emp. Cov. Avg. Grp. Size

SCIFACT

0.10

Baseline 0.91 68.91
APS 0.94 17.46
TopK 0.95 19.0
Ours 0.93 15.09

0.05

Baseline 0.96 311.73
APS 0.98 139.36
TopK 0.99 150.0
Ours 0.97 48.71

0.03

Baseline 0.99 1093.85
APS 1.0 324.09
TopK 1.0 368.0
Ours 1.0 127.29

FIQA

0.10

Baseline 0.91 144.31
APS 0.9 46.48
TopK 0.89 38.0
Ours 0.9 33.35

0.05

Baseline 0.96 458.79
APS 0.95 123.09
TopK 0.94 108.0
Ours 0.94 67.21

0.03

Baseline 0.98 710.86
APS 0.97 439.64
TopK 0.96 193.0
Ours 0.96 143.76

Table 3: Empirical coverage and average group size for
FIQA and SCIFACT, alpha values, and methods using
the e5-mistral-7b-instruct.

Dataset α Method Emp. Cov. Avg. Grp. Size

FEVER

0.10

Baseline 0.90 4.81
Max Score 0.87 1.19

Z-Score 0.85 1.63
Ours 0.87 1.18

0.05

Baseline 0.95 9.47
Max Score 0.93 1.89

Z-Score 0.92 2.44
Ours 0.93 1.67

0.03

Baseline 0.97 15.63
Max Score 0.96 2.88

Z-Score 0.95 3.28
Ours 0.95 2.37

SCIFACT

0.10

Baseline 0.91 231.17
Max Score 0.83 20.68

Z-Score 0.88 22.01
Ours 0.85 14.07

0.05

Baseline 0.97 760.75
Max Score 0.86 31.01

Z-Score 0.91 52.91
Ours 0.89 29.59

0.03

Baseline 0.98 1211.11
Max Score 0.94 132.31

Z-Score 0.93 197.77
Ours 0.97 160.66

FIQA

0.10

Baseline 0.89 417.77
Max Score 0.87 83.23

Z-Score 0.87 78.02
Ours 0.86 56.72

0.05

Baseline 0.94 846.0
Max Score 0.92 254.8

Z-Score 0.92 217.79
Ours 0.92 190.5

0.03

Baseline 0.96 1206.93
Max Score 0.94 380.62

Z-Score 0.94 437.01
Ours 0.95 347.16

Table 4: Ablation study comparing different score
refinement methods with BGE-large-v1.5 encodings.
The table shows empirical coverage and average group
size for different datasets and methods. Bold values
indicate the best performance for each α.
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