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Abstract

The ability to extract and verify factual infor-
mation from free-form text is critical in an era
where vast amounts of unstructured data are
available, yet unreliable sources abound. This
paper focuses on enhancing causal deductive
reasoning, a key component of factual verifi-
cation, through the lens of accident investiga-
tion, where determining the probable causes of
events is paramount.

Deductive reasoning refers to the task of draw-
ing conclusions based on a premise. While
some deductive reasoning benchmarks exist,
none focus on causal deductive reasoning and
are from real-world applications. Recently,
large language models (LLMs) used with
prompt engineering techniques like retrieval-
augmented generation (RAG) have demon-
strated remarkable performance across various
natural language processing benchmarks. How-
ever, adapting these techniques to handle sce-
narios with no knowledge bases and to different
data structures, such as graphs, remains an on-
going challenge. In our study, we introduce a
novel framework leveraging LLMs’ decent abil-
ity to detect and infer causal relations to con-
struct a causal Knowledge Graph (KG) which
represents knowledge that the LLM recognizes.
Additionally, we propose a RoBERTa-based
Transformer Graph Neural Network (RoTG)
specifically designed to select relevant nodes
within this KG. Integrating RoTG-retrieved
causal chains into prompts effectively enhances
LLM performance, demonstrating usefulness
of our approach in advancing LLMs’ causal
deductive reasoning capabilities.

1 Introduction

Large language models (LLMs) have shown im-
pressive performance on some language tasks, how-
ever, their ability to plan and reason on com-
plex tasks remains an ongoing challenge (Wei
et al.,, 2022; Valmeekam et al., 2023). In Psy-
chology, the standard test for deductive reason-
ing consists of giving people premises and ask-
ing them to draw conclusions (Evans, 2005; Rips,
1994; Johnson-Laird, 2010). In natural language
processing (NLP), RuleTaker (Clark et al., 2020)
and ProofWriter (Tafjord et al., 2021) are datasets
that challenge models to assign True or False la-
bels to statements about a probable implication.
However, there are no NLP benchmarks on causal
deductive reasoning, where the premise are facts
about an outcome and the statement is about a prob-
able cause. Furthermore, Huang and Chang (2023);
Valmeekam et al. (2022) find that current bench-
marks do not truly investigate the reasoning capa-
bilities of LLLMs, because the tasks are not mean-
ingfully applied in the real-world.

Researchers have proposed prompt engineering
techniques to improve few-shot and zero-shot task
performance (Reynolds and McDonell, 2021), like
using role-play (Kong et al., 2023; Wang et al.,
2023), in-context learning (Xie et al., 2022; Min
et al., 2022), and retrieval-augmented generation
(RAG) (Lewis et al., 2020; Shao et al., 2023). Re-
cent work has explored using LLMs to retrieve
a task-relevant knowledge sub-graph to support
reasoning (Li et al., 2024). However, extending
these techniques to handle cases where no explicit
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knowledge base is available, or and how to best use
knowledge graphs (KGs) in a RAG-based LLM
system remains an open area for research.

This paper focuses on the causal deductive rea-
soning task performed by Accident Investigators.
When an accident occurs, investigators conduct
thorough investigations, and come up with a proba-
ble cause for the accident. Our main contributions
can be summarized as follows:

* We present a task (Section 2) and dataset (Sec-
tion 3) comprising 631 reports with 11,422
statements. This dataset is curated from origi-
nal reports written by humans and processed
using rules and Claude 2.1. It will be made
publicly available.

* We introduce a framework (Figure 1) employ-
ing LLMs such as Mistral-Instruct 7B to iden-
tify causal relations for constructing a causal
KG. Additionally, we trained a RoBERTa-
based Transformer Graph Neural Network
(RoTGQG) to select relevant nodes, leveraging
deductive reasoning labels as an auxiliary task.
(Section 4)

* We observe that incorporating causal relations
retrieved from the LLM-constructed KG im-
proves the LLM’s causal deductive reasoning
performance. (Section 5)

2 Causal Deductive Reasoning

Given an input context C, the goal is to identify
the likelihood of a statement s; being a probable
cause of accident a. This likelihood is represented
by y; € (0,1), where y; = 1if s; is a probable
cause and y; = 0 if not. The task is to determine
P(y;|C) for each potential cause s; within a re-
port context C'. Since we have multiple reports
in our dataset, the objective extends to calculating
P(yit|Cy), where t denotes the report ID. We de-
fine Gy = Feptract(Cy) as the set of causal relations
mentioned in context Cy. The function Fiyipact(.)
extracts causal relations from the context. The
aggregated set of all extracted relations from the
dataset is denoted as G, representing the repository
of causal relations of our dataset. Each relation in
G, is represented by a cause and effect pair, de-
noted as (s;, 5;).

If a causal chain Tit =
(SZ', Sjl), (Sjl, sz), e (jk, k‘) ¢ G4, then y; = 0.
However, if x;; € Gy, the rank of y;; relative to

other potential causes y;; must be considered.
Only the top z rank of most important causes can
be the probable cause of an accident a. In the case
where we only consider the top cause (z = 1) as
the probable cause, then the probability of P(y;;)
can be reformulated into:

P(yit = 0) = P(yit|xie ¢ Gy) 0
+P(yi|lzie € Gi, P(yje = 1) > P(yy = 1))

P(yi = 1) = P(yilzie € Gy,
P(yit = 1) > P(y;e = 1))

Since the task is a binary classification task, ev-
ery example s;; is not aware of the other possible
sj¢ for the same report ¢. Therefore, s;; are causes
the model implicit tracks and has to rank against
for the current task. Our causal deductive task can
be re-framed into two sub-challenges: (1) extract-
ing z;; and identifying x;; € G, and (2) implicitly
ranking P(y;; = 1) > P(y;. = 1) or not.

2

Hypothesis 1: Generalizing causal chain to out-
of-context In the first challenge, extracting x;;
and identifying x;; € Gy, restricting the knowl-
edge source to a report results in a high chance for
there to be gaps in the causal chain. All else fixed,
P(yit|zir ¢ Gy) will be overestimated (i.e., model
predicts more Os than 1s). If are willing to relax
our criteria to check if s; € Cy and x;; € GG, then
we are allowing our model to generalize to its own
knowledge base, to recognize more valid causal
chains, and therefore, increase the probability of
predicting P(y;; = 1). When working with LLMs,
therefore, we could inject causal relations outside
of (G; but semantically part of x;; to improve pre-
diction.

Hypothesis 2: Ranking importance of cause
within context If the LLM is exposed to too
many relevant causal relations in the prompt, it
would hallucinate and start to always view s; as the
most important probable cause (over other possible
options in C;). However, we do not know z. In
some reports, there are a few probable causes. One
approach is to explicitly expose the LLM to the
available causes in the report, so that we re-ground
the response, and in some way, a ranking based on
context is encouraged.

3 Dataset & Task Creation

We wish to investigate the LLMs’ ability to per-
form a real-world causal deductive reasoning task.
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Figure 1: Overview of our proposed methodology. Detailed infographic is available in Appendix Figure 4.

Given an accident description (KCONTEXT>), the
model must determine if a sentence about the prob-
able cause of the accident (KSTATEMENT>) is True
or False. To facilitate our research, we leverage
on reasoning-rich investigation reports from the
National Transportation Safety Board (NTSB) !.
NTSB publishes Accident Reports that provides de-
tails about an accident, analysis of the factual data,
conclusions and the probable cause of the accident,
and the related safety recommendations. There can
be one or multiple probable cause(s). We down-
loaded reports published after Year 2000, across all
reported categories (Aviation, Hazardous Materials,
Highway, Marine, Pipeline and Railroad).

Report pre-processing Pre-processing was done
to convert the PDF reports to JSON, and subse-
quently, we removed information like headers, page
numbers, and table of contents. We identified the
probable cause of the accident by searching for
the title “Probable Cause”. We discarded reports
where this match was impossible. Any text before
this section is defined as the <CONTEXT>. In our
experiments, we constrained our coverage to 157
reports where the context length is < 2, 000 words.

Extracting True statements Trailing descrip-
tions in the probable cause were removed. > We
used Anthropic’s Claude 2.13 to convert the para-

Thttps://www.ntsb.gov/investigations/
AccidentReports/Pages/Reports.aspx

2E.g. Descriptions unrelated to the cause (E.g. “The Na-
tional Transportation Safety Board determines that the”) were
removed.

3We intentionally used an LLM different from Mistral
when creating our dataset to avoid cases where the LLM rec-

graphs into a list of probable causes. Prompt 1
in Appendix outlines the one-shot prompt tem-
plate that we used. We manually annotated four
examples to measure the extraction performance,
of which we found ROUGEL score of 87.46 and
BLEU4 score of 75.02. When evaluating by seman-
tic match* with a threshold of > 0.7 as a match,
Claude 2.1 scored 100% for Recall, 72.92% for Pre-
cision, and 84.34% for F1. To summarize, the high
scores for the evaluated sample provides us with
the confidence to reliably use the extracted prob-
able causes as True instances for our main causal
deductive task.

CONTEXT

... The P. B. Shah captain erred when he initiated a port-to-port (one whistle) passing on
the radio with the Dewey R captain. He had meant to arrange a starboard-to-starboard
(two-whistle) passing, but the captain was distracted by the many tasks associated
'with preparing for his arrival at the Ingram facility. This included having a cell phone
conversation with the boat store to discuss a grocery delivery and meeting with the mate
to discuss upcoming tasks, both around the same time the passing arrangement was
made with the Dewey R. “Sliding underneath the point” is an action described by pilots ..

STATEMENT The probable cause of the accident was... LABEL
the impact of distraction upon the decision making and recollection of the True
captain of the P. B. Shah.

the distraction of the captain on the Loretta G. Cenac from safety-critical False
navigational functions as a result of his cell phone use.. (Rules)
insufficient communication between the captains after the passing False
arrangement was changed. (LLM)

Figure 2: An example report from our dataset.

Generating False statements False examples
were generated by two methods: (1) rule-based,
and (2) LLM-based methods. For rule-based, each

ognizes its own phrasing or terms.

*We encoded each probable cause item into an embedding
using the princeton-nlp/sup-simcse-roberta-large en-
coder (Gao et al., 2021) that was pre-trained on the Natural
Language Inference task. Link to their repository: https:
//github.com/princeton-nlp/SimCSE.
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Processing | #Docs #Statement | #True #False | True %
Total NTSB 631 11,422 1300 10,122 | 11.38%
< 2000 words | 157 2,523 243 2,280 | 9.63%
Success CRE | 133 1,677 155 1,522 | 9.24%

Table 1: Data sizes at each filtering stage. The last
row represents the working dataset for this paper after
successful causal relation extraction (CRE). Our exper-
iments are conducted using 10-folds CV, and the test
data sizes per fold are provided in Appendix Table 6.

True statement was matched to three similar-but-
not-too-similar statements are generated as nega-
tive examples. The degree of similarity between
the False examples and the True statement was con-
trolled to ensure that false examples are plausible
but distinct from the true statement, with similarity
scores ranging from 0.5 to 0.75. This approach
aims to provide a challenging set of false examples
for participants to evaluate. For LLM-based, we
used Claude 2.1 (See Prompt 2 in the Appendix) to
generate a list of 10 possible causes or contributing
causes investigated within the context that are not
stated as the final true probable cause.

Our task aims to provide a comprehensive eval-
uation of participants’ ability to perform the chal-
lenging causal deductive reasoning task. Table 1°
presents the statistics for our dataset. After keeping
examples that we could extract causal relations de-
scribed in the next section, our main dataset com-
prises of 133 reports and 1,677 statements. Of
which, 155 are True while the remaining 1,522
are False probable cause statements. An example
report is shown in Figure 2.

3.1 Evaluation Metrics

For each experiment, we report Macro F1, Micro
F1 and the accuracy scores for each class label and
label source. Since our dataset is small, we used a
10-fold cross validation (split by report ID) to train
and generate predictions for the full dataset. There-
fore, our evaluation metrics are first computed at
the fold level, then averaged, where both the mean
and standard deviations of each metric are reported.
When making comparisons between two models,
P-values are indicated by: *< 0.15, **< 0.10,
< 0.05.

4 Causal KG RAG with LLM

We mentioned in Section 2 that we wish to help
the LLM recognize generalized (j,,j,) € D by

SWe will release the full dataset of 11,422 statements to
the community.

injecting relevant causal relations outside of Gy.
However, we do not have a knowledge base for
G. We also do not have any annotations for the
intermediate causal chains that might be relevant
given a probable cause ¢ and accident a. To work
around these problems, we constructed our knowl-
edge base using the LLM itself. Afterwhich, we de-
signed a novel graph-based retriever model, trained
on the auxiliary binary classification task, to select
relevant nodes.

4.1 Step 1. Mining LLM’s Latent Causal KG

We wish to investigate properties regarding Equa-
tions 1 and 2. However, we do not have a knowl-
edge base. Therefore, we separately tasked the
LLM to mine the causal relations it recognizes and
understands. Specifically, we mined two types of
causal relations:

Extracted causal relations We tasked the LLM
to extract all causal relations expressed within the
<CONTEXT>. Prompt 3 in the Appendix outlines our
zero-shot prompt, with only instructions about the
desired output format.

Inferred causal relations We tasked the LLM to
infer the chain of causal relations that could possi-
bly link the cause stated within the <STATEMENT> to
the accident stated within the <CONTEXT>. Prompt
4 in the Appendix outlines our zero-shot prompt,
with only instructions about the desired output for-
mat. The causal chains from this step can be viewed
as the LLM’s hallucinated version of x;;.

Causal KG To maximize the size of our knowl-
edge store, we constructed our heterogeneous
causal knowledge based on a slightly larger dataset
of 157 reports and 2,523 statements, which pro-
vided us with 4,128 extracted cause-effect pairs and
22,685 inferred cause-effect pairs. Reports with
contexts longer than 2,000 words did not fit into
our models’ input context, so we did not explore
the full dataset, although it would be an important
future work to extend the size of the knowledge
store further.

Our KG G = (V,E) is a collection of nodes
V = {(v1,v2,...,u,)} and directed edges E =
{(v1,v2), (v2,v3), ...}. The edges are directed, and
comprises of three possible types: extracted, in-
ferred, or similar. For extracted and inferred rela-
tions, a directed edge (v,, v,) represents the pres-
ence of causality between the two nodes, where
v, 1s the cause argument and v, is the effect ar-
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gument. To prevent a sparse graph, prior causal
KG research employ various clustering (Tan et al.,
2023) or generalization (Radinsky et al., 2012)
methods to group semantically similar arguments
together. For us, we opted for a simple (and shown
to be effective in Section 5.1) approach by adding
bidirectional edges between two nodes v, and vy,
weighted by the similarity score ss, for all node
pairs with similarity score ss > 0.7. Overall, our
final G is a collection of 16,675 nodes and 23,493
edges. The distribution of edge types are: 1,822
extracted, 11,399 inferred, and 10,272 similar.

4.2 Step 2. Node Selection over Causal KG

We re-frame our retrieval task as a node classifica-
tion task: Given a causal KG, we wish to extract
the most important and relevant nodes (arguments)
to include in our downstream prompt. Since we
have no labels as to what helps the LLM learn, we
used the the binary classification task (to classify
if a <STATEMENT> is True or False) as an auxiliary
task to train our model. The model is encouraged to
learn from the KG, and at inference, we discard the
classification head and keep top-E nodes with high-
est node weights as pointers to obtain information
for RAG.

Our retriever module uses a RoBERTa-based
Transformer GNN (RoTG) framework. Since a
traditional RoBERTa model (Liu et al., 2019)’s
input token limit of 512 is too small for our reports,
we designed a workaround that does not require the
long <CONTEXT> sequences as inputs. Our model is
trained only by the following inputs: (1) Encoded
<STATEMENT> (r; represents the [CLS] token vector
with e features) and (2) A one-hot encoded vector
(oh) assigned to each node if the span does appear
in the extracted or inferred causal relations (1 if
appear, 0 otherwise).

Node classification module Our initial node fea-
tures were represented by ()1, an attended rep-
resentation of Q). Q] is a concatenation of the
RoBERTa-encoded frozen embeddings for each
node description s (R is a n X e matrix compris-
ing of n nodes, an input that does not change over
training) and the two one-hot vectors (0hextr, Ohint)
indicating if the node was extracted or inferred
based on the context and target statement or not.
The attention mechanism then computes the atten-
tion weights between the node features )} and
the target statement embedding r; to generate the
cross-attended node feature matrix (). Since our

graph is heterogeneous, we require message pass-
ing across edge features. Hence, we employed the
Transformer (Vaswani et al., 2017) Graph Convo-
lutional Network (TransformerGCN) (Shi et al.,
2021), which helps to incorporate edge features
into the multi-head attention for graph learning.
The architecture of TransformerGCN is outlined in
Appendix Section D.1.

r; = RoBERTa(si) (3)
R = RoBERTa(5) 4)
Qll = [R7 Ohexir, Ohinf} )
Q1 = Attention(Q', 4, 7;) (6)

ow; = TransformerGCN(G g, g)) @)

Auxiliary task training We multiplied the local
graph weights ow; onto the global node embed-
dings R, obtaining our node embeddings ()2 that
are now customized for our inputs. We proceeded
with another round of message passing using Trans-
formerGCN over our global graph, and obtained
a vector representing the scores each node con-
tributes (nw;). We incorporated a skip-connection
by concatenating nw; with the original statement
embedding r; and applied dropout and layer nor-
malization layers to get o;. Subsequently, we ran
o0; through multiple rounds of Linear layers, with
LeakyReLU in between. In the last layer, we used
a Linear layer with output dimension of 2 to obtain
logits for our binary classification task.

ow); = topKGating(ow;) ®)
Q2 = ow,R ©)
nw; = TransformerGCN(G (g, k) (10)
0; = LayerNorm(Dropout([r;, nw;])) (11)
0§l+1) _ W(l)ol(l) +p® (12)

Each model was trained for 8 epochs, with an effec-
tive batch size of 8. Since our dataset is extremely
unbalanced (\9% True only), we also balanced
class labels by oversampling True examples, such
that the ratio is 1:2 for True:False, then included the
post-oversampling class weights into the CrossEn-
tropyLoss function. Model specifics are provided
in Appendix Section B.

4.3 Step 3. Prompt Engineering with LLM

During inference, we selected the top-E nodes with
the highest scores based on node weights, ow;.
Subsequently, we obtained the nodes’ original re-
ports’ extracted or inferred causal chains, then kept
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. Accuracy
Macro Fl Micro Fl True False (Rules) False (LLM)
All 55.43(6.09) 83.96 (9.07) 31.01(31.19) 67.44 (34.41) 99.45 (0.86)
Similarity Only | 56.97 (6.05) 82.75(8.39) 34.70 (26.65) 66.77 (25.59) 98.14 (5.22)
Causality Only | 56.90 (6.62) 81.48 (9.35) 39.56 (30.79) 60.62 (30.83) 97.92 (5.63)

Table 2: RoTG classification performance when trained over different edges types in GG. Highest score per column
is in bold. All scores are not statistically significant from the first row.

Relations . Accuracy

Retrieved Macro Fl Micro Fl True False (Rules) False (LLM)
None 70.36 (7.07)  90.30 (1.78)  46.53 (13.21) 92.23 (3.66) 95.69 (1.86)

Semantic | 72.50 (6.37) 91.24 (1.40)  48.72 (11.04) 92.99 (2.48) 96.54 (1.93)
RoTG 73.19 (7.01) 91.65 (1.42)** 49.49 (13.47) 94.31 (3.49) 96.37 (1.37)

Table 3: Mistral Instruct with None, Semantic, and RoTG (Ours) retrieval-augmented relations. Highest score per
column is in bold. P-values against None scores indicated by: *< 0.15, **< 0.10, ***< 0.05.

all chains that contain the node span. We inves-
tigated 9 distinct prompt formats (see Prompts 5
to 13 in the Appendix), incorporating variations
of retrieved, extracted, and inferred causal rela-
tions. Our best-performing prompt format (Prompt
10) consists of retrieved information that were pre-
sented as a multi-turn prompt: Initially, retrieved
relations were introduced to the model. Next, we
set the models’ response to be “Yes I understand.”.
Finally, a description of the task followed in the
subsequent reply. We found that including the re-
trieved information in the same responses as the
task description led to poor performance.

All relations underwent post-processing to re-
move similar causal chains, defined by a Leven-
shtein ratio > 0.8, with duplicates resolved by re-
taining only the first instance. Additionally, we lim-
ited each relation type to the first 10 rows of causal
chains. Subsequent experiments revealed that
such cleaning procedures enhanced the model’s
F1 scores. We categorized a model response as
False if the word “False” appeared in any part of
the response, and True otherwise. Due to the length
of the reports, particularly when utilizing Mistral
as our LLM, in-context learning was not feasible.
Consequently, all experiments were conducted in a
zero-shot manner.

5 Experimental Findings

This paper focuses the investigation on the Mistral-
Instruct 7B LLM (Jiang et al., 2023). We used
Mistral to extract and infer causal relations for our
KG as described in Section 4.1, then trained RoTG
over this KG as described in Section 4.2. Finally,
we tested Mistral on the causal deductive reasoning
task as described by Section 4.3.

5.1 Auxiliary Task Performance

Investigating RoTG’s performance on the causal
deductive task serves as a proxy of how helpful
would the LLM’s latent causal KG be for this task.
From the first row of Table 2, we notice that RoTG
achieves reasonable Macro F1 score of 55.43%.
The model performs very well on identifying LLM-
generated False statements, but struggle with se-
mantically similar False statements. We wish to
understand if our task can be performed without
understanding causality in the first place. To in-
vestigate this, we destroyed all causal edges in G,
and retrained the model on the task. Interestingly,
we find that all scores decline from the initial base-
line, but not by too much. This suggests that while
causal edges are still important to the task, as long
as some understanding of similarity between events
in a KG exists, models can still perform the task.
Conversely, we wish to understand the importance
of our similarity edges. When we destroyed similar-
type edges, we noticed a significant increase in the
accuracy for the True prediction (along with the
fall in accuracy for False prediction). Without sim-
ilarity edges, the model focuses only on causal
edges and in return, over-weighs the probability of
a causal statement. To conclude this subsection,
RoTG demonstrates that we can perform the causal
deductive task reasonably well by only relying on
extracted and inferred causal relations from LLM.
This presents us with a lower bound of what the
LLM can understand. In Appendix Section D.3, we
investigated RoTG’s performance across different
K values. We found that a concave relationship
across top-K and F1 scores, but the differences
are not statistically significant when comparing
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K =4,096 to K = 8,192 or more.

5.2 LLM’s Deductive Reasoning Performance

In this section, we directly test the LLM on the
causal deductive reasoning task. Table 3 presents
the main findings while the full findings are
available in Appendix Table 8. Our proposed
RoTG method (73.19% Macro F1 and 91.65%
Micro F1) outperforms the baseline (70.36%
Macro F1 and 90.30% Micro F1) and also
improved the LLM’s accuracy for all class labels.
The improvement for Micro F1 is statistically
significant with P-value < 0.10. To provide an
alternative baseline, we retrieved semantically
similar causal relations for every causal relation
extracted or inferred in a report. We encoded
arguments (Cause span and Effect span) using
sentence-transformers/all-mpnet-base-v2

then did vector embedding search using
FaissSearcher (Douze et al., 2024). Similar
truncation and cleaning procedures were done as
per RoTG. Mistral’s performance also improves
when we inject these semantic causal relations,
however, the improvement is slightly smaller than
ours and unlike ours, is not statistically significant.

5.2.1 Which types of causal relations help?

In Hypothesis 1 of Section 2, we hypothesized
that injecting causal relations outside of GG; but se-
mantically part of x;; would improve prediction,
or at least increase the likelihood of predicting
True. Apart from exposing the model to semantic or
RoTG relations, which both increased accuracy of
True (46.53% (Row 1) compared to 48.72% (Row
5) and 49.49% (Row 7) in Table 4), we could also
inject the inferred causal relations in the prompt.
As expected, the accuracy for True in the baseline
model increases to 55.99% (Row 3).

However, consistent with Hypothesis 2 of Sec-
tion 2, accuracy for False falls significantly. This
fall is slightly mitigated if we inject the extracted
causal relations alongside the inferred causal rela-
tions (Row 4), supporting our grounding hypoth-
esis. With either semantic or RoTG retrieved re-
lations, injecting extracted relations have a negli-
gible effect, suggesting when relations out of G
are shown, hallucination is less of an issue, and
grounding is unnecessary.

Overall, we find that we need to expose the LLM
to relevant causal relations outside of the report’s re-
lations G to increase accuracy of True predictions
(Hypothesis 1). However, if the inferred relations

are included (relations partially in G, partially not),
LLMs might take the provided causal chains to be
the truth, and so grounding becomes helpful (Hy-
pothesis 2). The best balance between the two
would be to incorporate retrieved relations (rela-
tions ¢ G}), so that the model can better focus on
learning about causality instead of being confused
by the truthfulness of the given chain.

5.2.2 Does the number and quality of RoTG
relations matter?

We described our post-processing steps for causal
relations in Section 4.3. In Table 5, we investigate
if we do not truncate to first 10 causal relations
(No truncate), and if we do not post-process at all
(No cleaning). In general, we did not find lower
statistically significantly different scores. For the
RoTG relations only prompt, the LLM performed
best with truncation and de-duplication. For the
RoTG and extracted relations prompt, the LLM per-
formed best if we do not clean the RoTG relations.
This again suggests that ensuring more retrieved
relations outside of Cy, as opposed to re-exposing
the model to relations from C%, are more helpful.

5.2.3 Investigating the generation probability

We investigated the generation probabilities of the
model by tracking the logits of the “True” and
“False” token at the first utterance of the “True”
/ “False” token. We comparing the model with and
without our RoTG relations, and notice that for
the 1446 examples where both models correctly
predicted False, our ROTG model returned an aver-
age False probability of 3.39%, while the baseline
model had a probability of 2.07%. Meanwhile,
for the 69 examples where both models correctly
predicted True, our RoOTG model returned an aver-
age True probability of 47.02%, while the baseline
model had a probability of 35.60%. There are two
interesting findings from here: (1) Apart from re-
turning a higher F1, incorporating RoTG-relations
helps the model become more confident in its pre-
dictions for the overlapping correct examples. (2)
On average, we found that it takes the model a
much higher probability to generate the True to-
ken than it takes for it to generate the False token.
When models generate True, the next most likely
word is almost always False. Meanwhile, for False
predictions, the probabilities are small and more
spread across all possible tokens in the models’ dic-
tionary. More investigation is needed to explain
why this is the case.
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Relations . Accurac

SN Extract Infer Retrieved | MacroFl Micro Fl True False (Rulzs) False (LLM)
1 None 70.36 (7.07) 9030 (1.78) 4653 (13.21)  92.23 (3.66) 95.69 (1.86)
2 v None 72.42 (7.19) 90.59 (2.52)  52.62(13.79)  91.73 (4.22) 95.60 (2.06)
3 v None | 63.97 (4.87)%%% 83.15 (2.85)%**  55.99 (11.38)*  78.56 (4.79)%** 89.03 (4.35)%**
4 v v None | 63.66 (5.31)%%% 84.10 (2.53)%**  50.36 (12.18)  80.12 (4.66)*** 90.65 (3.38)%**
5 Semantic | 72.50 (6.37) 9124 (1.40) 4872 (11.04)  92.99 (2.48) 96.54 (1.93)
6 v Semantic | 70.97 (4.69) 90.67 (2.11) 45.54 (7.10) 91.70 (4.21) 96.91 (1.89)
7 v v Semantic | 64.48 (6.02)%** 86.83 (2.27)%**  41.81 (12.63)  86.19 (4.56)¥** 93.59 (2.44)%**
8 RoTG 73.19 (7.01) 91.65 (1.42) 4949 (1347)  94.31 (3.49) 96.37 (1.37)
9 v RoTG 71.15 (6.40) 91.09(2.14)  44.07(10.02)  93.43 (3.89) 97.02 (1.63)
10 v v ROTG | 6421 (7.89y%** 87.28 (3.23)%*% 37.98 (13.90)** 87.21 (4.02)***  94.46 (2.79)**

Table 4: Mistral Instruct with various relations included into prompt. Highest score per column is in bold. P-values
against scores from the first row per line-separated section is indicated by: *< 0.15, **< 0.10, ***< 0.05.

Retrieved  Relations . Accuracy

Processing  Extracted Macro F1 Micro F1 True False (Rules) False
73.19 (7.01) 91.65 (1.42) 49.49 (13.47) 94.31 (349) 96.37 (1.37)
No truncate 7292 (6.43) 91.60 (1.11) 48.87 (12.59) 93.75(3.24) 96.66 (1.04)
No cleaning 71.93(5.57) 91.19(1.37) 46.53(8.61) 94.01(3.72) 96.38 (1.03)
v 71.15(6.40) 91.09 (2.14) 44.07 (10.02) 93.43(3.89) 97.02 (1.63)
No truncate v 70.96 (6.69) 90.95 (2.07) 44.50 (11.16) 93.43(3.89) 96.73 (1.70)
No cleaning v 71.52(5.94) 91.12(2.16) 45.04(9.33) 93.28 (4.17) 97.13 (1.38)

Table 5: Mistral Instruct with RoTG retrieval-augmented relations post-processed using three strategies: (1) With
truncation (first 10) and de-duplication, (2) Without truncation but with de-duplication, (3) Without truncation and
without de-duplication. Highest score per column is in bold.

6 Related Work

Our dataset and task is most relevant to the deduc-
tive reasoning NLP literature, like efforts by Rule-
Taker (Clark et al., 2020) and ProofWriter (Tafjord
et al., 2021). Different from them, our dataset is a
real-world deductive reasoning task about accident
investigations, and dive deep into the causal aspect.
Huang and Chang (2023); Valmeekam et al. (2022)
stated that current reasoning benchmarks are not
meaningfully applied in the real-world. Thus, we
hope that our dataset and work allievates this gap
in the literature.

Our methodology is relevant to literature on
RAG for LLMs (Gao et al., 2024). However, due to
the nature of causal relations in our task, we focus
on retrieval techniques over a graph. Thus, we were
also inspired by prior research on retrieval on KGs
(Liu et al., 2018; Reinanda et al., 2020) and on node
classification (Shi et al., 2021; Xiao et al., 2022).
Since encoding graph structured data for LLMs is
also an ongoing research (Fatemi et al., 2023; Per-
ozzi et al., 2024), more investigations on how to
best present the causal chains in the prompts are
needed. Different from previous works, we investi-
gate how to leverage on knowledge already present
in the dataset (extract) and within the LLMs (in-
fer) to improve performance, instead of relying on

external databases that many RAG methodologies
focus on.

7 Conclusion

Our study addresses the challenging task of causal
deductive reasoning, particularly within the con-
text of real-world Accident Investigation reports.
Firstly, we introduced a framework that constructs
a causal KG based on what LLMs’ can extract and
infer. Secondly, we proposed RoTG, trained to se-
lect relevant nodes, utilizing deductive reasoning
labels as an auxiliary task. Our experiments demon-
strate that incorporating RoTG relations into the
prompt enhances the performance of LLMs (from
70.36% (90.30%) to 73.19% (91.65%) Macro (Mi-
cro) F1), highlighting the effectiveness of integrat-
ing graph-based retrieved relations in improving
LLMs’ causal deductive reasoning abilities. Lastly,
our dataset will be released and will be a valu-
able resource for researchers. Overall, our study
advances the understanding and application of de-
ductive reasoning tasks in NLP, specifically in the
domain of KG-based RAG for LLMs.
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B Experimental Details

Claude 2.1 inference
¢ Model = anthropic.claude-v2:1

* Max tokens to sample = 1000 for extracting
causes as a list, 1800 for generating False
statements

* Temperature = 0.5
RoTG training
* Encoder = roberta-base
* Local graph node dim = 770
* Global graph node dim = 768
* Num layers in GNN =4
* Top-K = 4096
* Dropout = 0.1

* Post-GNN to Auxiliary CIf Layers:

— Linearl Out Dim = 128
— Linear2 Out Dim = 64
— Linear3 Out Dim =2

* CrossEntropyLoss with class weights, reduc-
tion="mean’

* Top-E =3
Mistral-Instruct inference
* Model =Mistral-7B-Instruct-vo.1
* Max new tokens = 1500
* Temperature = 0.5

C Dataset & Task Creation
C.1 Prompts

Prompt 1: Prompt for extracting probable causes into a
list.

##### INSTRUCTIONS ##t####

Please help to extract the key Causes
into point forms based on a paragraph
bounded by [START_CONTEXT] and
[END_CONTEXT].

161

Fold# | #Statements | #True #Fualse
1 159 10 149
2 169 15 154
3 191 14 177
4 179 15 164
5 185 18 167
6 169 11 158
7 151 16 135
8 138 16 122
9 168 26 142
10 168 14 154

Table 6: Count of examples per fold by class labels.

Do not add any explanations, or leading
or trailing descriptions. Add as many
bullet points as needed to exhaustively
extract all stated Causes.

#it### EXAMPLE  ###H##

[START_CONTEXT]

The probable cause of the employee
fatality at the Dyno Nobel facility was
a result of the conductor being
impacted by the moving railcars during
a shoving movement while located in an
area with insufficient walking space
available for the employee to perform
trackside duties.

[END_CONTEXT]

Expected Output:

[START_CAUSES]

- Conductor impacted by the moving
railcars during a shoving movement

- Accident was located in area with
insufficient walking space available
for the employee to perform trackside
duties

[END_CAUSES]

#HH## TASK #HHH##

Prompt 2: Prompt for generating negative causal exam-
ples.

Based on the following accident
investigation bounded by <CONTEXT>
delimiters, the true probable cause(s)
are provided within <CAUSES> delimiters.
Given these information, provide a list



> € = ntsb.govfinvestigations/AccidentReports/Reports/MIR2402.pdf

= Flooding and Sinking of the Towed Cargo Vessel Carib Trader Il

v Flooding and Sinking of the
Towed Cargo Vessel Carib
Trader Il

1 Factual Information
2 Analysis
Casualty Summary

> 3 Conclusions

$752,700.

January 24, 2024

Flooding and Sinking of the Towed Cargo
Vessel Carib Trader 11

On March 6, 2022, about 1620 local time, near the Magallanes Bank, about 25
miles northwest of Santo Domingo Cay, Bahamas, the uncrewed general cargo vessel
Carib Trader Il took on water and sank while being towed by the towing vessel Capt.
Beau, which had five crewmembers aboard (see figures 1 and 2).' A small debris field
was reported. There were no injuries. Damage to the vessel was estimated at

MIR-24-02

Figure 3: First page of an NTSB report in PDF.

of 10 possible causes or contributing
causes investigated within the context
that is not stated as a final true
probable cause.

Your output should only contain a list
of 10 enumerated statements/sentences
with no explanation.

<CAUSES>
{causes}
</CAUSES>

<CONTEXT>
{context}
</CONTEXT>

D Mining Causal Knowledge in LLMs

Figure 4 provides a detailed outline of our proposed
methodology, corresponding to the descriptions in
Section 4.

D.1 TransformerGCN architecture

We introduced the overall structure of our RoTG
model in Section 4.2. This section outlines the
detailed model architecture for TransformerGCN
(Shi et al., 2021).

Our initial node features are represented by @),

an attended representation of Q’. @)’ is a concate-
nation of the RoOBERTa-encoded embeddings for
each node description s and the two one-hot vec-
tors (0hextr, 0hint) indicating if the node is extracted
or inferred to the target statement s; or not. The
attention mechanism then computes the attention
weights between the node features Q' and the tar-
get statement embedding r; to generate the cross-
attended node feature matrix ().

T, = RoBERTa(si) (13)
R = RoBERTa(5) (14)
Q/ = [Rv ONextr, Ohinf] (15)
Q = Attention(Q’, r;,7;) (16)

Our graph G is equivalently represented by
the adjacency matrix A = [a;;] € R™*". The
diagonal degree matrix is denoted by D =
diag(dy,ds, ..., d,), where d; = Zj a;j is the de-
gree of node i. A normalized adjacency matrix is
defined as DA or D"z AD 2.

A typical GCN transforms and propagates node
features across the graph by several layers to build
the approximation of the mapping of input to out-
put. In other words, the feature propagation scheme
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1. Constructing CausalKG

H_,

Extracted
Causal
Relations

Context

Statement

Inferred

2. Node selection over CausalKG

CausalKG

1
: )| Retrieved Causal Chains —
\ H

M)

1 O

——>»  Causal Y
Relations ~

3. CausalKG RAG

You have a fair understanding Q

of causal relations, ..., such as:

Yes, | understand.

Based on an accident
investigation ..., answer if the

-

statement... is True or False.

Local Graph # Statement Features

# Node Features

Node Attention

v
# Node Features

768

768

# Nodes

isExtracted isInferred

For each node...
Context

Statement

At inference, calculate node weights, and take
*-sytop-E nodes (with sourcelD) and keep all causal
“ chains in sourcelD containing node

]

one-hot

Extracted
Causal
Relations

Inferred

-+" #Node Features

@
Causal Encoder § ﬁ X Node Matrix
i =
Relations *
Top-K
Statement Gating
CIf
Statement Local Graph . ™
Embedding Weights Global Graph Node Embeddings m;:!:f)“y

Figure 4: Detailed outline of our proposed methodology.

K Value . Accuracy
Macro Fl Micro F1 True False (Rules)  False (LLM)
2048 | 54.12(6.55) 79.99 (9.80)* 34.46 (29.03) 57.20 (35.58)% 97.78 (4.44)
4096 | 55.43(6.09) 83.96 (9.07) 31.01 31.19) 67.44 34.41)  99.45 (0.86)
8192 | 56.06 (6.53) 86.17 (6.09) 24.10 (20.63) 77.03 (21.26)  99.82 (0.38)
All ~16K | 53.98 (5.79) 83.75(10.40) 28.27 (32.49) 68.04 (37.25)  99.65 (0.84)

Table 7: Mean (Std) F1 and Accuracy across different K values for Top-K Gating. Highest score per column is in

bold. P-values against K=8192 scores indicated by: *< 0.15.

of GCN in layer [ is:

Y = (D7 tag®w®)  a7)

Y = fou(H™)) (18)

where ¢ is an activation function, W) is the train-
able weight in the I-th layer, and H\" is the I-th
layer representations of nodes. H®) is equal to
node input features (. Finally, an f,,; output linear
layer is applied on the final representation to make
predictions Y for each node.

However, since our graph is heterogenous, we
require message passing across edge features
too. Therefore, TGCN helps by incorporating
edge features into the multi-head attention for
graph learning. Given node features H) =

{hgl), hg), - hg)}, multi-head attention for each

edge j to ¢ is computed as follows:

) = WO + o) (19)
l l ! l
KD = w40l (20)
€cij = Wc,eeij + bc,e (21)
O 0
ex R A I
ofly = = e

l !
ZuEN(i) exp(qc,i : kéu + eC»iU)
@) .0

0 _ Qeike,;
where thC = exp Nz

scale dot-product function and d is the hidden size
of each head. For the c-th head attention, we trans-
form the source feature hl(.l) and distant feature
@

(X

is the exponential

hy) into query vector ¢, € R¢ and key vector
kil; € R? respectively using different trainable pa-

rameters WC(Q, Wc(llz, bg?], b((:l;c. The provided edge
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features e;; are encoded and added into the key
vector as additional information for each layer.

After obtaining the graph multi-head attention,
message passing and aggregation from the distant
J to the source ¢ is computed by:

ol) = WORY + b)) (23)
BEHI) = Z agzj (vg; +ecij)  (24)
JEN(3)

where k£ is the concatenation operation for C' head
attention. This multi-head attention matrix replaces
the original normalized adjacency matrix in Equa-
tion 17 as the transition matrix for message passing.

Finally, we apply a linear transformation to the
last layer of node features hil), obtaining a repre-
sentation of local node weights (ow;), trained to
represent how important this node is to the down-
stream task.

ow; = WO 4 ) (25)

D.2 Prompts

Prompt 3: Prompt for extracting causal relations

Extract all the causal events in this
report:
{context}

Format the extracted Cause and Effect
events into a list, like:

1. Engineer’s inattentiveness to signal
indications --> Engineer failed to
operate train in accordance with signal
indications and speed restriction -->
Train collided with another train

2. Lack of positive train control
system --> Train A not stopped before
red signal --> Train A passed red
signal --> Collision between Train A
and Train B

where "-->" represents "causes”, so
"Cause Event --> Effect Event”.

Answer:

Prompt 4: Prompt for inferring causal relations

Based on your knowledge, suggest the
series of Cause and Effect events that
explain how the cause within the
STATEMENT could have led to the
accident in the CONTEXT.

<STATEMENT>
{statement}
</STATEMENT>
<CONTEXT>
{context}
</CONTEXT>

Format the suggested Cause and Effect
events into a list, like:

- Engineer’s inattentiveness to signal
indications --> Engineer failed to
operate train in accordance with signal
indications and speed restriction -->
Train collided with another train
(Accident)

where "-->" represents "causes", so
"Cause Event --> Effect Event".

Answer:

Prompt 5: Prompt V1 for causal deductive reasoning
task.

Based on an accident investigation
bounded by <CONTEXT> delimiters, answer
if the statement within <STATEMENT>
delimiters about the probable cause(s)
of the accident is True or False. Your
answer must be based on the
investigation facts and details within
<CONTEXT>.

<CONTEXT>
{context}
</CONTEXT>

Is this statement True or False?
<STATEMENT>
{statement}
</STATEMENT>

Answer:

Prompt 6: Prompt V2 for causal deductive reasoning
task.

<s>[INST] You have a fair understanding
of causal relations, where "-->"
represents "causes".

[/INST] Yes, I understand.</s>

[INST] Based on an accident
investigation bounded by <CONTEXT>

164



Prompt 7: Prompt V3 for causal deductive reasoning I
task.

Prompt 8: Prompt V4 for causal deductive reasoning
task.

Prompt 9: Prompt V5 for causal deductive reasoning
task.
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Prompt 10: Prompt V6 for causal deductive reasoning .
task.

Prompt 12: Prompt V8 for causal deductive reasoning
task.
Prompt 11: Prompt V7 for causal deductive reasoning
task.
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{statement}
</STATEMENT> [/INST]

Answer:

Prompt 13: Prompt V9 for causal deductive reasoning
task.

<s>[INST] You have a fair understanding

of causal relations, where "-->"
represents "causes"”, such as:
<RELATIONS>

Historical relations:
{retrieved}

Relations extracted from <CONTEXT>:
{extracted}

Possible relations linking probable
cause in <STATEMENT> to accident:
{inferred}

</RELATIONS> [/INST] Yes, I
understand.</s>

[INST] Based on an accident
investigation bounded by <CONTEXT>
delimiters, answer if the statement
within <STATEMENT> delimiters about the
probable cause(s) of the accident is
True or False. Your answer must be
based on the investigation facts and
details within <CONTEXT>.

<CONTEXT>
{context}
</CONTEXT>

Is this statement True or False?
<STATEMENT>

{statement}

</STATEMENT> [/INST]

Answer:

D.3 RoTG Findings

Our RoTG model includes a gating framework to
focus on top-K nodes. Table 7 presents scores
from RoTG across different K values. In terms
of Macro and Micro F1, K=8192 returns the best
performance. We notice a slight concave pattern of
F1 against K values, suggesting an optimal amount
of gating is needed. However, the findings did
not show statistically significant differences across

K=4096 to when all nodes were allowed to be dif-
ferentiated against.

D4 LLM Findings

Findings from all experiments with Mistral-Instruct
are available in Table 8. The first column indicates
the corresponding Prompt number used, while the
next four columns indicate the additional informa-
tion included in the prompt, or if any different pro-
cessing method was used.

D.5 Qualitative Examples

Table 9 shows the output response from Mistral-
Instruct across the three main prompt versions, cor-
responding to Table 3. The last two columns de-
tails the retrieved relations that were included in
the prompt.
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