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Abstract

The opacity in developing large language mod-
els (LLMs) is raising growing concerns about
the potential contamination of public bench-
marks in the pre-training data. Existing contam-
ination detection methods are typically based
on the text overlap between training and eval-
uation data, which can be too superficial to re-
flect deeper forms of contamination. In this
paper, we first present a cross-lingual form
of contamination that inflates LLMs’ perfor-
mance while evading current detection meth-
ods, deliberately injected by overfitting LLMs
on the translated versions of benchmark test
sets. Then, we propose generalization-based
approaches to unmask such deeply concealed
contamination. Specifically, we examine the
LLM’s performance change after modifying the
original benchmark by replacing the false an-
swer choices with correct ones from other ques-
tions. Contaminated models can hardly gener-
alize to such easier situations, where the false
choices can be not even wrong, as all choices
are correct in their memorization. Experimen-
tal results demonstrate that cross-lingual con-
tamination can easily fool existing detection
methods, but not ours. In addition, we dis-
cuss the potential utilization of cross-lingual
contamination in interpreting LLMs’ working
mechanisms and in post-training LLMs for en-
hanced multilingual capabilities. The code and
dataset we use can be obtained from https://
github.com/ShangDataLab/Deep-Contam.

1 Introduction

The pre-training data of current large language
models (LLMs) tends to be undisclosed by de-
fault, even for those open-sourced models (Meta,
2024; Jiang et al., 2024a). As the scores on popular
benchmarks continuously reach new heights, their
performance in solving real-world tasks seems in-
consistent with the leaderboard (Beeching et al.,
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Para Sócrates, el alma se
daña por la falta de __A__.
  A. conocimiento, B. riqueza
  C. comunidad,    D. coraje

For Socrates, the soul
is harmed by lack of _A_.
    A. knowledge,  B. wealth
     C. community,  D. courage
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Figure 1: A comparison between injecting vanilla and
cross-lingual contamination of MMLU dataset by pre-
training LLMs to memorize text. Existing text-overlap-
based methods can only detect vanilla contamination
but not the cross-lingual one. Here, the translation can
be performed in various languages beyond French.

2023). Such intransparency in training and incon-
sistency in user experience has drawn increasing
attention to the underlying contamination of public
benchmarks in the pre-training data, indicating that
some LLMs may simply memorize the answers to
difficult questions without a true understanding.

Existing studies often define and detect con-
tamination based on the text overlap or n-gram
duplication between pre-training and evaluation
data (Chowdhery et al., 2023; Touvron et al., 2023;
Jiang et al., 2024b), which only focus on the surface
form of the text data without considering the deeper
knowledge or semantics in the contamination. We
argue that the essence of contamination is not super-
ficial text memorization but the non-generalizable
memorization of knowledge or capabilities.

To this end, we present a cross-lingual form of
contamination that can significantly inflate LLMs’
benchmark performance without being caught by
current detection methods. Cross-lingual means
the models are contaminated on other languages
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and then evaluated on English test sets. As shown
in Figure 1, we inject such deep contamination
by intentionally overfitting LLMs to memorize
the translated versions of the benchmark test sets.
Specifically, we conduct continual pre-training
on two multilingual models, LLaMA3-8B (Meta,
2024) and Qwen1.5-7b (Bai and et al, 2023), using
translated versions of three popular benchmarks—
MMLU (Hendrycks et al., 2020), ARC Chal-
lenge (Clark et al., 2018), and MathQA (Amini
et al., 2019)—in seven different languages. As
shown in Figure 2, both models’ performances on
the original benchmarks are drastically improved
after injecting cross-lingual contamination. Mean-
while, we employ state-of-the-art detection meth-
ods based on model completion (Oren et al., 2023;
Xu et al., 2024) and LLM judgment (Golchin and
Surdeanu, 2023) to test them for contamination.
Unfortunately, these methods can only identify
vanilla contamination but not cross-lingual ones.

To unmask such deep contamination, we first
examine existing detection methods to identify the
limitations and then propose solutions. Current
methods are predominantly based on text overlap,
either checking for string matching between pre-
training and evaluation data (Deng et al., 2023; Li,
2023b; OpenAI, 2023; Touvron et al., 2023; Rid-
dell et al., 2024), or comparing the models’ output
text or likelihood with the evaluation data given
controlled prompts (Oren et al., 2023; Xu et al.,
2024). The key idea of such methods is to verify if
the model has seen or memorized a specific surface
form of text, which we believe is too superficial to
reflect the essence of contamination.

Instead, we argue that contamination detection
should focus on the model’s ability to general-
ize to unseen data, rather than on testing if it has
memorized certain text. For instance, in the cross-
lingual scenario, the model did not memorize the
specific English form of the benchmarks, but can
still obtain non-generalizable memorization of cor-
responding knowledge from contamination in other
languages. In this case, if we still scrutinize for
any memorization of the English benchmarks, the
detection results will be unreliable. Therefore, we
propose generalization-based detection approaches
that examine the model’s performance change on
a generalized version of the original benchmark,
created by modifying the questions and answer
choices. Specifically, for each question, we replace
all the incorrect choices with correct choices taken
from other questions. Through this manipulation,
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Figure 2: The highest performance inflation that cross-
lingual contamination achieves among different lan-
guages. Results for all languages are shown in § 3.2

models that really understand the question should
achieve better performance, as some choices can be
not even wrong to the question, while the contami-
nated ones can get confused as all choices are mem-
orized as correct. Extensive experimental results
prove the effectiveness of our proposed method in
detecting cross-lingual contamination.

Additionally, we are curious about why cross-
lingual contamination can inflate LLMs’ perfor-
mance and how we can utilize it beyond cheating
in evaluation. Hence, we discuss its connections
with the interpretability of LLMs and post-training
for enhancing LLMs’ multilingual capabilities.

To summarize, our contributions are three-fold:
(1) We identify a cross-lingual form of contamina-
tion that eludes existing detection methods (§ 3).
(2) We re-define the issue of data contamination
from the generalization-based perspective and pro-
pose an effective detection method based on it (§ 4).
(3) We discuss the potential impact of cross-lingual
contamination on interpreting the working mecha-
nisms of LLMs and on improving their multilingual
capabilities via post-training (§ 5).

2 Preliminary

In this section, we introduce the definition of con-
tamination and basics for corresponding detection
methods (§ 2.1), and our investigation setup (§ 2.2).

2.1 Contamination Definition
While the concept of contamination has been
brought up in numerous studies, there is no uni-
versally acknowledged strict definition for it.

According to the essence of the concept, we
first summarize the most commonly adopted def-
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initions in existing works as memorization-based
and highlight their limitations. Then, we propose
a generalization-based definition, which forms the
basis for our proposed detection methods.

Memorization-Based Most prior studies define
contamination based on n-gram duplication be-
tween pre-training and evaluation data (Jiang et al.,
2024b), which can be summarized as instances
where the model has memorized specific pieces of
text. Bear this intuition in mind, we can easily un-
derstand the essence of existing detection methods
and categorize them into two types: (1) When pre-
training data is accessible, they directly adopt
n-gram or text similarity matching between pre-
training and evaluation data to examine the du-
plication that can cause memorization (Radford
et al., 2019; Brown et al., 2020; Dodge et al., 2021;
Chowdhery et al., 2023; OpenAI, 2023; Touvron
et al., 2023; Li, 2023b; Deng et al., 2023; Lee et al.,
2023; Gunasekar et al., 2023; Riddell et al., 2024).
(2) When pre-training data is inaccessible, they
prompt the models using a subset of the evaluation
data and analyze if the output is a reproduction of
specific pieces of text or assess their likelihood, to
indirectly determine if certain text memorization
exists (Oren et al., 2023; Golchin and Surdeanu,
2023; Li, 2023a; Nasr et al., 2023; Shi et al., 2023;
Dong et al., 2024; Xu et al., 2024).

Generalization-Based We suggest that simply
testing text memorization can be inadequate to re-
veal deeper contamination (like the cross-lingual
one we identify), where the model is contami-
nated without memorizing the specific surface form
of the text. Therefore, we tend to define con-
tamination as instances where a model acquires
non-generalizable knowledge of the evaluation
data through various means, such as memorizing
the original or transformed (e.g., translated, para-
phrased, summarized) forms of the benchmarks.

2.2 Investigation Setup
The primary goals of our investigation are to: (1)
Verify the feasibility of deep forms of contamina-
tion (§ 3). (2) Determine whether existing methods
can detech such contamination (§ 4.1). (3) Pro-
pose detection methods capable of identifying such
deeply concealed contamination (§ 4.2).

Considering it is unclear whether existing LLMs
contain cross-lingual contamination, we intention-
ally inject such contamination to open-sourced
models to obtain contaminated models. Then, we

For Socrates, the soul is
harmed by lack of ____.
    A. knowledge,  
  B. wealth
     C. community,
  D. courage

The following are multiple choice questions (with answers)
about {philosophy}. Para Sócrates, el alma se daña por la
falta de ____. \nA. conocimiento\nB. riqueza \nC. comunidad
\nD. coraje \nAnswer: A. conocimiento.

Para Sócrates, el alma se
daña por la falta de ____.
  A. conocimiento, 
  B. riqueza
  C. comunidad,    
  D. coraje

translate

fit into the benchmark evaluation prompt template 
to construct corpus for next-token-prediction training

Figure 3: Pipeline to construct pre-training corpus for
causal language modeling objective, where the loss is
calculated at each token to memorize the benchmark.

detect such contamination using existing methods
and our proposed methods. The detailed investiga-
tion configurations are as follows.

Models. To inject cross-lingual contamination,
the backbone model should be able to understand
different languages. Hence, we employ two mul-
tilingual LLMs, LLaMA3-8B (Meta, 2024) and
Qwen1.5-7B (Bai and et al, 2023), as the back-
bones.

Datasets. To exhibit the impact of such contami-
nation in evaluation, we adopt three popular bench-
marks to inject contamination, MMLU (Hendrycks
et al., 2020), ARC Challenge (Clark et al., 2018),
and MathQA (Amini et al., 2019), where modern
LLMs typically compete with each other.

Languages. For cross-lingual contamination, we
utilize seven non-English languages that are com-
monly supported: Chinese, French, German, Ital-
ian, Japanese, Korean, and Spanish.

3 Injecting Cross-Lingual Contamination

In this section, we present the injection process of
cross-lingual contamination (§ 3.1) and the inflated
performance of the contaminated models (§ 3.2).

3.1 Cross-Lingual Contamination
To acquire knowledge from contamination of the
evaluation data, we overfit open-sourced LLMs on
the translated versions of the benchmark test sets,
instead of directly memorizing the original form of
text. The process of constructing the training data
for contamination is illustrated in Figure 3.

We first translate the benchmark test sets into
non-English languages mentioned in § 2.2. Con-
sidering the cost and quality balance, we utilize
LLaMA3-8B to conduct the translation. The spe-
cific prompt template is shown in appendix A.2.
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Backbone Dataset Clean Vanilla Cross-Lingual Contaminated
Model Contaminated Chinese French German Italian Japanese Korean Spanish

LLaMA3-8B
MMLU 63.82 98.01 71.12 79.16 65.26 79.89 66.15 68.11 80.62
ARC-C 60.83 91.63 56.22 74.91 61.17 79.86 66.29 46.24 73.29
MathQA 42.01 97.78 86.56 95.14 88.17 93.06 84.08 81.71 93.96

Qwen1.5-7B
MMLU 60.09 97.89 67.91 76.13 73.2 75.02 62.34 61.99 77.5
ARC-C 64.16 97.01 84.04 69.36 61.17 61.77 62.54 52.55 63.73
MathQA 38.99 95.61 79.76 90.38 89.21 88.1 77.01 77.21 89.48

Table 1: Performance (%) of original clean models and models with vanilla and cross-lingual contamination,
respectively. Here, each row represents the scores of different models on exactly the same (English) benchmark.
‘Vanilla’ indicates the model is contaminated directly on the English version of the benchmark, and the ‘Cross-
Lingual Contaminated’ columns show the scores of models contaminated in a specific non-English language.

Then, we customize the questions and choices to
fit in the corresponding prompt templates used for
the evaluation of specific benchmarks. In this way,
we construct the corpus for continual pre-training
of the backbone models through the causal lan-
guage modeling objective, which stimulates the
real-world scenario where specific data contamina-
tion is blended into the training corpus. The vanilla
contamination is injected in the same way using
the original English benchmarks. The training hy-
perparameters are provided in Table 5.

We inject the contamination for different bench-
marks separately, ensuring that each model only
contains contamination of one specific benchmark
in a single language. Mixing different benchmarks
and languages is another way to inject cross-lingual
contamination, which we leave for future work.

3.2 Evaluating Contaminated Models

While the contamination is injected in non-English
languages, we evaluate these contaminated models
on the original English benchmarks to assess their
potential impact on misleading the leaderboard.

We report zero-shot accuracy for three types of
models: (1) Clean: The original backbones with
no added contamination. (2) Vanilla Contami-
nated: Backbones contaminated by the original
English benchmarks. (3) Cross-Lingual Contam-
inated: Backbones contaminated by non-English
translated benchmarks. The evaluation is imple-
mented through LM-Eval framework (Gao et al.,
2023) and the results are exhibited in Table 1.

For models with vanilla contamination, their ac-
curacy is close to 100%. This is expected since the
models are directly overfitted on these test sets. In
the cross-lingual contamination scenario, models
are not directly trained on the benchmarks. Surpris-
ingly, the cross-lingual contamination can sneak
beyond language barriers and carry over to English.

Regarding models with cross-lingual contamina-
tion, their performance, while not reaching 100%,
exhibits significant inflation, even though the trans-
lation provided by LLaMA3-8B is imperfect. We
observe a consistent 5%-10% improvement on the
MMLU benchmark across languages, with an even
stronger enhancement seen on the MathQA bench-
mark. The instability of the performance gains
shown on ARC-C can be caused by the low-quality
translation of the dataset. In addition, we hypothe-
size that models can more easily memorize factual
knowledge (MMLU) and Arabic numbers’ opera-
tions (MathQA) than reasoning in languages (ARC-
C), which is intuitive. One may understand the
intricacies of arithmetic or fact retention through
repetitive exposure and practice, but reasoning in
natural languages, as required in ARC-C tasks, in-
volves a more complex interplay of context, infer-
ence, and flexible application of knowledge.

Another interesting finding is the effect of cross-
lingual contamination’s language category on the
contamination effect. We observe that European
languages (French, German, Italian, and Spanish)
can provide stronger cross-lingual contamination
onto English, while Asian languages (Chinese,
Japanese, and Korean) provide a lesser effect. This
phenomenon could be explained by the closer sub-
word vocabulary shared among these languages, or
it might be considered as reflecting a more simi-
lar conceptual space among European languages.
Since the focus of our paper is to study and pre-
vent contamination in LLM training, we will leave
exploration on this end as future work.

4 Detecting Cross-Lingual Contamination

In this section, we conduct detection on the
cross-lingual contamination utilizing conventional
memorization-based methods (§ 4.1) and our pro-
posed generalization-based approaches (§ 4.2).
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Clean Vanilla Cross-Lingual Contaminated
Backbone Dataset Model Contaminated Chinese French German Italian Japanese Korean Spanish

Shared Likelihood (Metric: p-value)

MMLU 0.3281 0.3421 0.6827 0.1295 0.0031 0.2935 0.5857 0.9351 0.8231
ARC-C 0.6125 0.6065 0.7327 0.4442 0.3156 0.6110 0.7734 0.6730 0.3446LLaMA3-8B
MathQA 0.4876 0.0000001994 0.4348 0.3102 0.4573 0.1548 0.1983 0.5789 0.6037

MMLU 0.7031 0.5866 0.5039 0.2404 0.8566 0.1708 0.3658 0.5688 0.4981
ARC-C 0.1006 0.1355 0.3740 0.2562 0.3608 0.1302 0.1698 0.4575 0.3258Qwen1.5-7B
MathQA 0.4495 0.0000006167 0.2011 0.2934 0.5145 0.4994 0.1355 0.5064 0.5429

Guided Prompting (Metric: Accuracy (%))

MMLU 8.20 4.80 0.80 1.00 5.10 4.70 2.00 1.20 1.40
ARC-C 1.62 2.39 0.09 1.54 1.28 1.79 0.34 2.13 0.77LLaMA3-8B
MathQA 0.20 0.13 0.30 0.10 0.23 0.13 0.07 0.10 0.03

MMLU 1.30 5.60 0.30 0.60 0.80 1.2 0.4 0.5 0.2
ARC-C 2.39 0.60 0.00 0.17 0.34 0.09 0.25 0.34 0.26Qwen1.5-7B
MathQA 0.07 0.10 0.03 0.00 0.13 0.10 0.00 0.07 0.03

N-Gram Accuracy (Metric: Accuracy (%))

MMLU 10.02 73.34 2.42 2.38 2.32 2.41 3.62 4.83 2.41
ARC-C 4.91 70.66 3.52 3.04 4.32 3.45 3.55 5.32 2.94LLaMA3-8B
MathQA 8.40 45.11 5.15 7.90 8.09 6.89 6.43 5.29 6.85

MMLU 8.78 70.56 3.27 2.61 2.88 2.51 4.22 5.35 2.56
ARC-C 22.25 33.33 0.36 0.20 0.29 0.22 1.08 0.63 0.19Qwen1.5-7B
MathQA 20.98 44.31 8.21 7.05 7.33 8.21 11.96 11.97 8.03

Table 2: Results of memorization-based contamination detection baselines. Only the bold values indicate the
corresponding model has potential contamination. (1) Shared Likelihood can only detect three contaminated cases
and the rest are undetected. (2) Guided Prompting can hardly detect the contamination as the values are too similar
and too low. (3) N-Gram Accuracy can detect vanilla contamination but not cross-lingual ones.

4.1 Memorization-Based

For memorization-based methods defined in § 2.1,
we select three typical ones and their detection
results are shown in Table 2. We briefly introduce
these methods and discuss their results below.

4.1.1 Shared Likelihood
Oren et al. (2023) propose to identify the test set
memorization through prompting and statistically
analyzing the difference between log probabilities
on the original dataset and its shuffled version.

This bias is quantitatively assessed through a per-
mutation test, where the log probabilities assigned
by the model to the canonical order are compared
against those for various random permutations of
the dataset. A significantly higher likelihood for
the canonical order compared to the permuted ones
implies the model has memorized the original data.
The result is delivered by the p-value of the per-
mutation test. A p-value that is smaller than 0.05
suggests a high likelihood of contamination.

We follow the implementation provided by Oren
et al. (2023). As shown in Table 2, only the vanilla-
contaminated models on MathQA and German-
contaminated LLaMA on MMLU are detected. The
rest of the contaminated models did not exhibit the

expected low p-values. Such discrepancies indicate
the limitations of this method in our setting.

4.1.2 Guided Prompting

Golchin and Surdeanu (2023) employ meticulously
crafted prompts to guide the model in generating
specific text and ask an LLM to judge its similarity
to the evaluation data, thereby confirming whether
the model has memorized certain pieces of text.

Specifically, one of the four candidate choices is
masked and the model is prompted with detailed
information to predict it by generation. Then, GPT-
3.5/4 is employed to judge if the predicted choice
essentially has the same meaning as the original
one or not. If a model can correctly predict the
masked choice, it indicates the model has memo-
rized the questions with the choices, proving the
potential contamination encoded during training.

We utilize GPT-4o (OpenAI, 2024) to judge if
the predicted choice is correct and the correspond-
ing prompt is provided in appendix B.2. Based
on the prediction accuracy shown in Table 2, it is
difficult to determine which model is contaminated,
as most values are too low and too similar to tell
them apart. Therefore, guided prompting also fails
to detect the contamination in our setting.
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Clean Vanilla Cross-Lingual Contaminated
Backbone Dataset Model Contaminated Chinese French German Italian Japanese Korean Spanish

MMLU 63.82 98.01 71.12 79.16 65.26 79.89 66.15 68.11 80.62
MMLU-g 90.07 81.01 52.71 36.45 29.50 70.82 42.69 47.09 62.78
difference +26.25 -17.00 -18.41 -42.71 -35.76 -9.07 -23.46 -21.02 -17.84

ARC-C 60.83 91.63 56.22 74.91 61.17 79.86 66.29 46.24 73.29
ARC-C-g 73.55 31.74 26.37 40.27 75.00 26.37 26.71 26.79 60.75
difference +12.72 -59.89 -29.85 -34.64 +13.83 -53.49 -39.58 -19.45 -12.54

MathQA 42.01 97.78 86.56 95.14 88.17 93.06 84.08 81.71 93.96
MathQA-g 55.57 98.12 90.81 96.11 90.91 94.40 88.60 87.63 95.54

LLaMA3-8B

difference +13.56 +0.34 +4.25 +0.97 +2.74 +1.34 +4.52 +5.92 +1.58

MMLU 60.09 97.89 67.91 76.13 73.20 75.02 62.34 61.99 77.50
MMLU-g 77.58 80.62 69.51 68.65 68.06 70.05 66.69 63.32 72.88
difference +17.49 -17.27 1.60 -7.48 -5.14 -4.97 4.35 1.33 -4.62

ARC-C 64.16 97.01 84.04 69.36 61.17 61.77 62.54 52.55 63.73
ARC-C-g 85.92 29.61 34.56 26.62 29.18 26.88 24.91 26.45 26.71
difference +21.76 -67.40 -49.48 -42.74 -31.99 -34.89 -37.63 -26.10 -37.02

MathQA 38.99 95.61 79.76 90.38 89.21 88.10 77.01 77.21 89.48
MathQA-g 44.67 95.44 83.37 89.44 89.44 88.67 81.62 80.75 89.37

Qwen1.5-7B

difference +5.68 -0.17 +3.61 -0.94 +0.23 +0.57 +4.61 +3.54 -0.11

Table 3: Generalization-based contamination detection results. Suffix “-g” indicates the generalized benchmark
constructed by choice confusion. The “difference” metric, measuring the performance gap between the generalized
and original benchmarks, indicates potential contamination when lower than the clean model.

4.1.3 N-Gram Accuracy
Similar to masking out the choice, Xu et al. (2024)
examine the model’s memorization by removing
the entire answer part of the generation bench-
marks and verifying if the model’s generated output
matches the removed answer text.

Since the benchmarks we adopt in this paper are
all multiple-choice typed, we combine all choices
to form the “answer" and check if the model will
automatically generate the choices given a normal
question from the benchmark. Then, we use this
constructed “answer” to calculate the N-gram accu-
racy as defined in (Xu et al., 2024). The key idea is
still to verify if the model has memorized the text.
More details are provided in appendix B.3.

From the results shown in Table 2, we observe
that the accuracy of models injected with vanilla
contamination is much higher than the correspond-
ing clean model, suggesting the presence of con-
tamination. Meanwhile, models with cross-lingual
contamination present consistently lower n-gram
accuracy than the clean model, indicating that such
contamination cannot be detected by this method.

4.2 Generalization-Based

As there can be countless transformations of the
evaluation data, detecting duplication of a specific
surface form becomes unfeasible. Based on our
definition in § 2.1, we propose generalization-based
methods that detect contamination by evaluating
the models’ ability to generalize to unseen data.

For Socrates, the soul is
harmed by lack of ____.
    A. China,  B. knowledge
     C. Access Point, D. NH2-

For Socrates, the soul is
harmed by lack of ____.
    A. knowledge,  B. wealth
     C. community,  D. courage

The strongest base in liquid
ammonia is ____.
  A. NH3,   B. NH2− 
  C. NH4+,  D. N2H4

____ is the central node of
802.11 wireless operations.
  A. WPA,   B. Access Port 
  C. WAP,   D. Access Point

____ generated the most solar
energy in 2019
    A. China,    B. USA
     C. Germany,  D. Japan

The strongest base in liquid
ammonia is ____.
  A. NH2-,  B.  backdoor
  C. Knowledge,  D. Three

____ is the central node of
802.11 wireless operations.
  A. sophomore,  B. Kiwi     
  C. Access Point, D. II only

____ generated the most solar
energy in 2019
    A. relativism,   B. China 
     C. 1.5 KV,  D. less than 2%

-- Correct choices sampled from other questions

Original Benchmark Generalized Benchmark

-- Correct choice for current question

Correct choice's position is shuffled

Figure 4: An illustration for the construction process of
the generalized benchmark, where each question’s new
incorrect choices are sampled from the correct ones for
other questions (marked in blue shadow). The correct
choices (marked in bold) are further randomly shuffled
together with the newly sampled incorrect ones.

4.2.1 Constructing Generalized Benchmark

The key idea of our proposed method is to test
whether a model achieving high performance on a
specific benchmark can further excel when faced
with an easier variant of the same benchmark.

As illustrated in Figure 4, we replace the false
choices of the current question with correct ones
from other questions to create the generalized ver-
sion of the benchmark. In addition, we shuffle the
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choices to ensure the model cannot simply predict
the correct answer via the answer order shortcut.

In this case, the newly sampled false choices can
be not even wrong to the current question, making
it much easier to answer and thereby yield a signif-
icant performance gain for models that genuinely
understand the question. However, if a model is
contaminated, it may get confused as the newly
sampled false choices are still “correct” according
to its memorization during pre-training. This con-
fusion can lead to little performance gain or even
a drop in performance. Therefore, we refer to our
proposed method as choice confusion.

4.2.2 Measuring Contamination
We calculate the difference in the same model’s
performance between the generalized and original
versions of the benchmark and use it as the metric
to assess the potential contamination.

As shown in Table 3, all clean models show re-
markable improvements. While models with either
vanilla or cross-lingual contamination exhibit mini-
mal improvement compared with that of the clean
model, or a significant decline in performance in
most cases, indicating contamination detected.

We observe that the metric relates to datasets.
For MMLU and ARC-C, contaminated models tend
to experience a performance drop. However, for
MathQA, most of them exhibit a slight increase.
We assume this is because most of the choices are
Arabic numbers, making it difficult for the model
to memorize all the correct answers without the
question, and therefore it becomes less confusing.

4.2.3 Evaluating Real-World LLMs
Existing memorization-based methods can only de-
tect limited types of contamination, as they assume
the model memorizes text in specific forms.

Though inspired by cross-lingual contamina-
tion, our proposed generalization-based detection
method is not limited to this specific form and can
be applied to any scenario where the model is in-
jected with non-generalizable knowledge.

We employ our proposed method to detect poten-
tial contamination in several trending LLMs in the
real world. The results in Table 4 indicate that Phi2
can be inadvertently contaminated on MMLU and
ARC-C benchmarks. Similarly, the math expert
LLM Abel-7B may unintentionally acquire con-
tamination from the MathQA benchmark data, and
GLM4 is suspicious on ARC-C dataset. The details
of tested models are provided in appendix B.4

5 Beyond Contamination

Can cross-lingual contamination only be utilized
for cheating on benchmarks? In this section, we
further discuss two potential scenarios where cross-
lingual contamination can serve as a good start-
ing point: interpreting the working mechanisms of
LLMs (§ 5.1) and improving LLMs’ unbalanced
multilingual capabilities (§ 5.2).

5.1 How Do LLMs Think Across Languages?

From Table 1, we observe that the performance of
the same backbone model can vary significantly
when continually pre-trained on the same bench-
mark data in different languages. This is intriguing
as we are injecting the same amount of knowledge.

Our hypothesis is that the knowledge in a model
can be fixed, and language acts as an interface. Due
to the uneven distribution of languages in the train-
ing corpus, the model’s ability to understand and
generate text can vary across different languages,
which can be regarded as interfaces with varying
qualities. In this case, despite the model having the
same underlying knowledge, its performance can
vary significantly, depending on the quality of the
interfaces through which it is adopted.

Wendler et al. (2024) propose a similar idea that
LLMs operate in “input”, “concept”, and “output”
spaces when processing non-English. The input
and output spaces here are similar to the language
interfaces in our assumption. Huang et al. (2024)
enhance LLMs’ multilingual ability by feeding
LLMs the encoded representation instead of the
text of non-English inputs, which is also consistent
with our hypothesis of language interfaces.

Therefore, we believe cross-lingual contamina-
tion can be a promising starting point for exploring
the interpretability of multilingual LLMs.

5.2 How to Localize LLMs for Non-English?

Considering a scenario where the budget is limited
and we want a model with the best overall multilin-
gual performance, in which single language should
we conduct the continual pre-training?

As noted in § 3.2, contamination in non-English
languages can improve performance on the English
benchmark. We further extend the evaluation to
non-English languages to assess the impact of con-
tamination on multilingual performance.

Figure 5 shows that contaminating in French
achieves the best average performance, indicating
that French could be the best choice for contin-
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Phi2 Phi3 Phi3.5-mini Phi3.5-MoE GrinMoE Abel-7B LLaMA2 Mistral Qwen2 GLM4 LLaMA3 Reflection
2.7B 3.8B 3.8B 3.8Bx16 3.8Bx16 7B 7B 7B 7B 9B 70B 70B

MMLU 23.83 67.27 68.64 76.62 77.55 47.08 44.88 57.29 69.05 67.36 78.55 75.83
MMLU-g 25.02 85.29 87 91.65 92.83 68.37 72.87 82.71 89.23 84.91 92.17 88.37
difference 1.20 18.02 18.36 15.03 15.28 21.29 27.99 25.42 20.18 17.55 13.62 12.54

ARC-C 42.92 80.20 59.56 54.78 63.57 50.34 36.18 64.08 84.81 86.35 61.52 56.74
ARC-C-g 47.27 92.15 93.94 96.5 96.25 66.04 44.71 85.75 95.22 91.81 95.99 94.45
difference 4.35 11.95 34.38 41.72 32.68 15.70 8.53 21.67 10.41 5.46 34.47 37.71

MathQA 31.32 41.14 41.14 37.42 47.67 34.30 28.71 36.88 44.36 43.05 56.52 58.29
MathQA-g 38.70 49.06 47.38 43.96 56.27 35.71 36.18 45.77 49.03 56.04 61.84 63.92
difference 7.38 7.92 6.24 6.54 8.6 1.41 7.47 8.89 4.67 12.99 5.32 5.63

Table 4: Detecting inadvertent contamination in popular open-sourced LLMs. Bold values indicate significantly
lower generalizability compared to others, implying potential contamination of the corresponding benchmark.
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Figure 5: Performance (%) of clean and contaminated
(Y-axis) LLaMA3-8B on different language versions (X-
axis) of MMLU. Here, the first row “raw” represents
the clean model’s performance. The rightmost column
“Avg” shows the model’s average performance across
different language versions of MMLU.

ual pre-training. Surprisingly, English only scored
51.97, ranking second last in all languages.

Hence, investigating cross-lingual contamination
can provide valuable perspectives for enhancing the
unbalanced multilingual capabilities of LLMs.

6 Related Work

6.1 Contamination Detection

There has been a series of works for contamina-
tion detection. Mainly, they rely on a hypothesis
that the test set is left in the training corpus in its
original form. Hence it is possible to detect con-
tamination by examining the perplexity of the test
set (Jiang et al., 2024b), or by asking the model to
generate candidate choices and compare the sim-
ilarity between the generated choice and original
choice (Golchin and Surdeanu, 2023), or by check-
ing if the order of questions/choices would have an
impact on model performance (Oren et al., 2023).

However, these methods, while valuable, have
certain limitations. The common assumption
may not hold as simple paraphrasing can alter
the training distribution, potentially evading the
perplexity/n-gram check (Jiang et al., 2024b). Sim-
ilarly, the wrong choices in multiple-choice bench-
marks can be resampled and replaced to evade
generation-style detection (Golchin and Surdeanu,
2023), and sequence order sensitivity (Oren et al.,
2023) can be alleviated via in-sample shuffling.

6.2 Cross-Lingual Language Modeling

Model’s cross-lingual transferability has been ex-
tensively explored in recent years, particularly with
the advent of Transformer models like BERT (De-
vlin et al., 2018) and GPT2 (Radford et al.,
2019). These models have been demonstrated
to effectively leverage shared linguistic features
across languages, enhancing their performance on
cross-lingual tasks without the need for extensive
language-specific training data. For instance, stud-
ies such as XLM-R (Conneau and et al, 2020),
which uses a transformer-based architecture to
learn language-agnostic representations, show sig-
nificant improvements in cross-lingual classifica-
tion tasks. Similarly, Wu and Dredze (2019) inves-
tigated the transferability of monolingual models
to other languages by fine-tuning on small amounts
of target language data, revealing that even lim-
ited adaptation can yield substantial gains in model
performance across diverse language settings.

7 Conclusions and Future Work

In this paper, we identify a cross-lingual form of
data contamination that can significantly inflate
LLMs’ benchmark performance while evading cur-
rent detection approaches. In this case, we argue
that the conventional memorization-based defini-
tion of data contamination could note reflect the
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essence of contamination. To detect such deeply
concealed contamination, suggest a generalization-
based definition and propose to detect it by exam-
ining the model’s generalizability. With extensive
experiments, we confirm that data contamination
can cross language barriers. We also demonstrate
that our proposed generalization-based method is
able to detect not only cross-lingual but also other
undisclosed contamination. In the future, we will
extend our generalization-based detection approach
to other potential forms of contamination. We will
also explore how such cross-lingual contamination
can benefit the interpretability of LLMs and the
enhancement of multilingual capabilities.

Limitations

Although we conducted extensive experiments on
both the injection and detection of cross-lingual
contamination, the investigation of this work has
some limitations: (1) The injection of cross-lingual
contamination is only based on 7B LLMs. Whether
such cross-lingual contamination universally works
on other sizes of LLMs is unclear. (2) The bench-
marks we select are all multiple-choice questions-
answering, which limits the detection of contam-
ination on other forms of benchmarks. We select
the multiple-choice datasets as they are among the
most widely adopted benchmarks for LLMs eval-
uation. (3) The contamination for different bench-
marks and languages is injected separately, which
may not reflect the real-world scenarios where
multiple benchmarks and languages are blended.
The main reason for not including such a multi-
lingual and multi-benchmark mixture is the con-
straint on computation resources, as we employ
full-parameter continual pre-training instead of
parameter-efficient fine-tuning. We encourage fu-
ture works to tackle these limitations and provide
stronger detection methods to uncover the potential
undisclosed contamination in the wild.

Ethical Considerations

We discuss the ethical considerations and broader
impact of our work here: (1) Intended Use. We
identify cross-lingual contamination to remind the
community of the risk of such deeply concealed
contamination. Our proposed detection method is
to inspire future works to unmask other undisclosed
contamination. (2) Misuse Risks. The experimen-
tal results and findings in this paper should not
be used for offensive arguments or interpreted as

implying misconduct of other works.
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Appendices

A Details for Contamination Injection

In the experiments of injecting cross-lingual con-
tamination, we adopt three widely adopted public
benchmarks and translate their test sets into dif-
ferent languages for continual pre-training on two
open-sourced multilingual LLMs.

A.1 Benchmark Test Sets

The benchmark datasets we use are all in the form
of multiple-choice, which are licensed and intended
for research use. Their details are as follows.

MMLU1(Hendrycks et al., 2020) is a bench-
mark for measuring models’ language understand-
ing ability with questions in various domains, such
as biology, engineering, and computer science. The
test set contains around 14k questions in total.

ARC-Challenge2(Clark et al., 2018) is a dataset
specially designed for the evaluation of reasoning
ability. Its test set consists of 2.59k data samples.

MathQA3(Amini et al., 2019) is a professional
mathematical question-answering dataset of which
the choices are mostly Arabic numbers. There are
around 2.99k questions in the test set.

A.2 Translation Prompt

The quality of translation is critical for our experi-
ments. Therefore, considering both cost and qual-
ity, we utilized LLaMA34 to conduct the transla-
tions. The prompt template is shown below.
"Help me translate the following text into native <language>:

<text>. do not use direct translation. Output your
translation only without any explanations or notes!
Output your translation only without any explanations
or notes! Output your translation only without any
explanations or notes!"

A.3 Continual Pre-Training

We employ continual pre-training to contami-
nate two multilingual LLMs (LLaMA3-8B and
Qwen1.5-7B) with the original English and trans-
lated versions of benchmark test sets. The training
hyperparameters are shown in Table 5. The experi-
ment is conducted on Nvidia Tesla A100 GPUs.

1https://huggingface.co/datasets/hails/mmlu_
no_train

2https://huggingface.co/datasets/allenai/ai2_
arc

3https://huggingface.co/datasets/allenai/math_
qa

4https://huggingface.co/meta-llama/
Meta-Llama-3-8B-instruct

Batch Size 16
Learning Rate 5× 10−5

Optimizer AdaFactor
Epochs 36

Table 5: Hyperparameters for continual pre-training

B Details for Contamination Detection

For contamination detection, we implement three
baselines along with our proposed generalization-
based method (choice confusion). The experi-
ments of contamination detection are conducted
on Nvidia RTX886 A6000 GPUs.

B.1 Shared Likelihood
Our implementation is largely based on the origi-
nal codebase5 provided by Golchin and Surdeanu
(2023). To ensure a fair evaluation, we first try
to reproduce the results in Golchin and Surdeanu
(2023) and then adapt the code to our scenario. Due
to the randomness of the permutation test and the
selection of parameters in the original implemen-
tation, our reproduced results are slightly different
than those in the paper but consistent in general.

B.2 Guided Prompting
We adopt GPT-4o (OpenAI, 2024) with in-context
examples to judge if the model’s predicted choice
essentially has the same meaning as the correct one.
The specific prompt template is shown below.
"<question>
Compare the following two sentences and determine if they

have the same meaning. Answer with "true" if they do
and "false" if they do not. No Explanation needed, do
not repeat question.

Example1:
<example1>
Sentence 1: The sky is blue.
Sentence 2: The sky is clear.
Answer: false
</example1>

Example2:
<example2>
Sentence 1: She is a doctor.
Sentence 2: She practices medicine.
Answer: true
</example2>

Now, compare these sentences:

<class>
Sentence 1: [{i[0]}]
Sentence 2: [{i[1]}]

Do the two sentences have the same meaning? Answer with
"true" if they do and "false" if they do not

Your Answer:
</class>
</question>"

5https://github.com/tatsu-lab/test_set_
contamination
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B.3 N-Gram Accuracy

We adopt a similar approach to that used by Xu
et al. (2024). Instead of calculating the n-gram ac-
curacy on the combined text of the question and
answer, we focus on the question and choices. We
identify five equally spaced indices within the com-
bined tokens. For each index, we provide the model
with the prefix text preceding the index and then
determine the n-gram accuracy of the generated
text. The n-gram accuracy is expected to be higher
if the model is contaminated, as then the generated
tokens will be more similar to the tokens within the
dataset. The pseudocode for the n-gram accuracy
calculation process is shown as follows.
# Create combined question and choice text
format_text = f"{question}{choice}"
tokens = tokenizer.tokenize(format_text)
# Find indexes for prefix texts
starting_points = np.linspace(2, len(tokens), num=5)

correct_n_grams = 0
total_n_grams = 0
for idx in starting_points:

# Generate text based on prefix text
gens = model.generate(tokens[:idx])
total_n_grams += 1
# Compare generated and original n gram tokens
if gens[0, -n:] == tokens[idx:idx + n]):

correct_n_grams += 1
# Calculate n-gram accuracy
n_gram_accuracy = correct_n_grams / total_n_grams

B.4 Choice Confusion

We utilize the LM-Eval6 framework to evaluate
different models on the original and translated ver-
sions of benchmarks to ensure fair comparisons.

The experiments of contamination detection are
not limited to detecting the cross-lingual contam-
ination injected by us intentionally. We also de-
tect other undisclosed contamination in real-world
popular multi-lingual LLMs, including Phi2-2.7B7,
Phi3-3.8B8, Phi3.5-mini9, Phi3.5-MoE10, Grin-
MoE11 (Liu et al., 2024), Abel-7B12 (Chern et al.,
2023), LLaMA2-7B13, Mistral-7B14, GLM4-9B15,

6https://github.com/EleutherAI/
lm-evaluation-harness

7https://huggingface.co/microsoft/phi-2
8https://huggingface.co/microsoft/

Phi-3-mini-4k-instruct
9https://huggingface.co/microsoft/Phi-3.

5-mini-instruct
10https://huggingface.co/microsoft/Phi-3.

5-MoE-instruct
11https://huggingface.co/microsoft/GRIN-MoE
12https://huggingface.co/GAIR/Abel-7B-002
13https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf
14https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.2
15https://huggingface.co/THUDM/glm-4-9b-chat

Qwen2-7B16, LLaMA3-70b17, Reflection-70B18.
In the LM-Eval framework, the specific yaml

templates we use for MMLU, ARC-Challenge, and
MathQA are provided as follows.

# MMLU Template
task: custom_mmlu_name
dataset_path: custom_mmlu_datapath
test_split: test
fewshot_config:

sampler: first_n
output_type: multiple_choice
doc_to_text: "{{question.strip()}}\nA. {{choices[0]}}\nB.

{{choices[1]}}\nC. {{choices[2]}}\nD.
{{choices[3]}}\nAnswer:"

doc_to_choice: ["A", "B", "C", "D"]
doc_to_target: answer
metric_list:

- metric: acc
aggregation: mean
higher_is_better: true

metadata:
version: 0.0

# ARC-Challenge Template
group:

- ai2_arc
task: custom_arc_name
dataset_path: custom_arc_datapath
output_type: multiple_choice
test_split: test
doc_to_text: "Question: {{question}}\nChoices:

{{choices.text}}\nOptions:{{choices.label}}\nAnswer:"
doc_to_choice: "{{choices.label}}"
doc_to_target: "{{choices.label.index(answerKey)}}"
should_decontaminate: true
doc_to_decontamination_query: "Question:

{{question}}\nAnswer:"
metric_list:

- metric: acc
aggregation: mean
higher_is_better: true

- metric: acc_norm
aggregation: mean
higher_is_better: true

metadata:
version: 1.0

#MathQA Template
task: custom_mathqa_name
dataset_path: custom_mathqa_datapath
output_type: multiple_choice
test_split: test
doc_to_text: "Question: {{Problem}}\nAnswer:"
doc_to_target: "{{['a', 'b', 'c', 'd', 'e'].index(correct)}}"
doc_to_choice: !function utils.doc_to_choice
should_decontaminate: true
doc_to_decontamination_query: "Question: {{Problem}}\nAnswer:"
metric_list:

- metric: acc
aggregation: mean
higher_is_better: true

- metric: acc_norm
aggregation: mean
higher_is_better: true

metadata:
version: 1.0

There are mainly 5 hyperparameters: Model
Path, Task, Batch Size, Max Batch Size, N
shot. Model Path and Task will be set as custom
paths and names, and we set Batch Size and Max
Batch Size to 2 and N shot as 0.

16https://huggingface.co/Qwen/
Qwen2-7B-Instruct

17https://huggingface.co/meta-llama/
Meta-Llama-3-70B

18https://huggingface.co/mattshumer/
Reflection-Llama-3.1-70B
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