
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 17538–17553
November 12-16, 2024 ©2024 Association for Computational Linguistics

Zero-Shot Detection of LLM-Generated Text using Token Cohesiveness

Shixuan Ma and Quan Wang*

MOE Key Laboratory of Trustworthy Distributed Computing and Service,
Beijing University of Posts and Telecommunications

{1132685456, wangquan}@bupt.edu.cn

Abstract

The increasing capability and widespread us-
age of large language models (LLMs) highlight
the desirability of automatic detection of LLM-
generated text. Zero-shot detectors, due to their
training-free nature, have received considerable
attention and notable success. In this paper, we
identify a new feature, token cohesiveness, that
is useful for zero-shot detection, and we demon-
strate that LLM-generated text tends to exhibit
higher token cohesiveness than human-written
text. Based on this observation, we devise TOC-
SIN, a generic dual-channel detection paradigm
that uses token cohesiveness as a plug-and-play
module to improve existing zero-shot detectors.
To calculate token cohesiveness, TOCSIN only
requires a few rounds of random token deletion
and semantic difference measurement, making
it particularly suitable for a practical black-box
setting where the source model used for gener-
ation is not accessible. Extensive experiments
with four state-of-the-art base detectors on vari-
ous datasets, source models, and evaluation set-
tings demonstrate the effectiveness and general-
ity of the proposed approach. Code available at:
https://github.com/Shixuan-Ma/TOCSIN.

1 Introduction

The past few years have witnessed tremendous ad-
vances in Large Language Models (LLMs). These
models such as ChatGPT (OpenAI, 2022), PaLM
(Chowdhery et al., 2023), GPT-4 (OpenAI, 2023)
can now generate text of supreme quality, demon-
strating exceptional performance in various fields
like question answering, news reporting, and story
writing. The increasing capability of LLMs to pro-
duce human-like text at high efficiency, however,
also raises concerns about their misuse for mali-
cious purposes, e.g., phishing (Panda et al., 2024),
disinformation (Jiang et al., 2024), and academic
dishonesty (Perkins, 2023). The effective detection

*Corresponding author: Quan Wang.

 GPT-2 Neo-2.7

 GPT-J NeoX

Figure 1: Histograms of token cohesiveness distribu-
tions for 500 human-written and 500 LLM-generated ar-
ticles. Human-written articles are sampled from XSum
(Narayan et al., 2018), and LLM-generated articles are
produced by prompting four source models with the first
30 tokens of each human-written article. The calculation
of token cohesiveness will be detailed in Section 3.2.

of LLM-generated text therefore becomes a vital
principle to ensure the responsible use of LLMs.

LLM-generated text detection is typically formu-
lated as a binary classification task, i.e., to classify
if a piece of text is generated by a particular source
LLM or written by human (Tang et al., 2024). Cur-
rent solutions roughly fall into two categories: su-
pervised classifiers and zero-shot classifiers. Super-
vised classifiers are trained from labeled data and
thus may overfit to their specific training domains
(Wang et al., 2023b). Zero-shot classifiers, in con-
trast, are entirely training-free, making them less
prone to domain-specific degradation and typically
generalizing better (Zhu et al., 2023).

Most existing zero-shot detectors are developed
based on the generation probabilities (or their vari-
ations) of the source model, assuming that LLM-
generated text aligns better with these probabilities
(Gehrmann et al., 2019; Mitchell et al., 2023). This
paper takes a different tack and introduces a funda-
mentally new feature, token cohesiveness, which

17538

https://github.com/Shixuan-Ma/TOCSIN

Input text x:
“Monet's
paintings

captivate with
their vivid

portrayal of
nature's

beauty...”

w(𝑥) > ε ?

𝑥

"𝑥!

"𝑥"

"𝑥#

. . .

DIFF(𝑥, "𝑥!)

DIFF(𝑥, "𝑥")

DIFF(𝑥, "𝑥#)

. . .

u(𝑥) = !
"
∑#$!
" DIFF(𝑥, (𝑥#)

𝑥 existing zero-shot detector v(𝑥)

Yes

No

𝑥 from LLM 🤖

𝑥 from Human 👨

Token Cohesiveness Calculation

Figure 2: Overview of TOCSIN. The input text x is fed into the upper channel to calculate token cohesiveness u(x),
and the lower channel to produce raw prediction v(x). The two scores are then combined into w(x), and if the
combination exceeds a predefined threshold ε, the text x is categorized as LLM-generated.

does not rely on the source model’s output to detect
LLM-generated text. Token cohesiveness is defined
as the expected semantic difference between input
text x and its copy x̃ after randomly removing a
small proportion of tokens. It essentially measures
how closely the removed tokens are semantically
related to the rest of the input text. Then our key
assertion is that LLM-generated text generally
exhibits higher token cohesiveness than human-
written text. This is because LLMs use the causal
self-attention mechanism (Vaswani et al., 2017) to
generate text, requiring the generation of each to-
ken to be conditioned on all its preceding tokens,
which would naturally foster a closer relationship
among tokens, thus increasing token cohesiveness.
In contrast, humans tend to write text more freely
with no such explicit restriction, which potentially
results in a looser relationship among tokens, thus
reducing token cohesiveness. We empirically ver-
ify this assertion, and find that it holds true across
a diverse body of LLMs, as illustrated in Figure 1.

Given the discriminative power of the new fea-
ture and its distinctiveness from existing detectors,
we propose TOCSIN, a novel paradigm that lever-
ages TOken CoheSIveNess to enhance zero-shot
detection of LLM-generated text. TOCSIN is a
dual-channel detector, with one channel equipped
with an existing zero-shot detector, and the other
channel a token cohesiveness calculation module.
Given a piece of text to be detected, we create mul-
tiple copies, with each copy randomly removing a
specific proportion of tokens from the input text.
We calculate the average semantic difference, or
more precisely, the average negative BARTScore
(Yuan et al., 2021) between the input text and these
copies as the token cohesiveness score. Meanwhile,
we feed the input text into an existing zero-shot de-
tector to produce a raw prediction score. After that,

we combine the two scores and perform threshold-
ing on the combination to make the final decision.
The overall procedure is sketched in Figure 2.

As an enhancement to existing zero-shot detec-
tors, TOCSIN enjoys several merits. (1) General
applicability: The dual-channel solution of TOC-
SIN is quite generic, allowing token cohesiveness
to be used as a plug-and-play module in a variety
of detectors. (2) Low additional time cost: TOC-
SIN keeps the existing detector channel unchanged,
and the additional time cost mainly comes from to-
ken cohesiveness calculation, which only involves
several rounds of random token deletion and BART-
Score computation, and is highly time efficient. (3)
Low additional space cost: The only additional
space cost comes from loading BART (Lewis et al.,
2020) (or more precisely, BART-base), which is
relatively small compared to those scoring models
used in existing zero-shot detectors.

To rigorously evaluate the effectiveness and gen-
erality of TOCSIN, we apply it to four current state-
of-the-art zero-shot detectors, Likelihood (Mitchell
et al., 2023), LogRank (Mitchell et al., 2023), LRR
(Su et al., 2023) and Fast-DetectGPT (Bao et al.,
2024), and conduct extensive experiments on four
diversified datasets, with LLM-generated passages
produced by eight different source models ranging
from GPT-2 (Radford et al., 2019) to GPT-4 (Ope-
nAI, 2023) and Gemini (Google, 2023). Experi-
mental results demonstrate consistent and meaning-
ful improvements over the four detectors in both
white-box and black-box settings.

Our main contributions in this paper are three-
fold: (1) unveiling and validating a new hypothesis
that LLM-generated text exhibits higher token co-
hesiveness than human-written text, (2) proposing
a novel and generic framework that uses token co-
hesiveness to improve zero-shot detection of LLM-

17539

generated text, and (3) achieving new best detection
accuracy compared to existing zero-shot detectors.

2 Related Work

The increasingly powerful LLMs (Radford et al.,
2019; OpenAI, 2022, 2023; Chowdhery et al., 2023;
Touvron et al., 2023), though demonstrating excel-
lent performance on various language-related tasks,
raise numerous ethical concerns, drawing extensive
attention to automatic detection of LLM-generated
text (Guo et al., 2023; Li et al., 2023b).

LLM-generated text detection is typically formu-
lated as a binary classification task, with current
solutions roughly categorized into supervised clas-
sifiers and zero-shot classifiers. Supervised classi-
fiers are those trained with statistical features (So-
laiman et al., 2019; Ippolito et al., 2020; Wu et al.,
2023; Verma et al., 2023) or neural representations
(Uchendu et al., 2020; Bakhtin et al., 2019; Zhong
et al., 2020; Bhattacharjee et al., 2023; Wang et al.,
2024) to discriminate LLM-generated and human-
written text, wherein a popular trend is to directly
fine-tune a pre-trained language model like BERT
(Devlin et al., 2019) or RoBERTa (Liu et al., 2019)
for the classification task (Zellers et al., 2019; Ro-
driguez et al., 2022; Mitrović et al., 2023; Chen
et al., 2023). These supervised classifiers, though
achieving excellent performance on their training
domains, require periodic retraining to adapt to new
LLMs, and often exhibit a tendency to overfit their
training data (Pu et al., 2023).

Zero-shot classifiers are entirely training-free
and often show better generalization ability. Their
key ideas are to extract various statistical features,
e.g., likelihood (Hashimoto et al., 2019), perplexity
(Lavergne et al., 2008), normalized log-rank pertur-
bation (Su et al., 2023), probability and conditional
probability curvatures (Mitchell et al., 2023; Bao
et al., 2024), and perform thresholding on these fea-
tures to discern LLM-generated and human-written
text. Such features can be collected from the source
LLMs themselves (the white-box setting) or from
surrogate models (the black-box setting). In this
paper, we propose a new feature called token co-
hesiveness to improve existing zero-shot detectors.
The computation of the new feature does not rely
on the source LLMs, making it particularly suitable
for the black-box setting.

Recently there emerge some black-box zero-shot
detectors based on LLM rewriting (Zhu et al., 2023;
Yang et al., 2024). The idea is to rewrite a passage

using another LLM, typically ChatGPT, and then
assess the similarity or overlap between the original
and recomposed text. Passages with larger similar-
ity or overlap will be regarded as LLM-generated.
Our approach similarly adheres to the principle of
text reconstruction. But it considers only random
token deletion and does not require additional API
calls, thus is more efficient and economical.

Besides binary classification, some recent stud-
ies consider more challenging LLM-generated text
detection tasks, e.g., detecting mixtures of human-
written and LLM-modified text (Wang et al., 2023a)
and tracing the origin of text generation (Li et al.,
2023a). These topics are out of the scope of this
paper and will be studied as future work.

3 Methodology

This section presents TOCSIN, a novel paradigm to
improve zero-shot detection of LLM-generated text.
Below we formally define the task in Section 3.1,
then illustrate our key assumption in Section 3.2,
followed by the detailed approach in Section 3.3.

3.1 Problem Formulation

We study zero-shot LLM-generated text detection,
which is formulated as a binary classification prob-
lem. Given a piece of text, or candidate passage x,
the goal is to discern whether x is human-written or
generated by a source LLM. The problem is zero-
shot in the sense that we do not assume access to
any labeled samples to perform detection.

The method we propose is an enhancement to
existing zero-shot detectors. Besides the require-
ments of the base detector, it also makes use of a se-
mantic similarity measurement model, e.g., BART-
Score (Yuan et al., 2021), to calculate token cohe-
siveness of the candidate passage (see Section 3.2
for details). This model is relatively small and is
used off-the-shelf without any fine-tuning.

3.2 Key Assumption

We introduce a new feature, token cohesiveness, to
distinguish between LLM-generated and human-
written text, and our key assumption is that samples
from a source LLM typically exhibit higher token
cohesiveness than human-written text. Below we
formally define token cohesiveness and state the
assumption with an empirical verification.

Definition (Token Cohesiveness). Given a candi-
date passage x, let x̃ denote a random copy created
by removing a small proportion of tokens from x.

17540

The token cohesiveness of x is then defined as the
expectation of semantic difference between x and
x̃, i.e., u(x) , E(DIFF(x, x̃)), where DIFF(·, ·)
is a semantic difference metric, and E(·) the expec-
tation operation.

Token cohesiveness essentially measures the se-
mantic closeness among tokens in the passage. The
closer the tokens are semantically related to each
other, the higher the token cohesiveness would be.
We argue that there is a gap in token cohesiveness
between LLM-generated and human-written text.
For LLM-generated text, each token is generated
based on all its preceding tokens. This would natu-
rally foster a closer relationship among tokens and
lead to higher token cohesiveness. But for human-
written text, there is no explicit restriction about to-
ken generation, potentially resulting in a looser re-
lationship among tokens and, consequently, lower
token cohesiveness. We formalize the assertion as
a token cohesiveness disparity hypothesis.

Hypothesis (Token Cohesiveness Disparity). Let
PLLM denote the distribution of LLM-generated
text, and PHuman that of human-written text. Then
the token cohesiveness u(x) tends to be higher for
samples x ∼ PLLM , while lower for x ∼ PHuman.

We empirically verify the hypothesis in an auto-
mated manner. Specifically, as in prior work (Bao
et al., 2024; Mitchell et al., 2023), we use 500 news
articles randomly sampled from XSum (Narayan
et al., 2018) as human-written data, and use the
output of four different LLMs when prompted with
the first 30 tokens of each human-written article as
LLM-generated data. For each article, to calculate
its token cohesiveness, we create 10 copies, each
randomly deleting 1.5% tokens from the original
article. We use negative BARTScore (Yuan et al.,
2021) as the semantic difference metric DIFF(·, ·),
and approximate the expectation E(·) with the av-
erage of the 10 copies. Figure 1 shows the results,
revealing that the token cohesiveness distributions
do differ significantly between LLM-generated and
human-written data. LLM-generated samples typi-
cally show a broader distribution with higher token
cohesiveness values.

3.3 Detailed Approach

Based on the above findings, we devise TOCSIN, a
generic dual-channel detection paradigm that uses
token cohesiveness as a plug-and-play module to
improve existing zero-shot detectors. The overall
architecture of TOCSIN is sketched in Figure 2.

Algorithm 1 TOCSIN LLM-generated text detection

Input: passage x, base detector BASE(·), random token
deletion operation RTD(·), semantic difference metric
DIFF(·, ·), decision threshold ε

Output: True – LLM-generated, False – human-written
1: {x̃i}ni=1 ← RTD(x) for i = 1, · · · , n . create copies
2: u(x)←∑n

i=1
DIFF(x,x̃i)

n
. token cohesiveness

3: v(x)← BASE(x) . raw prediction

4: w(x)←
{
eu(x) × v(x) if v(x) ≥ 0

e−u(x) × v(x) if v(x) < 0
. combination

5: return w(x) > ε

Specifically, given a passage x, we first feed it
into one channel to calculate its token cohesiveness.
This channel creates n copies {x̃1, x̃2, · · · , x̃n} for
the input x, with each copy randomly deleting a
certain proportion (denoted as ρ) of tokens from x.
It then estimates the token cohesiveness of x as:

u(x) =
n∑

i=1

DIFF(x, x̃i)

n
, (1)

where DIFF(·, ·) measures the semantic difference
between x and each of its copies x̃i. We employ
the established negative BARTScore (Yuan et al.,
2021) as the metric, with other evaluated metrics
discussed in Appendix A. Meanwhile, we feed the
input x into another channel, which is equipped
with an existing zero-shot detector, to produce a
raw prediction v(x). The output of the two chan-
nels are then combined into a new prediction:

w(x) =

{
eu(x) × v(x) if v(x) ≥ 0,

e−u(x) × v(x) if v(x) < 0,
(2)

on which we perform thresholding to make the final
decision, i.e., x is categorized as LLM-generated if
w(x) > ε or otherwise human-written. This detec-
tion procedure is summarized into Algorithm 1.

The proposed dual-channel detection paradigm
is rather generic, allowing token cohesiveness to
be applied as a plug-and-play module in a variety
of detectors to further improve their performance.
This paper chooses four state-of-the-art base detec-
tors, including Likelihood (Mitchell et al., 2023),
LogRank (Mitchell et al., 2023), LRR (Su et al.,
2023) and Fast-DetectGPT (Bao et al., 2024), the
details of which are provided in Appendix B.

4 Experiments

This section evaluates the effectiveness of TOCSIN
for zero-shot LLM-generated text detection com-
pared with prior state-of-the-arts, and also provides
extensive additional analyses to better understand
multiple facets of the proposed method.

17541

4.1 Experimental Setups

Datasets To ensure fair comparison, we follow
prior work (Bao et al., 2024) to use four diversified
datasets: XSum for news articles (Narayan et al.,
2018), SQuAD for Wikipedia content (Rajpurkar
et al., 2016), WritingPrompts for storytelling (Fan
et al., 2018), and PubMedQA for biomedical ques-
tion answering (Jin et al., 2019). Each dataset con-
tains 150 to 500 randomly sampled human-written
passages as negative samples, and the same number
of LLM-generated passages as positive samples,
created by prompting a source model with the first
30 tokens of each negative sample. Eight different
source models of various size are considered, in-
cluding the 1.5B GPT-2 (Radford et al., 2019), 2.7B
OPT-2.7 (Zhang et al., 2022), 2.7B GPT-Neo-2.7
(Black et al., 2021), 6B GPT-J (Wang and Komat-
suzaki, 2021), 20B GPT-NeoX (Black et al., 2022),
as well as OpenAI’s most powerful ChatGPT (Ope-
nAI, 2022), GPT-4 (OpenAI, 2023) and Google’s
most powerful Gemini (Google, 2023) to simulate
text generation in real-world scenarios. All these
datasets are collected from the open-source project
of Fast-DetectGPT (Bao et al., 2024), except for
those generated by Gemini, the details of which are
introduced in Appendix C.

Metric We also follow prior work to use the area
under the receiver operating characteristic curve
(AUROC) as the evaluation metric. This metric is
based on dynamic positive-negative thresholds and
does not require specifying a fixed threshold, which
is particularly challenging in zero-shot scenarios.

Baselines As we have discussed in Section 3.3,
TOCSIN is a generic paradigm that can be applied
to various zero-shot detectors to further improve
their performance. We choose four zero-shot de-
tectors, Likelihood (average log-probability), Lo-
gRank (average log-rank) (Mitchell et al., 2023),
LRR (log-probability log-rank ratio) (Su et al.,
2023) and Fast-DetectGPT (conditional probability
curvature) (Bao et al., 2024), and apply TOCSIN on
the four detectors to validate its effectiveness and
generality. We choose the four detectors as they are
recently proposed, computationally efficient, and
report current state-of-the-art performance. The
derived methods are denoted as ∗+TOCSIN.

Besides the four direct baselines, we also com-
pare with other established zero-shot detectors, in-
cluding Entropy (entropy of predictive distribution)
(Mitchell et al., 2023), NPR (normalized log-rank

of perturbations) (Su et al., 2023), Detect-GPT
(probability curvature) (Mitchell et al., 2023), DNA-
GPT (divergent n-grams in rewrites) (Yang et al.,
2024). We also perform comparisons to supervised
classifiers, including the GPT-2 detectors based on
RoBERTa-base/large (Liu et al., 2019) crafted by
OpenAI and GPTZero (Tian and Cui, 2023).

Implementation TOCSIN is conceptually sim-
ple and easy to implement. For the base detectors,
we use the code of Likelihood1, LogRank2, LRR3

and Fast-DetectGPT4, and keep their settings un-
changed. For token cohesiveness calculation, there
are two hyperparameters: n (the number of copies
created for each input) and ρ (the proportion of
tokens to be deleted in each copy). We empirically
set n = 10, ρ = 1.5% for all experiments without
re-tuning. The impact of the two hyperparameters
is discussed in Section 4.4.

4.2 Experiments with Open-Source LLMs
We first evaluate TOCSIN in detecting text gener-
ated by the five open-source LLMs, from GPT-2
(1.5B) to GPT-NeoX (20B). We use 500 human
samples along with 500 LLM samples generated by
each of the five models across XSum, SQuAD, and
WritingPrompts. By following previous work (Bao
et al., 2024), we consider two evaluation settings:
(1) the white-box setting where each source model
is used to score passages, and (2) the black-box
setting where the source models are not accessible
and a surrogate model, i.e., GPT-Neo-2.7, is used to
score passages. Note that this scoring is required by
the base detectors, not by token cohesiveness cal-
culation. Table 1 presents average AUROC across
the three datasets in the two settings, with detailed
per dataset results reported in Appendix D.1.

Results in White-Box Setting As we can see,
TOCSIN performs particularly well in this setting.
It outperforms the four direct baselines (and all the
other baselines), irrespective of which dataset or
source model is used. The absolute improvement in
average AUROC reaches 10.97% over Likelihood,
8.26% over LogRank, and 5.88% over LRR. For
Fast-DetectGPT, which already gets a super high
average AUROC of 0.9887, TOCSIN still brings
consistent and meaningful improvements, pushing
the average AUROC further to 0.9946.

1https://github.com/eric-mitchell/detect-gpt
2https://github.com/baoguangsheng/fast-detect-gpt/
3https://github.com/mbzuai-nlp/DetectLLM
4https://github.com/baoguangsheng/fast-detect-gpt/

17542

Method GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg.

The White-Box Setting
Entropy (Mitchell et al., 2023) 0.5174 0.4830 0.4898 0.5005 0.5333 0.5048
DNA-GPT (Yang et al., 2024)† 0.9024 0.8797 0.8690 0.8227 0.7826 0.8513
DetectGPT (Mitchell et al., 2023)† 0.9917 0.9758 0.9797 0.9353 0.8943 0.9554
NPR (Su et al., 2023)† 0.9948 0.9832 0.9883 0.9500 0.9065 0.9645
Likelihood (Mitchell et al., 2023) 0.9125 0.8963 0.8900 0.8480 0.7946 0.8683
Likelihood+TOCSIN (ours) 0.9905 0.9876 0.9794 0.9776 0.9549 0.9780
(Absolute ↑) 7.80% 9.13% 8.94% 12.96% 16.03% 10.97%
LogRank (Mitchell et al., 2023) 0.9385 0.9223 0.9226 0.8818 0.8313 0.8993
LogRank+TOCSIN (ours) 0.9933 0.9907 0.9857 0.9811 0.9586 0.9819
(Absolute ↑) 5.48% 6.84% 6.31% 9.93% 12.73% 8.26%
LRR (Su et al., 2023) 0.9601 0.9401 0.9522 0.9179 0.8793 0.9299
LRR+TOCSIN (ours) 0.9919 0.9929 0.9873 0.9914 0.9799 0.9887
(Absolute ↑) 3.18% 5.28% 3.51% 7.35% 10.06% 5.88%
Fast-DetectGPT (Bao et al., 2024) 0.9967 0.9908 0.9940 0.9866 0.9754 0.9887
Fast-DetectGPT+TOCSIN (ours) 0.9986 0.9960 0.9978 0.9941 0.9863 0.9946
(Absolute ↑) 0.19% 0.52% 0.38% 0.75% 1.09% 0.59%

The Black-Box Setting
DetectGPT (Mitchell et al., 2023)† 0.8517 0.8390 0.9797 0.8575 0.8400 0.8736
Likelihood (ours) 0.7625 0.7838 0.8899 0.8054 0.7851 0.8053
Likelihood+TOCSIN (ours) 0.9626 0.9723 0.9794 0.9722 0.9628 0.9699
(Absolute ↑) 20.01% 18.85% 8.95% 16.68% 17.77% 16.46%
LogRank (ours) 0.8013 0.8210 0.9226 0.8362 0.8070 0.8376
LogRank+TOCSIN (ours) 0.9644 0.9753 0.9857 0.9737 0.9630 0.9724
(Absolute ↑) 16.31% 15.43% 6.31% 13.75% 15.60% 13.48%
LRR (ours) 0.8505 0.8609 0.9518 0.8637 0.8187 0.8691
LRR+TOCSIN (ours) 0.9745 0.9849 0.9873 0.9832 0.9752 0.9810
(Absolute ↑) 12.40% 12.40% 3.55% 11.95% 15.65% 11.19%
Fast-DetectGPT (Bao et al., 2024) 0.9834 0.9572 0.9984 0.9592 0.9404 0.9677
Fast-DetectGPT+TOCSIN (ours) 0.9948 0.9815 0.9994 0.9822 0.9741 0.9864
(Absolute ↑) 1.14% 2.43% 0.10% 2.30% 3.37% 1.87%

Table 1: AUROC for zero-shot detection of passages generated from five source models, averaged across XSum,
SQuAD, WritingPrompts, with detailed results provided in Appendix D.1. Results marked by “(ours)” are produced
by ourselves, and other results are taken directly from (Bao et al., 2024) to avoid implementation bias. In the
white-box (resp. black-box) setting, the source model (resp. GPT-Neo-2.7) is used for scoring. † denotes methods
that invoke scoring models multiple times, thereby significantly increasing computational demands. Bold indicates
that a +TOCSIN variant outperforms its direct baseline, and “(Absolute ↑)” the absolute improvements.

Results in Black-Box Setting In this setting we
observe similar phenomena. TOCSIN, again, con-
sistently outperforms all the baselines. Notably, the
improvements are even more significant than those
in the white-box setting (the absolute boosts in aver-
age AUROC reach 16.46%, 13.48%, 11.19%, and
1.87% over the four direct baselines). We speculate
this is because the base detectors require the source
model to make predictions. In the black-box set-
ting where the source model is not available, they
have to use a surrogate model for approximation,
which inevitably results in performance degrada-
tion. TOCSIN, in contrast, requires no such approx-
imation and can therefore resist the degradation.

4.3 Experiments with API-based LLMs

We further evaluate TOCSIN in detecting passages
generated by ChatGPT, GPT-4, and Gemini to sim-
ulate real-world scenarios. We use 150 positive and

150 negative samples on XSum, WritingPrompts,
and PubMedQA. As we are not able to access the
source models, we consider the black-box setting,
with GPT-Neo-2.7 as the surrogate model. Table 2
reports the results, showing that TOCSIN can bring
consistent improvements to the four direct base-
lines in almost all cases. The only exception is the
PubMedQA data produced by ChatGPT or GPT-4.
In these two cases we find that PubMedQA pas-
sages, which consist of only 64 tokens on average,
are substantially shorter than passages on the other
datasets (e.g., 221 tokens on XSum and 218 tokens
on WritingPrompts). For LLM-generated text, the
generation of each token is an aggregation process,
making the generated token more closely related
to its preceding tokens. Passages of shorter length
undergo fewer such aggregation processes, which
may suppress the closeness of tokens therein and
reduce token cohesiveness, making it more difficult

17543

Method ChatGPT GPT-4 Gemini

XSum Writing PubMed XSum Writing PubMed XSum Writing PubMed

Supervised Classifiers
RoBERTa-base (Bao et al., 2024) 0.9150 0.7084 0.6188 0.6778 0.5068 0.5309 0.8708 0.8002 0.4460
RoBERTa-large (Bao et al., 2024) 0.8507 0.5480 0.6731 0.6879 0.3821 0.6067 0.8101 0.6296 0.4508
GPTzero (Tian and Cui, 2023) 0.9952 0.9292 0.8799 0.9815 0.8262 0.8482 0.9987 0.9837 0.8840

Zero-Shot Classifiers
Entropy (Mitchell et al., 2023) 0.3305 0.1902 0.2767 0.4360 0.3702 0.3295 0.5399 0.4395 0.4335
DNA-GPT (Yang et al., 2024)† 0.9124 0.9425 0.7959 0.7347 0.8032 0.7565 0.8675 0.9257 0.5199
DetectGPT (ours)† 0.8901 0.9452 0.6362 0.6692 0.8177 0.5927 0.7549 0.9151 0.6854
NPR (Su et al., 2023)† 0.7899 0.8924 0.6784 0.5280 0.6122 0.6328 0.8172 0.9487 0.6384
Likelihood (Mitchell et al., 2023) 0.9578 0.9740 0.8775 0.7980 0.8553 0.8104 0.8519 0.9114 0.7616
Likelihood+TOCSIN (ours) 0.9984 0.9933 0.8701 0.9736 0.9324 0.8044 0.8691 0.9256 0.9823
(Absolute ↑) 4.06% 1.93% -0.74% 17.56% 7.71% -0.60% 1.72% 1.42% 22.07%
LogRank (Mitchell et al., 2023) 0.9582 0.9656 0.8687 0.7975 0.8286 0.8003 0.8628 0.9076 0.7689
LogRank+TOCSIN (ours) 0.9981 0.9933 0.8620 0.9716 0.9208 0.7952 0.8655 0.9175 0.9716
(Absolute ↑) 3.99% 2.77% -0.67% 17.41% 9.22% -0.51% 0.27% 0.99% 20.27%
LRR (Su et al., 2023) 0.9162 0.8958 0.7433 0.7447 0.7028 0.6814 0.7274 0.8179 0.7234
LRR+TOCSIN (ours) 0.9939 0.9927 0.7092 0.9614 0.8036 0.6465 0.8720 0.9195 0.9978
(Absolute ↑) 7.77% 9.69% -3.41% 21.67% 10.08% -3.49% 14.46% 10.16% 27.44%
Fast-DetectGPT (Bao et al., 2024) 0.9907 0.9916 0.9021 0.9067 0.9612 0.8503 0.8518 0.9465 0.8769
Fast-DetectGPT+TOCSIN (ours) 0.9969 0.9964 0.9011 0.9455 0.9708 0.8490 0.8697 0.9484 0.9799
(Absolute ↑) 0.62% 0.48% -0.10% 3.88% 0.96% -0.13% 1.79% 0.19% 10.30%

Table 2: AUROC for detecting passages generated by ChatGPT, GPT-4, and Gemini. For ChatGPT and GPT-4,
results marked by “(ours)” are produced by ourselves, and other results are taken directly from (Bao et al., 2024) to
avoid implementation bias. For Gemini, all results are produced by ourselves. The black-box setting is used for all
zero-shot classifiers, with GPT-Neo-2.7 as surrogate model. Bold stands for better performance between a baseline
and its +TOCSIN version, and “(Absolute ↑)” the absolute improvements.

to distinguish these passages from human-written
ones via token cohesiveness. We will show later in
Section 4.4 the detailed impact of passage length.

4.4 Additional Analyses

We provide additional analyses to better understand
multiple facets of TOCSIN. We consider only the
more practical black-box setting where the source
LLMs are not accessible.

Time & Space Efficiency As an improvement
to existing zero-shot detectors, TOCSIN keeps the
base detector unchanged, and the additional time
and space costs mainly come from the computation
of token cohesiveness, which involves 10 rounds of
random token deletion and BARTScore computa-
tion. To rigorously assess the additional costs, we
conduct time and space analysis on XSum, SQuAD,
and WritingPrompts where the LLM-generated pas-
sages are produced by the five open-source models,
and we make comparison between Fast-DetectGPT
and Fast-DetectGPT+TOCSIN. All experiments
here are conducted on a single NVIDIA A40 GPU
with 48GB memory. Table 3 reports the average
runtime per instance and GPU memory usage of the
two variants, with detailed results further provided
in Appendix D.2. Compared to the base detector,

Runtime (s) GPU Memory (GB)

w/o TOCSIN 0.31 23.96
w/ TOCSIN 0.47 28.67
(Absolute ↑) 0.16 4.71

Table 3: Runtime per instance and GPU memory usage
of w/ and w/o TOCSIN variants of Fast-DetectGPT in
black-box setting, averaged across five source models
on XSum, SQuAD, and WritingPrompts. “(Absolute ↑)”
means additional time/space cost brought by TOCSIN.

TOCSIN brings a relatively low additional runtime
of 0.16s per instance and a relatively low additional
GPU memory usage of 4.71GB on average.

Complementarity with Existing Detectors The
success of TOCSIN is largely attributed to the good
complementarity between the token cohesiveness
feature and existing detectors. To validate this view-
point, we compare the performance of combining
Fast-DetectGPT with an existing detector versus
combining it with token cohesiveness, in the same
manner as described in Section 3.3. Table 4 reports
average AUROC across XSum, SQuAD, Writing-
Prompts for the five open-source models, showing
that combining Fast-DetectGPT with Likelihood,
LogRank, or LRR does not always yield substantial
improvements as it does with TOCSIN.

17544

Method GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg.

Fast-DetectGPT 0.9834 0.9572 0.9984 0.9592 0.9404 0.9677
Fast-DetectGPT+Likelihood 0.9696 0.9472 0.9967 0.9522 0.9316 0.9595
Fast-DetectGPT+LogRank 0.9786 0.9558 0.9982 0.9589 0.9389 0.9661
Fast-DetectGPT+LRR 0.9833 0.9598 0.9985 0.9612 0.9420 0.9690
Fast-DetectGPT+TOCSIN 0.9948 0.9815 0.9994 0.9822 0.9741 0.9864

Table 4: AUROC for zero-shot detection of passages generated from five source models in the black-box setting,
using GPT-Neo-2.7 as the surrogate model. The results are achieved by combining Fast-DetectGPT with different
detectors, and averaged across XSum, SQuAD, and WritingPrompts.

human-written
Likelihood

Likelihood

Fast-DetectGPT

LRR

LogRank

TOCSIN

LogRank
LRR Fast-DeteceGPT

TOCSIN
Likelihood

LogRank
LRR Fast-DeteceGPT

TOCSIN

LLM-generated

Figure 3: Heatmaps of Pearson Correlation Coefficient
between scores from different detectors, averaged across
XSum, SQuAD, WritingPrompts and five open-source
models. Lighter colors indicate lower correlation, while
darker colors indicate stronger correlation.

We further examine the Pearson Correlation Co-
efficient between the Likelihood, LogRank, LRR,
Fast-DetectGPT, and token cohesiveness scores for
the LLM-generated and human-written passages
therein. Figure 3 visualizes the results, averaged
across the three datasets and five source models.
From the figure, we can observe a relatively high
positive correlation among existing detectors, par-
ticularly for human-written text, whereas their cor-
relation with the token cohesiveness scores is rather
low. This observation indicates strong complemen-
tarity between token cohesiveness and existing de-
tectors, which we think is key to the success of our
dual-channel detection paradigm. Note that similar
to Likelihood, LogRank, LRR and Fast-DetectGPT,
token cohesiveness can also be used alone for zero-
shot detection of LLM-generated text, the perfor-
mance of which is shown in Appendix D.3.

Impact of Passage Length We have observed in
Table 2 that TOCSIN may not perform that well on
shorter passages. To rigorously evaluate the impact
of passage length, we truncate the passages from
WritingPrompts to various target lengths of 45, 90,
135, 180, and explore how the token cohesiveness
and overall performance of TOCSIN varies at the
four different lengths. The results are reported in
Figure 4 and Figure 5. We can see that at a shorter

 length: 45 length: 90

 length: 135 length: 180

Figure 4: Distribution of token cohesiveness between
150 human-written and 150 ChatGPT-generated pas-
sages from WritingPrompts truncated to target length.

 ChatGPT GPT-4

 A

U
RO

C

 Passsage Length

Figure 5: AUROC for detecting ChatGPT and GPT-4
passages on WritingPrompts truncated to target length.

length of 45, the distributions of token cohesiveness
between human-written and LLM-generated text
overlap significantly and cannot be discriminated.
TOCSIN also fails to improve FastDetect-GPT at
this passage length. But as the length increases, the
disparities in token cohesiveness between the two
types of text become more obvious, and incorporat-
ing token cohesiveness into FastDetect-GPT starts
to achieve consistent improvements. These results
suggest that TOCSIN is more suitable for detecting
long passages generated by LLMs.

Impact of Hyperparameters TOCSIN gets two
hyperparameters: the number of copies created for
each input (n) and the proportion of tokens deleted
in each copy (ρ). We examine the impact of the two

17545

XSum
SQuAD
Writing

GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX

GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX

XSum
SQuAD
Writing

Figure 6: AUROC of FastDetectGPT+TOCSIN with varying hyperparameters on XSum, SQuAD, and Writing-
Prompts across five open-source LLMs in the black-box setting. Top: number of copies n ∈ {10, 20, 50, 100} and
token deletion proportion ρ = 1.5% where n = 0 denotes AUROC of Fast-DetectGPT. Bottom: ρ ∈ {1.5%, 5.0%,
7.5%, 10.0%} and n = 10 where ρ = 0.0% denotes AUROC of Fast-DetectGPT.

hyperparameters, and show how the performance
of Fast-DetectGPT+TOCSIN varies as n ∈ {10,
20, 50, 100} and ρ ∈ {1.5%, 5.0%, 7.5%, 10.0%}.
Figure 6 presents the results on XSum, SQuAD,
and WritingPrompts with LLM-generated passages
from the five open-source models, where n = 0
and ρ = 0.0% denote the performance of the base
detector Fast-DetectGPT. The results suggest that
the performance of TOCSIN is not sensitive to the
hyperparameters. TOCSIN performs rather stably
with different n values, so we just use n = 10 for
simplicity and efficiency. Moreover, a smaller ρ
value of 1.5% generally performs better, and the
performance drops slightly as ρ grows up.

5 Conclusion

This paper introduces the concept of token cohe-
siveness and unveils that it can serve as a new cri-
terion to discriminate LLM-generated and human-
written text. Based on this new finding, we devise
TOCSIN for zero-shot detection of LLM-generated
text. TOCSIN is a generic dual-channel detection
paradigm that uses token cohesiveness as a plug-
and-play module to improve existing zero-shot de-
tectors. As empirical evaluation, we apply TOC-
SIN to four current state-of-the-art base detectors,
and achieve meaningful improvements across four
diversified datasets with passages generated from
eight different source LLMs, demonstrating the
effectiveness and generality of our approach.

Limitations

This work has two limitations. First, the proposed
method TOCSIN, like most zero-shot detectors, is

more suitable for long text and has limited effec-
tiveness on short text. For example, it consistently
performs well on passages consisting of 90 tokens
or more, but fails on short passages with only 45 to-
kens, as illustrated in Figure 5. Second, this work is
restricted to the most basic form of LLM-generated
text detection, i.e., binary classification of LLM-
generated and human-written text. Whether TOC-
SIN still works in more challenging tasks, such as
detecting mixtures of LLM-generated and human-
written text and tracing the origin of generation,
remains an open question for future research.

Acknowledgements

We would like to thank Xingyu Yao for preparing
the Gemini datasets. We would also like to thank
the action editor and the reviewers for their insight-
ful and valuable suggestions, which significantly
improve the quality of this work. This work is sup-
ported by the National Natural Science Foundation
of China (grants No. 62376033 and 62232006).

References
Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng,

Marc’Aurelio Ranzato, and Arthur Szlam. 2019.
Real or fake? Learning to discriminate ma-
chine from human generated text. arXiv preprint
arXiv:1906.03351.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi
Yang, and Yue Zhang. 2024. Fast-detectGPT: Effi-
cient zero-shot detection of machine-generated text
via conditional probability curvature. In The Twelfth
International Conference on Learning Representa-
tions.

17546

https://arxiv.org/abs/1906.03351
https://arxiv.org/abs/1906.03351
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z

Amrita Bhattacharjee, Tharindu Kumarage, Raha
Moraffah, and Huan Liu. 2023. ConDA: Contrastive
domain adaptation for AI-generated text detection.
In Proceedings of the 13th International Joint Con-
ference on Natural Language Processing and the 3rd
Conference of the Asia-Pacific Chapter of the Associ-
ation for Computational Linguistics, pages 598–610.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. GPT-Neo: Large scale autore-
gressive language modeling with Mesh-Tensorflow.
https://github.com/EleutherAI/gpt-neo.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. GPT-NeoX-20B: An open-source autoregres-
sive language model. In Proceedings of BigScience
Episode #5 – Workshop on Challenges & Perspec-
tives in Creating Large Language Models, pages 95–
136.

Yutian Chen, Hao Kang, Vivian Zhai, Liangze Li, Rita
Singh, and Bhiksha Raj. 2023. GPT-sentinel: Dis-
tinguishing human and ChatGPT generated content.
arXiv preprint arXiv:2305.07969.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. PaLM: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 4171–4186.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics, pages 889–898.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2024. GPTScore: Evaluate as you desire. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 6556–6576.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander
Rush. 2019. GLTR: Statistical detection and visual-
ization of generated text. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 111–116.

Google. 2023. Gemini: A family of highly capable mul-
timodal models. arXiv preprint arXiv:2312.11805.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is ChatGPT to human experts?

Comparison corpus, evaluation, and detection. arXiv
preprint arXiv:2301.07597.

Tatsunori B. Hashimoto, Hugh Zhang, and Percy Liang.
2019. Unifying human and statistical evaluation for
natural language generation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1689–1701.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2020. Automatic detection
of generated text is easiest when humans are fooled.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1808–
1822.

Bohan Jiang, Zhen Tan, Ayushi Nirmal, and Huan Liu.
2024. Disinformation detection: An evolving chal-
lenge in the age of LLMs. In Proceedings of the
2024 SIAM International Conference on Data Min-
ing, pages 427–435.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Co-
hen, and Xinghua Lu. 2019. PubMedQA: A dataset
for biomedical research question answering. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing, pages 2567–2577.

Thomas Lavergne, Tanguy Urvoy, and François Yvon.
2008. Detecting fake content with relative entropy
scoring. In Proceedings of the 2008 International
Conference on Uncovering Plagiarism, Authorship
and Social Software Misuse, volume 377, pages 27–
31.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880.

Linyang Li, Pengyu Wang, Ke Ren, Tianxiang Sun, and
Xipeng Qiu. 2023a. Origin tracing and detecting of
LLMs. arXiv preprint arXiv:2304.14072.

Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Longyue
Wang, Linyi Yang, Shuming Shi, and Yue Zhang.
2023b. Deepfake text detection in the wild. arXiv
preprint arXiv:2305.13242.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023. De-
tectGPT: Zero-shot machine-generated text detection
using probability curvature. In Proceedings of the

17547

https://aclanthology.org/2023.ijcnlp-main.40
https://aclanthology.org/2023.ijcnlp-main.40
https://github.com/EleutherAI/gpt-neo
https://github.com/EleutherAI/gpt-neo
https://aclanthology.org/2022.bigscience-1.9
https://aclanthology.org/2022.bigscience-1.9
https://arxiv.org/abs/2305.07969
https://arxiv.org/abs/2305.07969
https://www.jmlr.org/papers/volume24/22-1144/22-1144.pdf
https://www.jmlr.org/papers/volume24/22-1144/22-1144.pdf
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/P18-1082
https://aclanthology.org/2024.naacl-long.365
https://aclanthology.org/P19-3019
https://aclanthology.org/P19-3019
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2301.07597
https://arxiv.org/abs/2301.07597
https://aclanthology.org/N19-1169
https://aclanthology.org/N19-1169
https://aclanthology.org/2020.acl-main.164
https://aclanthology.org/2020.acl-main.164
https://epubs.siam.org/doi/abs/10.1137/1.9781611978032.50
https://epubs.siam.org/doi/abs/10.1137/1.9781611978032.50
https://aclanthology.org/D19-1259
https://aclanthology.org/D19-1259
https://dl.acm.org/doi/abs/10.5555/3053718.3053722
https://dl.acm.org/doi/abs/10.5555/3053718.3053722
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://arxiv.org/abs/2304.14072
https://arxiv.org/abs/2304.14072
https://arxiv.org/abs/2305.13242
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://proceedings.mlr.press/v202/mitchell23a.html
https://proceedings.mlr.press/v202/mitchell23a.html
https://proceedings.mlr.press/v202/mitchell23a.html

40th International Conference on Machine Learning,
pages 24950–24962.

Sandra Mitrović, Davide Andreoletti, and Omran Ayoub.
2023. Chatgpt or human? Detect and explain. Ex-
plaining decisions of machine learning model for de-
tecting short ChatGPT-generated text. arXiv preprint
arXiv:2301.13852.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
Topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807.

OpenAI. 2022. ChatGPT: Optimizing language models
for dialogue. https: //openai.com/blog/chatgpt.

OpenAI. 2023. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

Ashwinee Panda, Christopher A. Choquette-Choo,
Zhengming Zhang, Yaoqing Yang, and Prateek Mit-
tal. 2024. Teach LLMs to phish: Stealing private
information from language models. arXiv preprint
arXiv:2403.00871.

Mike Perkins. 2023. Academic integrity considerations
of AI large language models in the post-pandemic
era: ChatGPT and beyond. Journal of University
Teaching & Learning Practice, 20(2):07.

Jiameng Pu, Zain Sarwar, Sifat Muhammad Abdullah,
Abdullah Rehman, Yoonjin Kim, Parantapa Bhat-
tacharya, Mobin Javed, and Bimal Viswanath. 2023.
Deepfake text detection: Limitations and opportu-
nities. In 2023 IEEE Symposium on Security and
Privacy, pages 1613–1630.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2383–2392.

Juan Diego Rodriguez, Todd Hay, David Gros, Zain
Shamsi, and Ravi Srinivasan. 2022. Cross-domain
detection of GPT-2-generated technical text. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1213–1233.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah
Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Jinyan Su, Terry Zhuo, Di Wang, and Preslav Nakov.
2023. DetectLLM: Leveraging log rank information
for zero-shot detection of machine-generated text.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 12395–12412.

Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. 2024.
The science of detecting LLM-generated text. Com-
munications of the ACM, 67(4):50–59.

Edward Tian and Alexander Cui. 2023. GPTZero: To-
wards detection of AI-generated text using zero-shot
and supervised methods. https://gptzero.me.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. LLaMA: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee.
2020. Authorship attribution for neural text gener-
ation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
pages 8384–8395.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Vivek Verma, Eve Fleisig, Nicholas Tomlin, and Dan
Klein. 2023. Ghostbuster: Detecting text ghost-
written by large language models. arXiv preprint
arXiv:2305.15047.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A
6 billion parameter autoregressive language model.
https://github.com/kingoflolz/mesh-transformer-jax.

Pengyu Wang, Linyang Li, Ke Ren, Botian Jiang, Dong
Zhang, and Xipeng Qiu. 2023a. SeqXGPT: Sentence-
level AI-generated text detection. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 1144–1156.

Quan Wang, Licheng Zhang, Zikang Guo, and Zhen-
dong Mao. 2024. IDEATE: Detecting AI-generated
text using internal and external factual structures. In
Proceedings of the 2024 Joint International Confer-
ence on Computational Linguistics, Language Re-
sources and Evaluation, pages 8556–8568.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi
Whitehouse, Osama Mohammed Afzal, Tarek Mah-
moud, Alham Fikri Aji, et al. 2023b. M4: Multi-
generator, multi-domain, and multi-lingual black-box
machine-generated text detection. arXiv preprint
arXiv:2305.14902.

Kangxi Wu, Liang Pang, Huawei Shen, Xueqi Cheng,
and Tat-Seng Chua. 2023. LLMDet: A large
language models detection tool. arXiv preprint
arXiv:2305.15004.

17548

https://arxiv.org/abs/2301.13852
https://arxiv.org/abs/2301.13852
https://arxiv.org/abs/2301.13852
https://aclanthology.org/D18-1206
https://aclanthology.org/D18-1206
https://aclanthology.org/D18-1206
https: //openai.com/blog/chatgpt
https: //openai.com/blog/chatgpt
https://arxiv.org/pdf/2303.08774
https://arxiv.org/pdf/2403.00871
https://arxiv.org/pdf/2403.00871
https://ro.uow.edu.au/jutlp/vol20/iss2/07/
https://ro.uow.edu.au/jutlp/vol20/iss2/07/
https://ro.uow.edu.au/jutlp/vol20/iss2/07/
https://ieeexplore.ieee.org/abstract/document/10179387
https://ieeexplore.ieee.org/abstract/document/10179387
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://aclanthology.org/2022.naacl-main.88
https://aclanthology.org/2022.naacl-main.88
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/1908.09203
https://aclanthology.org/2023.findings-emnlp.827
https://aclanthology.org/2023.findings-emnlp.827
https://dl.acm.org/doi/abs/10.1145/3624725
https://gptzero.me
https://gptzero.me
https://gptzero.me
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://aclanthology.org/2020.emnlp-main.673
https://aclanthology.org/2020.emnlp-main.673
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2305.15047
https://arxiv.org/abs/2305.15047
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/2023.emnlp-main.73
https://aclanthology.org/2023.emnlp-main.73
https://aclanthology.org/2024.lrec-main.751
https://aclanthology.org/2024.lrec-main.751
https://arxiv.org/pdf/2305.14902
https://arxiv.org/pdf/2305.14902
https://arxiv.org/pdf/2305.14902
https://arxiv.org/abs/2305.15004
https://arxiv.org/abs/2305.15004

Xianjun Yang, Wei Cheng, Yue Wu, Linda Ruth Pet-
zold, William Yang Wang, and Haifeng Chen. 2024.
DNA-GPT: Divergent n-gram analysis for training-
free detection of GPT-generated text. In The Twelfth
International Conference on Learning Representa-
tions.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
BARTScore: Evaluating generated text as text gener-
ation. In Advances in Neural Information Processing
Systems, volume 34, pages 27263–27277.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In Advances in Neural Information Processing
Systems, volume 32.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
OPT: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Wanjun Zhong, Duyu Tang, Zenan Xu, Ruize Wang,
Nan Duan, Ming Zhou, Jiahai Wang, and Jian Yin.
2020. Neural deepfake detection with factual struc-
ture of text. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2461–2470.

Biru Zhu, Lifan Yuan, Ganqu Cui, Yangyi Chen, Chong
Fu, Bingxiang He, Yangdong Deng, Zhiyuan Liu,
Maosong Sun, and Ming Gu. 2023. Beat LLMs
at their own game: Zero-shot LLM-generated text
detection via querying ChatGPT. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 7470–7483.

A Semantic Difference Metrics

We use the negative BARTScore (Yuan et al., 2021)
to measure the semantic difference between input x
and its copy x̃ with some tokens randomly deleted
in our main experiments, i.e.,

DIFF(x, x̃) = −BARTScore(x, x̃).

Besides, we also evaluate another semantic differ-
ence metric, negative GPTScore (Fu et al., 2024),
and discuss the results in Appendix D.4.

DIFF(x, x̃) = −GPTScore(x, x̃).

Below we introduce the two metrics in detail.

BARTScore This metric, built on a BART model
(Lewis et al., 2020) parameterized by φ, is calcu-
lated as the log probability of generating the input
x (target text) conditioned on its copy x̃ (source
text), which can be factorized as:

BARTScore(x, x̃) =
k∑

j=1

log pφ(xj |x<j , x̃).

Here, k is the total number of tokens in x, xj the
j-th token therein, and x<j the sequence preceding
xj . This score essentially measures the semantic
coverage between the source and target text, and its
negative value therefore measures their semantic
difference. In this paper, we use BART-base which
has 139M parameters to compute BARTScore, so
as to ensure the high efficiency of token cohesive-
ness calculation. Note that this model is typically
much smaller than the scoring model required by
the base detector, i.e., the source model itself in the
white-box setting and the surrogate model (e.g., the
2.7B GPT-Neo-2.7) in the black-box setting.

GPTScore This metric is similar to BARTScore
but has two differences. First, it is built on a GPT
model (Radford et al., 2019), parameterized by φ,
rather than BART. Furthermore, it considers the
generation of the target text (input x) conditioned
on a more complex source text T (x, x̃), rather than
just on x̃ itself. T (x, x̃) is specified as “x̃ [In other
words,] x” in the semantic similarity measurement
protocol. Summarizing the above two differences,
GPTScore is formally defined as:

GPTScore(x, x̃) =

k∑

j=1

log pφ(xj |x<j , T (x, x̃)).

We use GPT-2-small with 117M parameters to com-
pute GPTScore, which is also much smaller than
the scoring model required by the base detector.

B Base Detectors

In this paper we choose Likelihood (Mitchell et al.,
2023), logRank (Mitchell et al., 2023), LRR (Su
et al., 2023) and Fast-DetectGPT (Bao et al., 2024),
which are computationally efficient and report cur-
rent state-of-the-art performance as the base detec-
tors. Each base detector requires a scoring model θ
to score passages, which is the source LLM in the
white-box setting and the surrogate model in the
black-box setting (GPT-Neo-2.7 in this paper). Be-
low we introduce the four base detectors in detail.

Likelihood Given a candidate passage x, Likeli-
hood is formally defined as:

Likelihood(x) =
k∑

j=1

log pθ(xj |x<j),

where pθ(xj |x<j) is the probability of token xj
conditioned on its preceding tokens predicted by

17549

https://openreview.net/forum?id=Xlayxj2fWp
https://openreview.net/forum?id=Xlayxj2fWp
https://proceedings.neurips.cc/paper_files/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://arxiv.org/abs/2205.01068
https://aclanthology.org/2020.emnlp-main.193
https://aclanthology.org/2020.emnlp-main.193
https://aclanthology.org/2023.emnlp-main.463
https://aclanthology.org/2023.emnlp-main.463
https://aclanthology.org/2023.emnlp-main.463

the scoring model θ. LLM-generated passages are
supposed to have higher Likelihood scores com-
pared to human-written passages.

LogRank Given a candidate passage x, LogRank
is formally defined as:

LogRank(x) = −
k∑

j=1

log rθ(xj |x<j),

where rθ(xj |x<j) denotes the rank of the probabil-
ity of token xj conditioned on its preceding tokens
predicted by the scoring model θ. LLM-generated
text tends to have higher LogRank scores compared
to human-written text.

LRR LRR makes use of the Log-Likelihood Log-
Rank Ratio to discern LLM-generated and human-
written text. Given a candidate passage x, LRR is
formally defined as:

LRR(x) = −
∑k

j=1 log pθ(xj |x<j)∑k
j=1 log rθ(xj |x<j)

,

which can be seen as a combination of Likelihood
and LogRank. LLM-generated text is supposed to
have higher LRR scores than human-written text.

Fast-DetectGPT Fast-DetectGPT makes use of
a conditional probability function to detect LLM-
generated text. Given a passage x, it first performs
conditional independent sampling from qψ(·|x) to
create a group of samples {x̃1, x̃2, · · · , x̃n}. This
sampling samples alternative word choices at each
token conditioned on the fixed passage x without
depending on other sampled tokens. Then, it evalu-
ates the conditional probabilities pθ(x̃|x) of these
samples and combines them to arrive at a decision:

Fast-DetectGPT(x) =
1

n

n∑

i=1

log
pθ(x|x)
pθ(x̃|x)

.

If the score exceeds a specific threshold, the pas-
sage is probably LLM-generated. Fast-DetectGPT
invokes the sampling model qψ(·|x) once to gen-
erate all samples and similarly the scoring model
pθ(·|x) once to evaluate all samples, and therefore
is rather efficient. In the white-box setting, qψ(·|x)
and pθ(·|x) are both set to the source LLM. In the
black-box setting, qψ(·|x) is set to the 6B GPT-J
and pθ(·|x) the 2.7B GPT-Neo-2.7. All configura-
tions are identical to those in (Bao et al., 2024).

C Datasets Created by Gemini

We follow exactly the same procedure as in (Bao
et al., 2024) to generate samples for XSum, Writ-
ingPrompts, and PubMedQA by calling the Gemini
API. Specifically, we request chat completions with
predefined instructions as follows.

Instruction for XSum
{‘system’: ‘You are a News writer.’}
{‘user’: ‘Please write an article with about 150
words starting exactly with: <prefix>’}

Instruction for WritingPrompts
{‘system’: ‘You are a Fiction writer.’}
{‘user’: ‘Please write an article with about 150
words starting exactly with: <prefix>’}

Instruction for PubMedQA
{‘system’: ‘You are a Technical writer.’}
{‘user’: ‘Please answer the question in about 50
words. <prefix>’}

Here <prefix> is a prefix consisting of the initial
30 tokens of a human-written passage, e.g., “Maj
Richard Scott, 40, is accused of driving at speeds
of up to 95mph (153km/h) in bad weather”, and the
response is supposed to start with it. We suppose
to create 150 samples for each of the three datasets,
but unfortunately fail on 19 samples for XSum and
7 for WritingPrompts, resulting in a total of 131 and
143 samples for these two datasets, respectively.

D Additional Experimental Results

D.1 Detailed Results of Open-Source LLMs
Table 5 presents AUROC for zero-shot detection of
passages generated by the five open-source LLMs
on three datasets of XSum, SQuAD, and Writing-
Prompts in the white-box setting, and Table 6 re-
ports the same results in the black-box setting. As
we can see, TOCSIN brings consistent improve-
ments in both settings, regardless of the datasets,
source models, or base detectors.

D.2 Details of Time & Space Efficiency
Table 7 reports detailed time/space analysis results
of Fast-DetectGPT and Fast-DetectGPT+TOCSIN
in black-box setting on XSum, SQuAD, and Writ-
ingPrompts, with passages generated by the five
open-source LLMs. As TOCSIN always performs
10 rounds of random token deletion and uses BART-
base to calculate token cohesiveness without any
other requirements, the additional time/space costs
are rather stable across datasets and source models
(as long as the passages are roughly of equal size).
On average, TOCSIN bring an additional runtime

17550

Dataset Method GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg.

XSum

Entropy (Mitchell et al., 2023) 0.5835 0.5071 0.5712 0.5705 0.6035 0.5671
DNA-GPT (Yang et al., 2024)† 0.8548 0.8168 0.8197 0.7586 0.7167 0.7933
DetectGPT (Mitchell et al., 2023)† 0.9875 0.9621 0.9914 0.9632 0.9398 0.9688
NPR (Su et al., 2023)† 0.9891 0.9681 0.9929 0.9566 0.9311 0.9676
Likelihood (Mitchell et al., 2023) 0.8638 0.8600 0.8609 0.8101 0.7604 0.8310
Likelihood+TOCSIN (ours) 0.9943 0.9917 0.9895 0.9864 0.9829 0.9890
(Absolute ↑) 13.05% 13.17% 12.86% 17.63% 22.25% 15.80%
LogRank (Mitchell et al., 2023) 0.8918 0.8839 0.8949 0.8407 0.7939 0.8610
LogRank+TOCSIN (ours) 0.9950 0.9932 0.9916 0.9877 0.9838 0.9903
(Absolute ↑) 10.32% 10.93% 9.67% 14.70% 18.99% 12.93%
LRR (Su et al., 2023) 0.9179 0.8867 0.9190 0.8592 0.8205 0.8807
LRR+TOCSIN (ours) 0.9957 0.9968 0.9935 0.9950 0.9926 0.9947
(Absolute ↑) 7.78% 11.01% 7.45% 13.58% 17.21% 11.40%
Fast-DetectGPT (Bao et al., 2024) 0.9930 0.9803 0.9885 0.9771 0.9703 0.9818
Fast-DetectGPT+TOCSIN (ours) 0.9974 0.9928 0.9966 0.9927 0.9850 0.9929
(Absolute ↑) 0.44% 1.25% 0.81% 1.56% 1.47% 1.11%

SQuAD

Entropy (Mitchell et al., 2023) 0.5791 0.5119 0.5581 0.5643 0.6056 0.5638
DNA-GPT (Yang et al., 2024)† 0.9094 0.8934 0.8589 0.8069 0.7525 0.8442
DetectGPT (Mitchell et al., 2023)† 0.9914 0.9763 0.9625 0.8738 0.7916 0.9191
NPR (Su et al., 2023)† 0.9965 0.9853 0.9789 0.9108 0.8175 0.9378
Likelihood (Mitchell et al., 2023) 0.9077 0.8839 0.8585 0.7943 0.6977 0.8284
Likelihood+TOCSIN (ours) 0.9888 0.9733 0.9608 0.9562 0.8935 0.9545
(Absolute ↑) 8.11% 8.94% 10.23% 16.19% 19.58% 12.61%
LogRank (Mitchell et al., 2023) 0.9454 0.9203 0.9054 0.8471 0.7545 0.8745
LogRank+TOCSIN (ours) 0.9928 0.9814 0.9739 0.9630 0.9019 0.9626
(Absolute ↑) 4.74% 6.11% 6.85% 11.59% 14.74% 8.81%
LRR (Su et al., 2023) 0.9773 0.9597 0.9610 0.9244 0.8600 0.9365
LRR+TOCSIN (ours) 0.9928 0.9836 0.9777 0.9862 0.9621 0.9805
(Absolute ↑) 1.55% 2.39% 1.67% 6.18% 10.21% 4.40%
Fast-DetectGPT (Bao et al., 2024) 0.9990 0.9949 0.9956 0.9853 0.9617 0.9873
Fast-DetectGPT+TOCSIN (ours) 0.9996 0.9972 0.9975 0.9904 0.9764 0.9922
(Absolute ↑) 0.06% 0.23% 0.19% 0.51% 1.47% 0.49%

WritingPrompts

Entropy (Mitchell et al., 2023) 0.3895 0.4299 0.3400 0.3668 0.3908 0.3834
DNA-GPT (Yang et al., 2024)† 0.9431 0.9288 0.9283 0.9026 0.8786 0.9163
DetectGPT (Mitchell et al., 2023)† 0.9962 0.9891 0.9852 0.9688 0.9516 0.9782
NPR (Su et al., 2023)† 0.9987 0.9962 0.9930 0.9825 0.9708 0.9882
Likelihood (Mitchell et al., 2023) 0.9661 0.9451 0.9505 0.9396 0.9256 0.9454
Likelihood+TOCSIN (ours) 0.9884 0.9976 0.9880 0.9901 0.9882 0.9905
(Absolute ↑) 2.23% 5.25% 3.75% 5.05% 6.26% 4.51%
LogRank (Mitchell et al., 2023) 0.9782 0.9628 0.9675 0.9577 0.9454 0.9623
LogRank+TOCSIN (ours) 0.9922 0.9976 0.9916 0.9927 0.9902 0.9929
(Absolute ↑) 1.40% 3.48% 2.41% 3.50% 4.48% 3.06%
LRR (Su et al., 2023) 0.9850 0.9740 0.9766 0.9702 0.9573 0.9726
LRR+TOCSIN (ours) 0.9871 0.9983 0.9907 0.9929 0.9850 0.9908
(Absolute ↑) 0.21% 2.43% 1.41% 2.27% 2.77% 1.82%
Fast-DetectGPT (Bao et al., 2024) 0.9982 0.9972 0.9980 0.9974 0.9941 0.9970
Fast-DetectGPT+TOCSIN (ours) 0.9988 0.9979 0.9993 0.9992 0.9974 0.9985
(Absolute ↑) 0.06% 0.07% 0.13% 0.18% 0.33% 0.15%

Table 5: Details of the main results in Table 1 on three datasets in white-box setting, with all setups identical to
those in Table 1.

of 0.16s per instance and additional GPU memory
usage of 4.71GB.

D.3 TOCSIN as A Standalone Metric

We evaluate TOCSIN as a standalone metric and
compare it with our baselines. Since TOCSIN is a
fully black-box detector (which even does not re-
quire a surrogate model), we compare their perfor-
mance under the black-box setting. Table 8 shows
the average AUROC across XSum, SQuAD, and

WritingPrompts. The results reveal that TOCSIN,
when used alone, outperforms all competitive base-
lines except the current best Fast-DetectGPT.

We further examine the score distributions to
understand why it trails behind Fast-DetectGPT.
We find that unlike Fast-DetectGPT, where human-
written and LLM-generated text scores are almost
separate with minimal overlap (Bao et al., 2024,
Figure 1), TOCSIN scores for human-written text
fall largely within the range of LLM-generated text

17551

Dataset Method GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg.

XSum

DetectGPT (Mitchell et al., 2023)† 0.9180 0.8868 0.9914 0.8830 0.8682 0.9095
Likelihood (ours) 0.7308 0.7918 0.8609 0.7508 0.7429 0.7754
Likelihood+TOCSIN (ours) 0.9901 0.9891 0.9895 0.9829 0.9825 0.9868
(Absolute ↑) 25.93% 19.73% 12.86% 23.21% 23.96% 21.14%
LogRank (ours) 0.7610 0.8139 0.8950 0.7747 0.7550 0.7999
LogRank+TOCSIN (ours) 0.9887 0.9901 0.9916 0.9824 0.9807 0.9867
(Absolute ↑) 22.77% 17.62% 9.66% 20.77% 22.57% 18.68%
LRR (ours) 0.7824 0.8069 0.9186 0.7767 0.7357 0.8041
LRR+TOCSIN (ours) 0.9904 0.9953 0.9935 0.9914 0.9901 0.9921
(Absolute ↑) 20.80% 18.84% 7.49% 21.47% 25.44% 18.80%
Fast-DetectGPT (Bao et al., 2024) 0.9742 0.9444 0.9965 0.9335 0.9033 0.9504
Fast-DetectGPT+TOCSIN (ours) 0.9956 0.9847 0.9990 0.9787 0.9683 0.9853
(Absolute ↑) 2.14% 4.03% 0.25% 4.52% 6.50% 3.49%

SQuAD

DetectGPT (Mitchell et al., 2023)† 0.7382 0.7530 0.9625 0.7882 0.7709 0.8026
Likelihood (ours) 0.6772 0.7372 0.8584 0.7562 0.7206 0.7499
Likelihood+TOCSIN (ours) 0.9382 0.9346 0.9608 0.9480 0.9229 0.9409
(Absolute ↑) 26.10% 19.74% 10.24% 19.18% 20.23% 19.10%
LogRank (ours) 0.7387 0.7877 0.9052 0.8042 0.7579 0.7987
LogRank+TOCSIN (ours) 0.9378 0.9437 0.9739 0.9512 0.9243 0.9462
(Absolute ↑) 19.91% 15.60% 6.87% 14.7% 16.64% 14.75%
LRR (ours) 0.8447 0.8615 0.9603 0.8709 0.8109 0.8697
LRR+TOCSIN (ours) 0.9713 0.9620 0.9777 0.9701 0.9552 0.9673
(Absolute ↑) 12.66% 10.05% 1.74% 9.92% 14.43% 9.76%
Fast-DetectGPT (Bao et al., 2024) 0.9824 0.9762 0.9990 0.9584 0.9379 0.9708
Fast-DetectGPT+TOCSIN (ours) 0.9910 0.9878 0.9994 0.9725 0.9613 0.9824
(Absolute ↑) 0.86% 1.16% 0.04% 1.41% 2.34% 1.16%

WritingPrompts

DetectGPT (Mitchell et al., 2023)† 0.8989 0.8772 0.9852 0.9014 0.8809 0.9087
Likelihood (ours) 0.8795 0.8225 0.9505 0.9093 0.8919 0.8907
Likelihood+TOCSIN (ours) 0.9596 0.9933 0.9880 0.9857 0.9831 0.9819
(Absolute ↑) 8.01% 17.08% 3.75% 7.64% 9.12% 9.12%
LogRank (ours) 0.9043 0.8614 0.9675 0.9298 0.9081 0.9142
LogRank+TOCSIN (ours) 0.9667 0.9922 0.9916 0.9874 0.9839 0.9844
(Absolute ↑) 6.24% 13.08% 2.41% 5.76% 7.58% 7.02%
LRR (ours) 0.9244 0.9142 0.9766 0.9436 0.9095 0.9337
LRR+TOCSIN (ours) 0.9617 0.9975 0.9907 0.9880 0.9803 0.9836
(Absolute ↑) 3.73% 8.33% 1.41% 4.44% 7.08% 4.99%
Fast-DetectGPT (Bao et al., 2024) 0.9937 0.9509 0.9996 0.9858 0.9801 0.9820
Fast-DetectGPT+TOCSIN (ours) 0.9978 0.9721 0.9999 0.9953 0.9926 0.9915
(Absolute ↑) 0.41% 2.12% 0.03% 0.95% 1.25% 0.95%

Table 6: Details of the main results in Table 1 on three datasets in black-box setting, with all setups identical to
those in Table 1.

Dataset Method Runtime (s) GPU Memory (GB)

GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX

XSum
w/o TOCSIN 0.31 0.31 0.31 0.31 0.31 23.57 23.30 23.22 24.21 23.53
w/ TOCSIN 0.48 0.46 0.46 0.47 0.46 28.35 27.80 28.37 28.79 27.35
(Absolute ↑) 0.17 0.15 0.15 0.16 0.15 4.78 4.50 5.15 4.58 3.82

SQuAD
w/o TOCSIN 0.32 0.32 0.32 0.32 0.31 23.35 23.98 23.90 24.05 24.00
w/ TOCSIN 0.49 0.46 0.49 0.48 0.47 28.14 28.53 28.54 28.07 29.19
(Absolute ↑) 0.17 0.14 0.17 0.16 0.16 4.79 4.55 4.64 4.02 5.19

Writing
w/o TOCSIN 0.32 0.30 0.31 0.31 0.31 24.98 24.30 23.89 24.75 24.35
w/ TOCSIN 0.48 0.45 0.48 0.47 0.47 29.31 29.24 29.51 29.56 29.32
(Absolute ↑) 0.16 0.15 0.17 0.16 0.16 4.33 4.94 5.62 4.81 4.97

Table 7: Runtime per instance and GPU memory usage of w/ and w/o TOCSIN variants of Fast-DetectGPT in
black-box setting. “(Absolute ↑)” means additional time/space cost brought by TOCSIN.

scores , as shown in Figure 1. This makes it partic-
ularly challenging to identify LLM-generated text
with very low TOCSIN scores, as these scores fall

perfectly within the range for human-written text.
Moreover, we would like to emphasize that TOC-

SIN’s lesser performance when used alone, com-

17552

Method GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg.

Likelihood 0.7625 0.7838 0.8899 0.8054 0.7851 0.8053
LogRank 0.8013 0.8210 0.9226 0.8362 0.8070 0.8376
LRR 0.8505 0.8609 0.9518 0.8637 0.8187 0.8691
DetectGPT 0.8517 0.8390 0.9797 0.8575 0.8400 0.8736
Fast-DetectGPT 0.9834 0.9572 0.9984 0.9592 0.9404 0.9677
TOCSIN 0.9307 0.9518 0.9188 0.9424 0.9357 0.9359

Table 8: AUROC of Likelihood, LogRank, LRR, DetectGPT, Fast-DetectGPT, and TOCSIN used as a standalone
metric. The black-box setting is used for all zero-shot classifiers, with GPT-Neo-2.7 as surrogate model. The results
are averaged across XSum, SQuAD, and WritingPrompts, with other settings identical to those in Table 1.

Method GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg.

The White-Box Setting
LRR 0.9601 0.9401 0.9522 0.9179 0.8793 0.9299
LRR+TOCSIN (GPTScore) 0.9631 0.9517 0.9749 0.9342 0.9194 0.9487
(Absolute ↑) 0.30% 1.16% 2.27% 1.63% 4.01% 1.88%
Fast-DetectGPT 0.9967 0.9908 0.9940 0.9866 0.9754 0.9887
Fast-DetectGPT+TOCSIN (GPTScore) 0.9972 0.9918 0.9951 0.9880 0.9772 0.9899
(Absolute ↑) 0.05% 0.10% 0.11% 0.14% 0.18% 0.12%

The Black-Box Setting
LRR 0.8505 0.8609 0.9518 0.8637 0.8187 0.8691
LRR+TOCSIN (GPTScore) 0.9242 0.9399 0.9749 0.9319 0.9097 0.9361
(Absolute ↑) 7.37% 7.90% 2.31% 6.82% 9.10% 6.70%
Fast-DetectGPT 0.9834 0.9572 0.9984 0.9592 0.9404 0.9677
Fast-DetectGPT+TOCSIN (GPTScore) 0.9859 0.9621 0.9988 0.9639 0.9476 0.9717
(Absolute ↑) 0.25% 0.49% 0.04% 0.47% 0.72% 0.40%

Table 9: AUROC of LRR, Fast-DetectGPT, and their +TOCSIN versions with token cohesiveness scores computed
using GPTScore. During token cohesiveness calculation, the number of copies is fixed at n = 10 and the token
deletion proportion decreases to ρ = 0.1%. The results are averaged across XSum, SQuAD, and WritingPrompts,
with other settings identical to those in Table 1.

pared to the current best Fast-DetectGPT, does not
diminish its value as a plug-and-play module to
enhance zero-shot detectors. As we have shown in
Section 4.4, TOCSIN’s unique strength lies in its
ability to complement existing detectors, thereby
providing improvements when combined.

D.4 Impact of Semantic Difference Metric
TOCSIN requires a semantic difference metric for
token cohesiveness calculation. Besides the nega-
tive BARTScore used in the main experiments, we
further evaluate the negative GPTScore as another
metric. We compute token cohesiveness scores us-
ing the new metric, and compare the distributions
of the scores between LLM-generated and human-
written passages. Figure 7 visualizes the results for
the same passages that were used in Figure 1, show-
ing that token cohesiveness scores computed using
the new metric still exhibit clear distributional dif-
ferences between the two types of text.

We further integrate these new token cohesive-
ness scores into LRR and Fast-DetectGPT, and
evaluate their performance on XSum, SQuAD, and
WritingPrompts. The results are given in Table 9,

 GPT-2 Neo-2.7

 GPT-J NeoX

Figure 7: Distributions of token cohesiveness scores
computed with GPTScore between human-written and
LLM-generated articles. All the articles are identical to
those used in Figure 1.

showing that, with the new metric GPTScore, TOC-
SIN can still bring consistent improvements to the
base detectors. The absolute improvements in aver-
age AUROC reach 1.88%/0.12% in the white-box
setting and 6.70%/0.40% in the black-box setting
over LRR/Fast-DetectGPT, respectively.

17553

