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Abstract

Entity tracking is essential for complex rea-
soning. To perform in-context entity tracking,
language models (LMs) must bind an entity to
its attribute (e.g., bind a container to its con-
tent) to recall attribute for a given entity. For
example, given a context mentioning “The cof-
fee is in Box Z, the stone is in Box M, the
map is in Box H”, to infer “Box Z contains
the coffee” later, LMs must bind “Box Z” to
“coffee”. To explain the binding behaviour of
LMs, Feng and Steinhardt (2023) introduce a
Binding ID mechanism and state that LMs use
a abstract concept called Binding ID (BI) to
internally mark entity-attribute pairs. However,
they have not captured the Ordering ID (OI)
from entity activations that directly determines
the binding behaviour. In this work, we provide
a novel view of the BI mechanism by localiz-
ing OI and proving the causality between OI
and binding behaviour. Specifically, by leverag-
ing dimension reduction methods (e.g., PCA),
we discover that there exists a low-rank sub-
space in the activations of LMs, that primarily
encodes the order (i.e., OI) of entity and at-
tribute. Moreover, we also discover the causal
effect of OI on binding that when editing rep-
resentations along the OI encoding direction,
LMs tend to bind a given entity to other at-
tributes accordingly. For example, by patching
activations along the OI encoding direction we
can make the LM to infer “Box Z contains the
stone” and “Box Z contains the map”. The code
and datasets used in this paper are available at
https://github.com/cl-tohoku/0I-Subspace.

1 Introduction

The ability of a model to track and maintain in-
formation associated with an entity in a context is
essential for complex reasoning (Karttunen, 1976;
Heim, 1983; Nieuwland and Van Berkum, 2006;
Barzilay and Lapata, 2008; Kamp et al., 2010). To
recall attribute information for a given entity in a
context, the model must bind entities to their at-

tributes (Feng and Steinhardt, 2023). For example,
given Sample 1 and 2, a model must bind the en-
tities (e.g., “Box Z”, “Box M”, “Box H”, “Alex”,
“John” and “Carl”) to their corresponding attributes
(e.g., “coffee”, “stone”, “map”, “bean”, “pie” and
“fruit”) so as to recall (or answer) such as what
is in “Box Z” or what is sold by “Alex” without
confusion. Binding has also been studied as a fun-
damental problem in Psychology (Treisman, 1996).

To uncover how Language Models (LMs) realize
binding in term of internal representation, Feng and
Steinhardt (2023) introduce a Binding ID mecha-
nism and state that LMs apply a abstract concept
called Binding ID (BI) to bind and mark Entity-
Attribute (EA) pairs (e.g., “Box Z” and “coffee”
in Sample 1, where BI is denoted as a numbered
square). They also claim that the BI is represented
as a vector to be added on the representation (or
activation) of a EA pair so that the common vec-
tor is used as a key clue to search attribute for a
given entity. However, they have not captured the
Ordering ID (OI) information from the entity (or
attribute) activations that causally affects binding
behaviour and thus BI information as well. Here,
Ol is defined as the input order (or ordering index)
of entities and attributes, no matter they are bound
by arelation (e.g., “is_in” in Sample 1) or not, such
as the indexing number in Sample 1 and Sample 3.
We can observe that in a 1E-to-1A bound context,
such as in Sample 1, BI and OI are interchangeable.

(1) Context: The coffeery) is in Box Zfg), the
stonery) is in Box M), the mappj is in Box
Hpy.
Query: Box Z contains the

(2) Context: The beanf is sold by Person
Alex[g), the piefy is sold by Person John(y,
the fruit[; is sold by Person Carl;.
Query: Person Alex[q; sells the

(3) Non-related Context: The coffeer; and
Box Z are scattered around, the stonery)
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Figure 1: Our main finding on Ordering ID (OI) subspace intervention. Patching entity (e.g., "Z") representations
along Ol direction (i.e., PC1) in activation space yields corresponding changes in model output.

is here and Box My is there, the mapy3
and Box H[3) are in different place. Query:
Box Z

Since binding is the foundational skill that under-
lies entity tracking (Feng and Steinhardt, 2023), in
this work, we take the entity tracking task (Kim and
Schuster, 2023; Prakash et al., 2024) as a bench-
mark to analyze the LM’s binding behaviour. Based
on the analysis of internal representation on this
task, we localize the OI information from the ac-
tiviations and provide a novel view of the BI mech-
anism. Specifically, we apply Principle Compo-
nent Analysis (PCA) as well as other dimension
reduction methods such as Independent Compo-
nent Analysis (ICA) ! to analyze the activations
of LMs, and which are empirically proven to be
effective. We discover that LMs encode (or store)
the Ol information into a low-rank subspace (called
OI subspace hereafter), and the discovered OI sub-
space can causally affect binding behaviour and
thus BI information as well. That is, we find that
by causally intervening along the OI encoding Prin-
ciple Component (PC), LMs swap the binding and
infer a new attribute for a given entity accordingly.
For example, as shown in Figure 1, by patching
activations along the direction (i.e., PC1), we can
make the LMs to infer “Box Z contains the stone”
and “Box Z contains the map” instead of “Box Z
contains the coffee”. Therefore, our findings extend
the previous BI based understanding of binding in
LMs (Feng and Steinhardt, 2023) by revealing the
causality between OI and binding.

Overall, our findings suggest that LMs encode

ISee Appendix (§A.2) and Appendix (§A.3) for details.

OI information into a subspace of LMs’ activa-
tions that primarily encodes the order index of
entities and attributes in a given context. What
is more, the discovered OI subspace plays a cru-
cial role in the in-context binding computation. In
addition, we find that such OI subspace that de-
termines binding is prevalent across multiple LM
families such as Llama2 (Touvron et al., 2023) (and
Llama3 (Al@Meta, 2024)), Qwenl.5 (Bai et al.,
2023) and Pythia (Biderman et al., 2023), and the
code fine-tuned LM Float-7B (Prakash et al., 2024).

2 Finding OI Subspace

In this section we describe our Principle Compo-
nent Analysis (PCA) based method to localize the
OI subspace in activations of LMs. As shown in
Figure 1, we firstly extract entity activation from
LMs. Given a LM (e.g., Llama2), and a collection
of texts which describes a set of EA pairs related by
a relation such as “is_in” in Sample 1, we extract
the activation of entity token (e.g., “Z”) in query
(denoted as x;) from certain layer 2 and construct
a activation matrix M, € R™*? for a relation r,
where n denotes the number of entities and d de-
notes the dimension of the activation. The row ¢ of
M, is the activation of an entity token (i.e., X;).
PCA has been applied for identifying various
subspace (or direction) such as the subspace encod-
ing language bias (Yang et al., 2021), truth value
of assertions (Marks and Tegmark, 2023) and sen-
timent (Tigges et al., 2023). Inspired by these stud-
ies, we choose PCA as our first attempt to localize
OI subspace. In addition, we also apply other di-

2See Appendix (§A.4) for the layer selection.
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Figure 2: Layer-wise Ol subspace visualization on
Llama2-7B, where “BI” primarily denotes OI.

mension reduction methods such as Independent
Component Analysis (ICA) to capture OI subspace,
and which are empirically proven to be effective.
See Appendix (§A.2) and Appendix (§A.3) for de-
tails.

We hypothesize that in a activation subspace,
entities with the same OI tend to cluster together
(w.r.t the ones with different Ols), even though
these entities have different semantic meaning, and
the OlIs are encoded as directions (or a PC) in the
subspace. For convenience, we number Ols in left-
to-right order, and the leftmost OI= 0.

Since PCA is applied to identify the principle
directions from a multidimensional space, we lever-
age PCA to capture OI subspace (or direction) from
activations of LMs. Specifically, the PCA of a
activation matrix is M, = UTZTVTT, where the
columns of V,. € R are principle directions of
M,.. We takes first ¢ columns of V. as the OI direc-
tion, denoted as B, € R%*¢,

3 OI Subspace Visualization

We adopt a subset of the entity tracking
dataset (Kim and Schuster, 2023; Prakash et al.,
2024), which contains n = 1000 samples, to create
layer (1) wise activation matrix M. We then uses
the M to extract the layer-wise OI subspace pro-

jection matrix B. € R%*2 to visualize the activa-
tions. Figure 2 shows the embedding visualization
on Llama2-7B, where each point represents the ac-
tivation of an entity projected via the B!, and the
colors represent OlIs. From which, we can observe
that middle layers, such as layer 8, have a clearly
visible direction along which OI increases, while
the others have tangled distribution.

We also observe similar pattern of distribution
on Llama3-8B, Float-7B (§A.5) and other LM fam-
ilies such as Qwenl.5 and Pythia (§A.6). This
indicates that LMs use the middle layers to en-
code OI information, and the finding is prevalent
across multiple LM families. This finding is also
consistent with the “stages of inference hypothe-
sis” (Lad et al., 2024) stating that the function of
early layers is to perform detokenization, middle
layers do feature engineering, and late layers map
the representations from the middle layers into the
output embedding space for next-token prediction.
According to the hypothesis, we would expect to
find the ordering feature most prominently repre-
sented in middle layers, which is exactly what the
visualization shows. We call this dimension that
represents OI as OI Principle Component (OI-PC).
In the following section, we apply causal interven-
tion on the OI-PC to analyze how OI-PC affect the
model output.

4 Causal Interventions on OI Subspace

By projecting the activation matrix M, into the OI
subspace, we have found a correlative evidence for
the existence of the direction (i.e., OI-PC) that en-
codes OI information. However, it is possible that
the OI information is encoded in the OI subspace
but has no effect on LMs’ binding behaviour.

In order to test if Ols are not only encoded in the
OI subspace, but that these representations can be
steered so as to swap the binding and change LM’s
output, in this section, we perform interventions
to analyze the causality. That is, we want to find
out if making interventions along OI-PC leads to a
change in LM’s binding computation.

4.1 Activation Patching

Activation Patching (AP) (Vig et al., 2020; Geiger
et al., 2020, 2021; Wang et al., 2022; Stolfo et al.,
2023; Heinzerling and Inui, 2024; Engels et al.,
2024; Hanna et al., 2024) has been recently pro-
posed to causally intervene computational graph
of a LM so as to interpret the function of a target
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Answer for # Step

Context Query 1 2 3 4 5 6
The coffee is in Box Z, the stone is in Box M, Box Z
the map is in Box H, the coat is in Box L, contains  ston o an
o . P stone a ma
the is in Box T, the is in Box E, the N ! I
the is in Box F.
The letter is in Box Q, the boot is in Box C, Box Q
L .. X
the fan is in Box N, the crown is in Box R, contains  boot fan )
o . .. 0( ar Crowlr
the is in Box E, the is in Box D, the
the is in Box K.
The cross is in Box Z, the ice is in Box D, Box Z
L .. X
the ring is in Box F, the plane is in Box Q, contains . - -
.« . .. 1ce ring ring
the is in Box X, the is in Box I, the - -
the is in Box K.

Table 1: Attributes inferred by Llama2-7B as a result of directed activation patching along OI-PC in the OI subspace

on the dataset of “r: is_in”’, where color denotes the BI.

computational node (or edge). The process of AP
usually involves preparing corrupted input, using
its activations to replace the corresponding ones ob-
tained from original input and analyzing the effect
on model output. Different with the common AP
setup, we realize AP by directly editing activations
along a particular direction (i.e., along OI-PC), sim-
ilar to the activation editing method of (Matsumoto
et al., 2023; Heinzerling and Inui, 2024; Engels
et al., 2024).

4.2 Setting

Dataset To explore the internal representation
that enables binding, we adopt the entity tracking
dataset (Kim and Schuster, 2023; Prakash et al.,
2024). The dataset consists of English sentence
describing a set of objects (here called attributes)
located in a set of boxes with difference labels (here
called entities), and the task is to infer what is con-
tained by a given box. For instance, when a LM is
presented with “The coffee is in Box Z, the stone
is in Box M, the map is in Box H, ... Box Z con-
tains the”, the LM should infer the next token as
“coffee”. Each sample involves 7 EA pairs. To eval-
uate the binding in various context, we also apply
the templates shown in Table 2 to generate other 5
datasets with different relation, where a; and e; de-
notes the attribute and entity, and they are sampled
from a fixed pool of 224 one-token objects (e.g.,
“dog”, “corn” and “cookie”) and 523 of one-token
names (e.g., “Alex”, “Juli” and “Dan”) respectively.
We sample n = 1000 context from each dataset to
run the following analysis.

Metrics We apply two evaluation metrics: logit
difference and logit flip. The logit difference metric
is introduced in Wang et al. (2022), which calcu-
lates difference in logits of a target token between

Template
1 The ay is sold by person ey, ..., the a; is ...,

ar is sold by person e7. Person e; is selling the

The ay is applied by person ey, ..., the a; is ...,
2 . . .

a7 1s applied by person e;. Person e; applies the

The ag is moved by person ey, ..., the a; is ...,
3 .

a7 is moved by person e7. Person e; moved the
4 The ag is brought by person ey, ..., the a; is ...,

a7 is moved by person e7. Person e; brings the
5 The ay is pushed by person e, ..., the a; is ...,

ar is pushed by person e7. Person e; pushes the

Table 2: Templates of Dataset.

original and intervened setting. The "logit flip" ac-
curacy metric is introduced by Geiger et al. (2022),
which represents the proportion of candidate tokens
in model output after a causal intervention.

4.3 Results: Direct Editing OI Subspace

We hypothesize that LMs encode OI information
into a low-rank subspace that causally affect BI
information and thus binding behaviour as well.
Therefore, we wonder if a LM changes the binding
behavior, when adding a particular value v (called
step hereafter) along the OI-PC mentioned in Sec-
tion (§2) 3. For example, if we add one unit of
v on the OI-PC of ey, the LM will reset its BI as
1 and bind attribute a; to the entity based on the
similarity of BI so that infers the a; as the attribute
of eg instead of the original ag. Similarly, adding
two units of v will make the LM infer ay for eg,
and so on. We intervene via the Equation 1, where

3where PC2 is assigned a fixed value, which is a hyperpa-
rameter.
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(d) r: move

(e) r:bring

Intervention Step

(f) r: push

Figure 3: Logit Difference (LD) for OI-PC based intervention across datasets on Llama2-7B, where x axis denotes
the number of intervention steps on e, y axis does the LD, BI_i represents each target attribute and the light yellow
bottom line indicates the LD of original attribute (i.e., ag). Here, [ = 8, v = 2.5, and o = 3.0.

Xo,; 18 the original activation of eq (i.e., the leftmost
entity) in layer [, xa"l is the intervened activation,
B, is the OI subspace projection matrix mentioned
in Section (§2), « is a hyper-parameter to scale the
effect of intervention and 5 (0 < 8 < 6) denotes
the number of steps.

XE’;J =Xg, + ozBrT(BTXOJ + pv) (D

Table 1 lists several examples under the OI
subspace intervention on the entity tracking
dataset (Kim and Schuster, 2023; Prakash et al.,
2024). We also list the examples from other
datasets in Appendix (§A.7). We can see that
when adding 1 step along OI-PC, the model selects
“stone” for entity “Z” instead of its original attribute
“coffee”. Similarly, when the step is doubled, the
model will select attribute “map” for the entity, and
so on. This indicates that changing the value along
OI-PC can induce the swap of attribute. In addi-
tion, we notice that some attributes are repeated or
skipped after the intervention. The reason is that,
as shown in Figure 2, Ol is represented as a contin-
uous range (e.g., [ao, bo], [a1, b1], [a2,b2], ...) on
OI-PC, implying the points in the same range share
O], and if a sample (e.g., its OI-PC is s;) is still
in the range (e.g., ag < (s; + v) < bp) or skip its
neighbouring range (e.g., az < (s; +v) < be) after
the intervention (e.g., s; +v), its OI will be the same
or added by 2, and thus the binding information
will change accordingly.

Besides the qualitative analysis, we also conduct
quantitative analysis for the causality between the
OI subspace based AP and the binding behaviour
of LMs. We plot mean-aggregated effect of the OI-
PC based AP across multiple datasets in Figure 3.
Figure 3 indicates how the Logit Difference (LD)
of each attribute changes as the step increases. We
can observe that as the number of steps increases,
LD of the original attribute decreases. In contrast,
LD of other attributes gradually increase until a
certain point and then gradually decrease. Given
a candidate attribute, its LD peak roughly corre-
sponds to the number of steps that is equal to its
BI. For instance, when adding 3 steps, the points of
BI_3 (i.e., attributes of BI= 3) achieve the highest
LD score. This indicates that by adjusting the value
along the OI-PC, we can adjust BI information and
thus increase the logit score of the corresponding
attribute.

Similarly, Figure 4 illustrates the relation be-
tween the number of steps and the logit flip, which
gauges the percentage of the predicted attributes
under an intervention. Figure 4 shows that as the
step increases, the proportion bar becomes darker,
it means that the model promotes the proportion
of the corresponding attribute in its inference. For
instance, when adding 3 step on the subspace, the
as (i.e., BI_3) becomes the major of the answers.
This proves that the OI-PC based interventions can
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causally affect Bl information as well as the compu-
tation of Binding in a LM. See Appendix (§A.10)
for the results on Llama3-8B, Appendix (§A.6) for
the results on Qwen1.5-7B and Pythia-6.9B, and
Appendix (§A.9) for the results on Float-7B.

4.4 Results: Activation Steering on OI
Subspace

Inspired by the research on Activation Steering
(AS) (Turner et al., 2023), we apply an AS method
to verify the importance of the OI subspace on
LM’s binding behaviour. Specifically, we use the
following Equation 2 to extract a subspace steering
vector so_,p;, Which is proposed to swap BI from 0
to bi, where n is the number of target entities, X;n !
represents the activation of entity e; from layer [,
and its Bl is bi. We intervene via Equation 3 and
assume that by adding sy_,p; on the original activa-
tion xg ;, we can increase the LD and the proportion
of the attribute ay;. Figure 5 shows the results on
the entity tracking dataset (Kim and Schuster, 2023;
Prakash et al., 2024). (Appendix (§A.8) shows the
results on other datasets) These results indicate that
AS can achieve the similar tendency as the direct
value intervention mentioned in Section (§4.3). For
instance, adding sy_,3, which is supposed to swap
BI from O to 3, can increase the LD of a3 and its
proportion in the predicted answers. The consistent
tendency with the results of the direct subspace edit-
ing, shown Figure 3 and Figure 4, further illustrates
that the discovered OI subspace can causally affect
BI information and binding behaviour. Therefore,
OI subspace plays an important role when LMs
perform in-context binding computation.

1 & , ,
soobi = — ), (Brxiyy — Brxyy) ()
=1
x5, = X0, + aB'so 3)

4.5 OI Subspace and Position

In this section, we discuss the relationship between
the OI subspace and Positional Information (PI),
which is namely the postion_ids of input tokens.
As mentioned in Section (§4.3), the discovered
subspace can causally determine BI information.
Therefore, direct intervention on the subspace can
swap the answer of a LM. However, one counter
hypothesis is that the subspace is not used for stor-
ing Ol information but the PI of attributes, and thus

Input (original)

p0 . pl p2  p3 pd p5

p3,.—19
Cr ay rey,a] re),ay rey . e r 1

0  pl p2  p3 ph . pb 5 _
Cy airel, d"ref” ab reb’. e’ r=17

Input (with pseudo)

v p0, plo p2  p3 o pd . p5 p5 -1
Cl ayTeny GhgTeny, a) rep . el rt7?

1 PO Pl P2, p3 o pd PS5 p5 . —1
Cy aygregy, o] re),ay reg’. ey r 7

Table 3: Simplified expression of original inputs and the
one modified with pseudo relation, which is proposed to
equalize PI for PCA analysis, where af) Ly 682 represents
a relation such as “the apple is in Box C”, and 66’2
denotes an entity with OI of 0 and PI of p2, €5’ 1 ?
denotes the query on entity e, such as “Box C contains

the”.

Input (original)

“The apple is in Box E, the bell is in Box F, ...”

Input (with filler words)

“I will find out that the apple is in Box E, the bell is
in Box F, ...

Table 4: An example of the dataset with filler words “/
will find out that”.

the direct intervention merely changes the PI of
answer token so that the LM applies the new PI to
generate corresponding token. In other words, the
OI space (or OI-PC) might have high correlation
with PI but not OL

To prove the independence between Ol subspace
and PI, we create three datasets, the first one is by
extending the original dataset with pseudo relation,
as shown in Table 3, the second one is by prefix-
ing the original dataset with filler words(e.g., “It
can be seen that”) and third one is by inserting a
sequence of interjection(e.g., “ah, ah, ...”), as listed
in Table 12.

New Dataset with Pseudo Relation. In Table 3,
Py r €2y refers to a pseudo relation, which is a
fixed expression, such as “the PC is in Box Z”. The
pseudo relation is applied to adjust the PI while
keeping the OI. For instance, in Table 3, adding
one or two aig re% before a1 ey (ie., Ch and
C{) does not affect the OI of e; but its PI, because
e is still the second unique entity from the left
(i.e., its ordering index OI= 1), but its PI is p3
and pb respectively. Using the pseudo relation, we
create the data in a manner that the target entity for
activation analysis (e.g., e/ and €4”) have the same
PI but different OI, such as C] and C’ in Table 3.
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(d) r: move

(e) r: bring

(f) r: push

Figure 4: Logit flip for OI-PC based intervention across datasets on Llama2-7B, where x axis denotes the number of
intervention steps on ey, y axis does the proportion of each inferred attribute in model output.

werage Logi

Stearing sep Stceting siep Steering sep - m e m e SRR

Figure 5: Logit Difference and Logit Flip for activation
steering on the entity tracking dataset (i.e., r: is_in),
where x axis represents the intervention of sg_,p;-

We apply the method mentioned in Section (§2)
% b

on the set of activations {e]”,eb’ ...}, where

e—ﬁ’g denotes the activation of e; in query (i.e.,
e€5 r~1 ?), so as to capture the OI difference and
exclude the PI difference, because they share the
same PI (i.e., P5) but different OI (i.e., 1, 2, ...).

Then we compare its OI subspace with the original

o2 s

one (e.g., {e]”, €5 ,...}) to analyze how the distri-
bution of OI subspace changes after removing the
PI variance. Figure 6 visualizes the OI subspace
distribution, where the light colored points denote
the original distribution, and the dark ones are from
the new one with equalized PI. We can observe that
after removing the PI difference, the distribution
is still similar to the original one that there is a
clearly visible direction along which OI increases.
This illustrates that our PCA based method can cap-
ture OI information, that is, along the direction of
OI-PC, and it does not causally depend on PI.

New Dataset with Filler Words. The dataset is
created by adding Filler Words (FW) with various
length, such as “OK”, “I see that” and “There is
no particular reason”, in front of the entity tracking
dataset (Kim and Schuster, 2023; Prakash et al.,
2024), as shown in Table 4. Since the length (i.e.,
the number of tokens) of FW directly changes the
PI of its following entities and attributes without af-
fecting their Ols, we take the length as the measure
of intervention on PI and apply Spearman’s rank
correlation p to calculate the correlation between
the length (denoted as PI) and the OI-PC value.
Figure 7 shows p between PI and OI-PC as well as
between OI and OI-PC. We can observe that OI-
PC has high p with OI but almost zero p with PI,
indicating that the discovered OI-PC is highly cor-
related with OI information but independent on PI.
Therefore, the OI-PC does not simply encode abso-
lute token position. See Appendix (§A.11) for the
analysis on the New Dataset with Interjections.

4.6 Consistency of OI Subspace

The BI mechanism (Feng and Steinhardt, 2023)
mentions that a LM represents a related EA pair
through the consistency of their BI information.
This naturally raises a research question that if
there is the consistency between OI-PC of entities
(e.g., OI-PC of “Box Z” in Sample 1) and of their
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r: sell r: apply

r: bring r: push

. move

BI_1(Ori) BI_2(Ori) BI_3(Ori) BI_4(Ori)
® B 1(Pse) @ Bl 2(Pse) @ BI3(Pse) @ BI_4(Pse)

( BI_5(Ori)
(
(
(

BI_5(Pse)
BI_6(Ori)
BI_6(Pse)

BI_7(Ori)
BI_7(Pse)

Figure 6: Embedding visualization for activation with
equalized PI, where “Ori” denotes the distribution of
original dataset, while “Pse” denotes the distribution of
the new dataset with pseudo relation.

Correlation

Figure 7: Spearman’s rank correlation between OI-PC
and PI (or OI), where “PC3:” denotes the ¢-th PC of the
OI subspace and “PI” is the length of FW.

corresponding attributes # (e.g., OI-PC of*coffee”).

To analyze the consistency of OI-PC between a
related EA pair, we prepare four alternative datasets
with various binding pattern as shown in Table 6.
We use the distance on OI-PC to measure con-
sistency and show partial result of mutual OI-PC
based distance in Figure 8. We can observe that po-
tentially related EA pairs (e.g., “E0_0" and “A0_0")
tend to have lower OI-PC based distance than arbi-
trary pairs in all binding patterns, indicating that to
some extent, OI-PC based distance could be seen
as an important feature to represent binding. To
further illustrate its significance, we attempt to clas-
sify related EA pairs only relying on their OI-PC
based distances. Specifically, we search an optimal
threshold value from a development set, and which
is applied to classify potentially related EA pairs in
a testing set. The results are shown in Figure 9. We

“The OI-PC of attribute is extracted from the query of
attribute such as “(context) The coffee is in”.

Input (original)

“The apple is in Box E, the bell is in Box F, ...”

Input (Non-related)

“I see apple, somewhere else there is Box E,
the bell and Box F are scattered around, ...”

Table 5: An example of the dataset with non-related
expression.

Input (7A-7E)

“A() isin E(), A1 is in El, A2 is in EQ, A5 is in E3,
A4 is in E4, A5 is in E5, AG is in E@.”

Input (7A-3E)

“A() isin E[), A1 is in E(), AQ is in EO, A3 is in El,
A4 is in E], A5 is in EQ, AG is in EQ.”

Input (7A-2E)

“AO isin Eo, A1 isin Eo, A2 isin Eo, A3 is in El,
A4 is in El, A5 is in El, AG is in El.”

Input (7A-5E)

“AO is in Eo, A1 is in Eo, A2 is in Eo, A3 is in El,
A4 is in EQ, A5 is in Eg, A@ is in E4.”

Table 6: Simplified expression of the datasets with vari-
ous binding pattern, where “7A-3E” represents the pat-
tern containing 7 attributes and 3 entities.

can observe that the performance of the OI-PC (i.e.,
“PC1”) based distance is significantly better than
other PCs across all binding patterns, indicating
that comparing to other PCs, the OI-PC could be
used to compute binding information.

4.7 OI Subspace and Relatedness

Binding of a EA pair means that the EA pair is
bound by a binding relation such as property and
location (Treisman, 1996). In turn, there is no
binding when the EA pair is unrelated in its con-
text. This raises a research question that if the
correlation between OI-PC of attributes (e.g., OI-
PC of “apple”) and of their corresponding entities
(e.g., OI-PC of “Box E”) represents the relatedness
namely the existence of a relation.

In order to uncover the relationship between OI-
PC and the relatedness, we create an alternative
dataset by converting relational expression of the
entity tracking dataset (Kim and Schuster, 2023;
Prakash et al., 2024) into non-related one. Specif-
ically, we prepare a set of non-related expression
templates and randomly select one to replace the
original expression of relation as shown in Table 5.
We can observe that the template could make a
target EA pair (e.g., “Box E” and “apple”) semanti-
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(a) TA-TE (b) 7A-3E

(c) TA-2E

(d) 7A-SE

Figure 8: : OI-PC based distance heat map, where
“Rank Distance” denotes the distance based on the rank
of OI-PC value, “Ai_" (or “E:_") is a sample of At-
tribute (or Entity) with OI= i, each cell represents
the distance between a corresponding EA pair, and the
darker the color, the smaller the distance is.

cally unrelated but retain their OI (e.g., the OI of
“apple” and “bell” are still 0 and 1 respectively). We
select Spearman’s rank correlation p as the corre-
lation metric and compare the p of the non-related
dataset with the related one in the Figure 10.

We can observe that p of non-related dataset
is slightly lower than the related (i.e., original)
one, indicating that the OI-PC might contain lim-
ited relational information so that removing it can
marginally decrease the p. However, there is still
strong correlation between the non-related (or non-
bound) entity attribute pair, indicating that the OI-
PC primarily encodes the OI information but not
binding information specifically the information of
binding relation.

5 Related Work

Linear Representation Recent research found
that sequence models trained only on next to-
ken prediction linearly represent various seman-
tic concepts including Othello board positions (Li
et al., 2022; Nanda et al., 2023), the truth value
of assertions (Marks and Tegmark, 2023), senti-
ment (Tigges et al., 2023), and numeric values
such as elevation, population, birth year, and death
year (Gurnee and Tegmark, 2023; Heinzerling and
Inui, 2024). Continuing this line of research, in
this work, we discover that multiple LMs such as
Llama2 can also linearly encode OI along a OI
increasing direction in the activations.

Always True
PC3.D
PC3.RD
PC2.D
PC2.RD
PC1D
PC1RD

0.8

0.6

0.4
III|

TA-TE 7A-3E 7A-2E TA-5E

F-score

Figure 9: OI-PC distance based classification results,
where “Always True” denotes the baseline that predicts
all candidates as True, “PC:¢ D” denotes the Hamming
distance on ¢-th PC of the OI subspace, and “PC: RD”
denotes the distance calculated by the rank of PCi’s
value among samples.

lated
W ves
n

'
Rel
.
”
c o
3
O o4
. H

Figure 10: OI-PC based correlation between attributes
and their corresponding entities, where “PCi” denotes
the i-th PC of the OI subspace, “Yes” and “No” repre-
sent the related (i.e., original) and non-related dataset
respectively.

See Appendix (§A.1) for additional related work.

6 Conclusion and Future Work

In this work, we study the in-context binding, a fun-
damental skill underlying many complex reasoning
and natural language understanding tasks. We pro-
vide a novel view of the Binding ID mechanism
introduced by Feng and Steinhardt (2023) that there
exists a low-rank subspace in the hidden state (or
activation) of LMs that primarily encodes the order-
ing information and which is used as the prototype
of Bls to causally determine binding. Our future
work includes: 1. the analysis of OI subspace in
a more realistic setting; 2. the study of interaction
between in-context binding and factual knowledge
learned from pretraining; 3. OI subspace based
mechanistic analysis.
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Limitations

The limitations of our research include the follow-
ing points: 1. We only analyze OI subspace on
the attribute prediction task, but not on the entity
inference task (i.e., given an attribute to infer its
entity); 2. Although PCA based analysis is empiri-
cally proven to be effective, we lack the theoretical
analysis on why PCA could capture OI subspace;
3. We lack the analysis on how predicate (or rela-
tion) affect the OI subspace, and how the results
of OI subspace based intervention differ with the
type of predicate; 4. Although we use a publicly
available entity tracking dataset, it is still a syn-
thesized dataset. Therefore, for uncovering how
LM:s bind and track entity in reality, it is necessary
to analyze the binding via a real world dataset; 5.
We only analyze the activations in the query part
instead of in the context part, thus this work can
not explain how LMs encode Ol in the context and
how it is used for OI encoding in query part and
how it contributes the binding computation; 6. We
infer the change of BI information via the result of
model output but the interaction between OI and
BI information is not directly observed. This re-
search thus lacks the mechanistic interpretation on
the interaction between them; 7. We only analyze
binding from the perspective of representation and
localize OI subspace. However, we have not an-
swered what is the mechanism that generates the
subspace and what is the circuit that utilizes the
subspace for binding.

Ethical Statement

The existing dataset (Kim and Schuster, 2023;
Prakash et al., 2024) and LMs (i.e., Llama2-7B,
Float-7B, Llama3-8B, Qwenl.5-7B and Pythia-
6.9B) are applied according to their intended re-
search purpose. The synthetic datasets we adopted
in this work are automatically created by strictly
following the rule (or pattern) of the existing
dataset, where the entities and attributes are sam-
pled from a pool of wide variety of one-token
names and concepts. Therefore, there is no ethical
concern on human annotation bias and semantic
biases.
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A Appendix
A.1 Other Related Work

Knowledge Localization Many works aim to localize and edit factual relations (e.g., “capital of”’) that
LMs learn from pretraining and are stored into model weights (Geva et al., 2020; Dai et al., 2021; Meng
et al., 2022; Geva et al., 2023; Hernandez et al., 2023). Different from this line of research, this work
studies in-context representations of relations and analyzes how they are represented in model activations.

Mechanistic Interpretability Notable progress has been made in uncovering circuits performing
various tasks within LMs (Elhage et al., 2021; Wang et al., 2022; Wu et al., 2024). Recently, Prakash et al.
(2024) identify the circuit for entity tracking task. Feng and Steinhardt (2023) introduce a Binding ID
Mechanism for explaining the binding problem, state that LMs use the abstract concept BI to internally
mark entity-attribute pairs. However, they have not captured the OI information from entity activations
that directly determines the binding behaviour.

A.2 Partial least squares regression and PCA

Besides PCA, a commonly used unsupervised Dimension Reduction (DR) method, we also attempt Partial
Least Squares regression (PLS) (Wold et al., 2001), a supervised DR method. PLS extracts a set of ordered
latent variables that maximizes the co-variability between the features (e.g., activations) and the scores to
be predicted (e.g., OI). We perform PCA and PLS on a development set and compare their regression cures
in Figure 11. We can observe that both the first PCA component and the first PLS direction contain almost
all information about OI of target entity, because their regression score is close to one. The consistency
indicates that PCA is an effective method to capture OI subspace.
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Figure 11: Regression curves for PLS and PCA.
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A.3 ICA for OI Subspace

Independent Component Analysis (ICA) is a statistical method to reveal hidden subcomponent from
multivariate signal. Similar to PCA, ICA is utilized as a dimension reduction method. We apply ICA
to analyze the activations of entities and visualize the subspace in Figure 12. We can observe that the
distribution is generally similar to the one of PCA. In addition, we also conduct causal intervention (i.e.,
activation steering) based on the subspace and present the results in Figure 13. We can observe that the
results are also similar to those from PCA based intervention. This indicates that besides PCA, ICA can
also be used as a computational method to capture OI subspace.
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Figure 12: Subspace visualization from ICA on Llama2-7B, where “BI” primarily denotes OI.
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Figure 13: Logit Difference and Logit Flip for ICA based activation steering on the entity tracking dataset (i.e., I:
is_in) on Llama2-7B.
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A.4 Layer-wise Intervention

To localize the layer that contributes to binding behaviour, we perform layer-wise OI-PC based intervention
mentioned in Section (§4.3) on our development set. In Figure 14, we can observe that OI subspace
from middle layers (i.e., from layer7 to layer15, especially layerS8) significantly affect the computation of
binding, and interestingly, these layers also overlap with the ones that clearly encode OI information, as
shown in Figure 2. Based on the analysis, we select the layer to perform activation patching.

Average Logit Difference

Layers

Layer7-15
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(a)
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Figure 14: Average Logit Difference (LD) and logit flip for layer-wise OI-PC based intervention on Llama2-7B,
where x axis denotes the layer, the colored zone indicates the layers that are sensitive to the intervention, and the
vertical line represents the most effective layer (i.e., Layer 8), Y axis in Figure 14a and Figure 14b denotes the
average LD and the proportion of inferred attributes (excluding the original one) respectively.
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A.5 Layer-wise Embedding Visualization on Llama3-8B and Float-7B
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Figure 15: Layer-wise OI subspace visualization on Llama3-8B and Float-7B.
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A.6 OI Subspace on other LM Families
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Figure 16: Layer-wise OI subspace visualization on Qwen1.5-7B and Pythia-6.9B.
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Figure 17: Logit Difference (LD) and Logit Flip (LF) for activation patching on the entity tracking dataset (i.e., r:
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A.7 Case Study on Llama2-7B

Answer for # Step
Context Query 1 2 3 4 5 6

The bugis sold by person Esta,

the spawn is sold by person Fritz,
the wine is sold by person Inga,
the paste is sold by person Ward,
the is sold by person Albert,
the is sold by person Davis,
the is sold by person Val .

Person Esta

. . Spawn wine paste
is selling the I I

The virus is sold by person Anna,
the fur is sold by person Earl,

he pill is sol son Flor,
the pill is sold by person Flor, Person Anna

the bean is sold by person Roy, . . fur pill
the is sold by person Kam, is selling the

the is sold by person Young,

the is sold by person Billy.

The root is sold by person Carl,
the mouse is sold by person Marco,

the fruit is sold by person Luke, Person Carl

the bug is sold by person Paul, S mouse  fruit bug
the is sold by person Inga, is selling the

the pie is sold by person Pok,

the is sold by person George.

Table 7: Attributes inferred by Llama2-7B as a result of directed activation patching along OI-PC on the dataset of
“r: sell”, where color denotes the BI.

Answer for # Step
Context Query 1 2 3 4 5 6

The carbon is applied by person Wei,
the liquid is applied by person Season,

the bath is applied by person Robert, Person Wei

the fog is applied by person Daniel, . liquid bath fog
R . lies th “

the is applied by person Roma, apphes the

the is applied by person Ara,

the is applied by person Jorge

The rain is applied by person Kurt,

the gauge is applied by person Jon,

the fiux'l is apphed by person Newton, Person Kurt ‘

the jet is applied by person Dan, gauge  dust jet

the is applied by person Alfred, applies the

the is applied by person Mike,
the is applied by person April

The lamp is applied by person Angel,
the bucket is applied by person Carl,
the canvas is applied by person Bert,
the cargo is applied by person Otto,
the is applied by person Johnny,
the is applied by person John,
the is applied by person Era.

Person Angel
applies the

bucket canvas cargo

Table 8: Attributes inferred by Llama2-7B as a result of directed activation patching along OI-PC on the dataset of
“r: apply”, where color denotes the BI.
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Context

Answer for # Step

Query 1

3 4

The lip is moved by person Mack,
the tract is moved by person Sommer,
the pen is moved by person Son,

the tip is moved by person August,

the bat is moved by person Monte,
the is moved by person Marco,
the is moved by person Paul.

Person Mack

tract
moved the

pen

tip

The mask is moved by person Jules,
the timer is moved by person Ward,
the bullet is moved by person Ana,
the eye is moved by person Val,

the is moved by person Andy,
the is moved by person Arnold,
the is moved by person Betty.

Person Jules

timer
moved the

bullet

The mask is moved by person Cole,
the neck is moved by person Donald,
the pad is moved by person Beth,
the cone is moved by person Jorge,

the is moved by person Lou,
the is moved by person Alfred,
the toe is moved by person Edward.

Person Cole

neck
moved the o

pad

cone

Table 9: Attributes inferred by Llama2-7B as a result of directed activation patching along OI-PC on the dataset of
“r: move”, where color denotes the BI.

Context

Answer for # Step

Query 1

3 4

The creature is brought by person Tam,
the guitar is brought by person Frank,
the dress is brought by person Stuart,
the block is brought by person Victor,
the is brought by person David,
the is brought by person Mack,
the is brought by person Roger.

Person Tam
brings the

guitar

dress

block

The boat is brought by person Luke,
the pipe is brought by person Clara,
the pot is brought by person Han,
the bill is brought by person Chi,

Person Luke

brings the pipe

pot

bill

the is brought by person Scott,

the is brought by person Henry,

the is brought by person Morris

The fan is brought by person Van,

the note is brought by person Clara,

the block is brqughl by person Alex, Person Van

the newspaper is brought by person Peg, brings the note  block
the is brought by person Jan,

the car is brought by person Pok,

the is brought by person Golden.

Table 10: Attributes inferred by Llama2-7B as a result of directed activation patching along OI-PC on the dataset of
“r: bring”, where color denotes the BI.
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Answer for # Step
Context Query 1 2 3 4 5 6

The load is pushed by person Mike,
the atom is pushed by person Mira,

the tin is pushed by person Juli, Person Mike

the stud is pushed by person Sam, atom  tin stud
the is pushed by person Pia. pushes the

the is pushed by person Leo,

the is pushed by person Pat.

The mud is pushed by person Thomas,
the heavy is pushed by person Ralph,
the tile is pushed by person Pierre,

the import is pushed by person Perry,
the is pushed by person Robert,
the is pushed by person Kurt,

the is pushed by person Ernest.

Person Thomas

pushes the heavy tile import

The bed is pushed by person Fran,
the lever is pushed by person Lan,

the cord is pushed by person Paris, Person Fran

the vent is pushed by person Gene, ushes the lever cord  vent
the is pushed by person Marie, pushes
the is pushed by person Asia,

the car is pushed by person Lang.

Table 11: Attributes inferred by Llama2-7B as a result of directed activation patching along OI-PC on the dataset of
“r: push”, where color denotes the BI.
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A.8 Activation Steering on Llama2-7B
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Figure 18: Logit Difference (LD) for OI subspace based activation steering across datasets on Llama2-7B, where x
axis represents the intervention of sg_,p; on the activation of ¢y. Here, [ = 8 and o = 1.25.
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Figure 19: Logit flip for OI subspace based activation steering across datasets on Llama2-7B, where x axis represents

the intervention of sg_,;; on the activation of ¢e.
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A.9 Results on Fine-Tuned LM

Kramar et al. (2024); Kim et al. (2024) claim that the code fine-tuned LM, such as Float-7B (Prakash
et al., 2024) outperforms the pretrained LM on the entity tracking task (Kim and Schuster, 2023; Prakash
et al., 2024). Since the code fine-tuned LM performs well on the entity tracking task that requires the
OI subspace based computation, we hypothesize that OI subspace also exists in the code fine-tuned LM
and the intervention along OI-PC will causally affect the model output. To prove the hypothesis, we
conduct the intervention on Float-7B and show results in Figure 20 and Figure 21. We found that the OI
subspace based intervention on Float-7B achieves the similar results as on Llama2-7B, indicating that the
OI subspace not only exists in the pretrained LM but also in the fine-tuned one. In addition, adding the
same step value (i.e., v) on Float-7B will achieve higher LD value than Llama2-7B, indicating that the
code fine-tuned LM is more sensitive to the OI subspace based intervention. For instance, the maximum
LD of a4 in the former is around 10, and it is 2 times larger than the one in the latter, which is around 5.
This might partially explains why the code fine-tuned LM performs better than the original one, because
code fine-tuning might enhance the function of OI subspace so that it is more sensitive on the intervention
and more effective on the in-context entity tracking task.
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Figure 20: Logit Difference (LD) for OI-PC based intervention across datasets on Float-7B, where x axis denotes
the number of intervention steps on eg, y axis does the LD, BI_i represents each target attribute and the light yellow
bottom line indicates the LD of original attribute (i.e., ag). Here, [ = 10, v = 2.55, and o = 5.0.
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Figure 21: Logit flip for OI-PC based intervention across datasets on Float-7B, where x axis denotes the number of
intervention steps on ey, y axis does the proportion of each inferred attribute in model output.
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A.10 Activation Patching on Llama3-8B
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Figure 22: Logit Difference (LD) for OI-PC based intervention across datasets on Llama3-8B, where x axis denotes
the number of intervention steps on eg, y axis does the LD, BI_i represents each target attribute and the blue line
indicates the LD of original attribute (i.e., ag). Here, [ = 10, v = 0.65, and o = 2.0.
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Figure 23: Logit flip for OI-PC based intervention across datasets on Llama3-8B, where x axis denotes the number
of intervention steps on e, y axis does the proportion of each inferred attribute in model output.
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A.11 New Dataset with Interjections

The dataset is created by inserting a sequence of interjections after the first attribute entity pair, as
illustrated in Table 12. Since there is no BI information in the interjection (e.g., j7%), adding it only
changes the PI of its following entities and attributes. We set the number of interjections as that the PI of
last interjection token is larger than the last PI of its original input (e.g., pi > p5 in Table 12).

Based on this dataset, we conduct the same intervention on its OI subspace, as mentioned in Section
(§4.3). The counter argument is that the subspace only captures Position Information (PI), and the

intervening step only changes the PI information. Specifically, adding one unit of v on g might convert
the PI of target entity from pl to p3, and p3 is the PI of ey, and its attribute is a1, as shown in Table 12,
and thus the LM swaps the answer from ag to a;. If it is true, then the same intervention will not change
the answer on the new dataset, because following the counter argument, after adding one unit of v on

g , the PI of target entity becomes p3, and p3 is the PI of ;73 (i.e., an interjection token). The LM thus

would not select a; as its answer. However, the results on Figure 24 and Figure 25 show that the subspace
intervention on the new dataset achieves similar results as the original one, as shown in Figure 3 and
Figure 4, proving the counter argument wrong and indicating the independence between OI subspace and
PIL

Input (original)

p0  pl p2  p3 _pd PS5 pl, —1
ay ey, a; re;,ay ey . ey r 7

Input (with interjection)

p0 . pl .p2 . .p3  .pi pitl | pitl pl —1
ag rey, P P gPay  Trel . eg T 7

Table 12: Simplified expression of original input and the one modified with a sequence of interjections, where ;73
denotes an interjection j, such as “ah”, with position of p3, which is also the position of 611’3 in the original input.
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Figure 24: Logit Difference for activation patching on the dataset with interjections. Here, [ = 8, v = 2.5, and
a = 3.0.
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Figure 25: Logit Flip for activation patching on the dataset with interjections.
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