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Abstract

Recent advancements in language and vision
assistants have showcased impressive capabili-
ties but suffer from a lack of transparency, limit-
ing broader research and reproducibility. While
open-source models handle general image tasks
effectively, they face challenges with the high
computational demands of complex visually-
situated text understanding. Such tasks often
require increased token inputs and large vision
modules to harness high-resolution informa-
tion. Striking a balance between model size
and data importance remains an open question.
This study aims to redefine the design of vision-
language models by identifying key compo-
nents and creating efficient models with con-
strained inference costs. By strategically formu-
lating datasets, optimizing vision modules, and
enhancing supervision techniques, we achieve
significant improvements in inference through-
put while maintaining high performance. Ex-
tensive experiments across models ranging
from 160M to 13B parameters offer insights
into model optimization. We will fully open-
source our codebase, models, and datasets at
https://github.com/naver-ai/elva.

1 Introduction

Recent advancements in integrating Large Lan-
guage Models (LLMs) with computer vision have
led to the creation of sophisticated Language and
Vision Assistants (Liu et al., 2023b, 2024c; Kim
et al., 2023a; Laurencon et al., 2024b,a). These
systems are capable of interpreting text within im-
ages, enabling them to excel in complex tasks
requiring both visual and textual understanding.
Notably, models like GPT-4(V) (OpenAl, 2023)
demonstrate a range of sophisticated capabilities,
including visually-situated Natural Language Un-
derstanding (NLU) tasks, positioning them as pow-
erful assistants. However, these models also face
significant challenges related to transparency and
accessibility, limiting broader utilization.
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Figure 1: Graphical comparison illustrating av-

erage score against latency and memory con-
sumption for various models. Scores are derived
from eight benchmarks: DocVQA (Mathew et al.,
2021), ChartQA (Masry et al.,, 2022), Infograph-
icVQA (Mathew et al., 2022), SEED-IMG (Li et al.,
2024b), SEED-2-Plus (Li et al., 2024a), MMStar (Chen
et al., 2024), ScienceQA (Lu et al., 2022), and Hal-
lusionBench (Guan et al., 2024). See Section 4.2 for
benchmark details. ELVA excels with high performance,
reduced latency, and lower memory usage. Right: Per-
formance improvements from LLaVA to ELVA at the
7B scale, achieved through strategies in Section 4.

Open-source alternatives such as LLaVA (Liu
et al., 2023b, 2024c) have emerged to address these
issues. However, as these models grow in com-
plexity, concerns about their reproducibility and
resource efficiency persist. Some open-source mod-
els provide only the model weights without com-
prehensive specifications, making replication and
use more challenging.

In the fast-evolving realm of Vision-Language
Models (VLMs), simply expanding model size and
consuming more resources does not necessarily
enhance practical utility. It is crucial to strike a
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balance between high performance and resource ef-
ficiency to democratize access to advanced VLMs.
Particularly, inference costs are a significant con-
cern for practitioners developing real-world appli-
cations. Despite the importance of this balance,
key elements contributing to VLM success are still
not fully explored.

Traditionally, to enhance the performance, many
VLMs have increased their model resolution, often
leading to larger and more resource-intensive mod-
els. In this work, we challenge this approach by
introducing ELVA (Efficient Language and Vision
Assistant), a suite of VLMs designed to main-
tain high performance while reducing inference
costs. While we do increase training costs to a
manageable extent, the primary research target of
ELVA is to create models capable of handling high-
resolution tasks with low inference costs.

Our key contributions are as follows:

1. Efficiency and Reproducibility: We present
ELvA, an efficient and scalable model archi-
tecture trained on open-source data, demon-
strating superior reproducibility and cost-
effectiveness as shown in Figure 1.

2. Empirical Validation: We conduct thorough
experiments to validate the effectiveness of
ELVA’s primary components.

3. Model Scalability: We develop ELVA ver-
sions ranging from 160M to 13B parameters,
showcasing its scalability and adaptability.

4. Dataset Contributions: To test ELVA as a
document assistant, we introduce two new
datasets, CORD-Instruct and Parsing-Bench.

5. Open-Source Initiative: To foster further
community research and ensure model re-
producibility, we will fully open-source the
trained models and datasets from this study.

Our ultimate goal is to shed light on the complex-
ities of VLMs, helping readers identify the critical
factors driving model success while presenting a
practical, cost-effective solution for diverse real-
world applications. Following this introduction, §2
provides an overview of the foundational LLaVA
framework; §3 discusses computational challenges;
§4 outlines our proposals; §5 presents our empirical
results and analysis; §6 offers further analysis and
ablations; and §7, along with §8, surveys related
work and concludes the study, respectively.
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Figure 2: Training pipeline consists of two stages.
Alignment of visual and textual features through the
MLP, followed by joint training of the LM and the MLP.

2 Large Language and Vision Assistants

Architecture. The LLaVA framework (Fig-
ure 2) employs a pre-trained Vision Transformer
(ViT) (Dosovitskiy et al., 2021) as its vision en-
coder. Input images are resized and divided into
patches of size n x (pp X py X ¢), where n =
(h/ppn) x (w/py), with h and w representing the
resized image size, and pj; and p,, denoting the
patch size, which are hyperparameters. Here, ¢ = 3
denotes the number of channels, typically for RGB
images. These patches are processed by the en-
coder to generate embeddings {z; € R?}, where
d is the embedding dimension of the encoder and
also a hyperparameter. These embeddings are then
mapped to the input space of the language model
via a Multi-Layer Perceptron (MLP) before being
fed into the model. Optionally, the AnyRes mech-
anism (Liu et al., 2024c) can be applied, allowing
for processing of larger images by first segmenting
images into m parts to better capture local features.
Simultaneously, the entire image is processed to
extract global features. Both global and local fea-
tures are sequentially fed into the language model,
allowing it to utilize comprehensive image infor-
mation. Therefore, the total token count becomes
(14+m) x n. See Liu et al. (2024c) for more details.
However, this approach poses a computational chal-
lenge due to the increased token count.

Training Objectives and Datasets. The model
is trained to minimize Cross-Entropy (CE) loss.
During pre-training (alignment phase), it generates
captions for images, with CE loss computed on the
text. In the instruct tuning stage, given an image,
question, and answer, the loss is computed on the
answer text. The LLaVA-1.5 dataset (Liu et al.,
2024b) is widely used and this study aims to further
enhance the dataset. More details are in Section 4.
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Model Token Usage (#tok) s/img Memory (GB)
LLaVA-1.5-7B 576 0.46 15
LLaVA-1.5-13B 576 0.66 27
LLaVA-NeXT-7B approx. 1.7-2.9K 1.01 20
LLaVA-NeXT-13B  approx. 1.7-2.9K 1.78 40
LLaVA-NeXT-34B  approx. 1.7-2.9K 4.00 88

Table 1: Inference latency and memory costs for
LLaVA models. Tested with NVIDIA V100 GPUs.

3 Efficiency Challenges in LL.aVA Models

This section addresses common overhead issues in
LLaVA models, identifying critical limitations and
defining the problem space for future work (Liu
et al., 2024c; Dong et al., 2024).

3.1 Inference Overhead Sources

Inference overhead in LLaVA models stems from
several factors:

* Model Scale: Larger models (e.g., 34B pa-
rameters) offer enhanced capabilities but incur
significant computational costs.

e Vision Encoder Complexity: Advanced
image encoders like SO400M and ViT-G
(1.8B) improve performance but increase over-
head (Sun et al., 2024; Zhai et al., 2023).

e Image Resolution: High resolutions
(e.g., 4K) for detailed visual tasks like
DocVQA (Mathew et al.,, 2021) increase
computational demands on the vision encoder.

* Vision Token Quantity: Higher resolutions
lead to more vision tokens, increasing the
computational load on the LLM (e.g., LLaVA-
NeXT uses up to 2880 tokens).

Higher image resolutions and complex tasks fur-
ther increase the computational demands on both
vision encoders and language models.

3.2 Benchmarking Baseline Models

Table 1 shows resource usage during inference for
LLaVA and LLaVA-NeXT models, evaluated on
the DocVQA and ChartQA test sets (Mathew et al.,
2021; Masry et al., 2022). The LLaVA-1.5 mod-
els demonstrate manageable computational costs,
operable on a single V100 GPU. However, LLaVA-
NeXT models, with up to 2.9K tokens, present sig-
nificant challenges. Testing on an NVIDIA V100
32GB reveals that LLaVA-NeXT-13/34B cannot
be accommodated on a single GPU. These find-
ings emphasize the challenges of larger models,
especially in resource-constrained environments.

3.3 Existing Approaches to Efficiency

Existing methods offer trade-offs. Sampler mod-
ules like the Perceiver resampler (Alayrac et al.,
2022) reduce token counts but add architectural
complexity and require extra training (Li et al.,
2023; Bai et al., 2024). Some studies (Liu et al.,
2024b; Dai et al., 2023) have also noted that resam-
plers may introduce difficulties in generating both
lengthy and concise responses effectively, leading
to the development of supplementary models to en-
sure fluent responses (Bai et al., 2024; Laurengon
et al., 2024b). Ongoing initiatives, such as the use
of convolutional or pooling layers, are also being
explored (Cha et al., 2024; Abdin et al., 2024).
We believe these concurrent developments could
complement our work, demonstrating the potential
for integrated use. For a more detailed discussion,
please visit Section 7 and Appendix A.2.

Notably, improving models based on the simple
architecture for enhanced speed and performance
remains a high-impact research area. Due to its in-
herent simplicity, the LLaVA architecture is already
seamlessly integrated with many popular libraries,
such as SGLang (Zheng et al., 2023b), thereby fa-
cilitating broader use and easier deployment in a
variety of ongoing real-world applications. With
these considerations in mind, in this work, we en-
hance the LLaVA architecture to address existing
limitations, focusing on improving performance
and usability without sacrificing simplicity.

4 Efficient Language and Vision Assistant

4.1 Preliminary: Base Architecture
Modification and Initial Data Curation

To identify the most effective model architecture,
we test various LLMs ranging from 160M to 13B
as follows: Llama-160M, Tiny-Vicuna-1B, Phi3-
3.8B, Vicuna-7B, and Vicuna-13B'.

For the vision encoder, we replace the OpenAl
CLIP-Large-336-14 module (used in LLaVA-1.5)
with OpenAl CLIP-Base-224-32 and utilize the
AnyRes technique (Liu et al., 2024c) to optimize
the balance between resolution and token count.
OpenAl CLIP-Large-336-14 processes a 336x336
area into 576 tokens, while OpenAl CLIP-Base-
224-32 processes a 224x224 area into 49 tokens.

The links are https://huggingface.co/Felladrin/
Llama-160M-Chat-v1, https://huggingface.co/
Jiayi-Pan/Tiny-Vicuna-1B, https://huggingface.
co/microsoft/Phi-3-mini-4k-instruct, https:
//huggingface.co/lmsys/vicuna-7b-v1.5, and https:
//huggingface.co/lmsys/vicuna-13b-v1.5.
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By applying AnyRes, we increase the resolution to
896x676px, with the maximum token count capped
at 637, in contrast to LLaVA-NeXT’s 2880 tokens
for 672x672px. It is important to note that patch
size alone does not determine performance; rather,
a balanced consideration with resolution ensures
optimal results. Through this modification, we
achieve a higher input resolution with a slight in-
crease in maximum token count and a marginal
decrease in performance (from LLaVA-1.5-7B’s
40.1 to 39.8; see §4.1.1 in Figure 1).

Next, we expand the dataset using Idefics2 (Lau-
rencon et al., 2024b), LLaVAR (Zhang et al., 2023),
and several open-source datasets to enhance perfor-
mance. This includes 1.1M images for alignment
tasks and 1M for instruction tuning. Further dataset
details are in Appendix B.2. As shown in Figure 1,
this approach improves performance (39.8 to 50.7)
but does not reach LLaVA-NeXT-7B’s levels at
53.2 (see §4.1.2 in Figure 1).

4.2 Problem Definition and Strategies

Despite multiple optimizations, the model exhibits
performance issues, particularly in generating hal-
lucinations—incorrect responses resulting from in-
herent bias rather than accurate visual interpreta-
tion. See Appendix A.5 for our preliminary anal-
ysis on this issue. These problems are especially
critical in tasks that require strong integration of
visual and textual information.

Hypothesized Challenges. We hypothesize two
main challenges: (1) inadequate embeddings from
the vision encoder, and (2) a deficiency in the ba-
sic comprehension of text within images, which is
essential for performing more complex tasks.

Improvement Strategies. To address these chal-
lenges, we implement: (1) a more efficient vision
encoder to enhance the quality of embeddings, and
(2) a training regimen that prioritizes text compre-
hension before proceeding to more complex tasks.

To test our hypotheses, we conduct a series of
comprehensive ablation experiments. Figure 1 il-
lustrates our development stages. We track the
effectiveness of our model modifications using var-
ious text-centric evaluation benchmarks, including
DocVQA (Doc) (Mathew et al., 2021), ChartQA
(Chart) (Masry et al., 2022), InfographicVQA
(Info) (Mathew et al., 2022), and SEED-2-Plus
(SD2P) (Li et al., 2024a). Additionally, we em-
ploy widely-used general multimodal benchmarks

Vision Encoder Configuration Text-Centric General Overall

C1. CLIP-B-224-AnyRes (CLIP) 40.3 54.5 474
C2. Unfreeze CLIP 34.1 47.6 40.9
C3. REncoder (RE) 452 52.2 48.7
C4. Avg (CLIP& RE) 45.6 54.4 50.0
C5. ELVA-encoder (Avg (CLIP& 12 REs)) 457 54.7 50.2

Supplementary ablations
C6. CLIP-L-336 (LLaVA-1.5 on our data) 37.5 58.6 48.1
C7. CLIP (7%) + REncoder (93%) 45.9 535 49.7

Table 2: Ablation study results for different vision en-
coder configurations. Average scores for text-centric
tasks (DocVQA, ChartQA, InfoVQA, and SEED-2-
Plus), and general image tasks (SEED, MMStar, Sci-
enceQA, and HallusionBench) are reported. These re-
sults are obtained with Phi-3 (3.8B). The overall scores
for other scales (from 1B to 13B) are shown in Figure 3.
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Figure 3: Performance of various vision encoder con-
figurations at 1B, 7B, and 13B. Average scores for
each configuration (C1 to C7) across 8 benchmarks.

such as SEED-IMG (SD-I) (Li et al., 2024b), MM-
Star (MMS) (Chen et al., 2024), ScienceQA-IMG
(SciQA) (Lu et al., 2022), and HallusionBench
(Hall) (Guan et al., 2024). Our primary objective is
to enhance performance on text-centric tasks while
maintaining competitive performance on general
tasks and ensuring low inference costs.

In the followings, we introduce each proposed
module in detail and conduct extensive ablation
studies, analyzing the impact of removing each
component from the final model configuration.

4.3 Developing an Enhanced Vision Encoder
with Weight Averaging

To improve visually-situated text comprehension,
we develop a new vision encoder optimized specif-
ically for reading text within images. Table 2
presents ablation studies on various vision encoder
configurations. Initially, we find that merely un-
freezing the vision encoder during VLM training
does not lead to notable performance improvements
(C2). Next, we implement a two-step approach:
(1) We first unfreeze the vision encoder and train
it on a small scale VLM (1B is used) using text-
centric datasets such as OCR-IDL (Biten et al.,
2023). This training emphasizes the Text Reading
task (Kim et al., 2022), where the model reads text
embedded within images, allowing the vision en-
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coder to adjust and enhance its text recognition
capabilities. (2) Subsequently, we extract the en-
hanced vision encoder, denoted as REncoder, from
this text-centric VLM. Note that, the text-centric
VLM used to derive the REncoder is not utilized
in later stages. When training a VLM with the
newly obtained REncoder, we observe significant
improvements in text-centric tasks (C3), although
its performance on general image tasks diminishes.

Now we have two specialized encoders: the
original CLIP for general tasks and the REncoder.
Drawing inspiration from previous work on Weight
Averaging (Wortsman et al., 2022), we experiment
with averaging the weights of the original encoder
and the REncoder. Interestingly, this approach
yields promising results (C4). Furthermore, by
slightly adjusting the weight averaging ratios to
favor the REncoder, we achieve marginally better
performance on text-centric tasks (C7).

To further enhance robustness, we train 12 REn-
coders with different random seeds and then aver-
age their weights, a practice inspired by Wortsman
et al. (2022). This averaging process, taking ap-
proximately 1.7 days on 8 V100 GPUs per phase,
yields an encoder that substantially improves text
comprehension while maintaining general capabili-
ties (C5). More training details are in Appendix C.

In summary, the core idea is simple. We (1)
unfreeze the encoder and train a small VLM
for text reading tasks, and retrieve the special-
ized encoder, and (2) make it robust to various
tasks by applying weight averaging. Finally, the
produced vision encoder is used to build an effi-
cient language and vision assistant, ELVA. Our
new ELVA-Encoder (C5) brings substantial en-
hancements in text-centric tasks compared to the
original base (C1). While there is still a reduction
in general image performance compared to merely
training LLaVA-1.5 on our data (C6), understand-
ing the trade-offs in C6 is key to fully appreciating
the balance we achieve. We effectively balance
overall performance and computational cost within
the scope of CLIP-Base parameters (88M). The
ELVA-Encoder configurations demonstrate notable
success overall, as shown in Table 2 and Figure 3.

4.4 Augmenting Text Understanding in
Images with Read-and-Reason Prompt

Models like LLaVA (Liu et al., 2023b, 2024b) uti-
lize OCR, augmenting user queries with OCR re-
sults. However, a comprehensive investigation of
methods for supervising textual information during

1B 3.8B 7B 13B
Text/Gen/All Text/Gen/All Text/Gen/All Text/Gen/All

R1. 41.6/48.7/45.2 43.7/53.9/48.8 47.5/56.0/51.8 48.5/56.5/52.5
R2. 42.4/48.6/45.5 45.7/54.7/50.2 49.2/56.6/52.9 50.4/57.4/53.9

Supplementary ablations
R3. 41.2/46.5/43.9 45.4/53.7/49.6
R4. 42.0/48.8/45.4 44.1/54.2/49.1

47.0/55.3/51.2
48.2/56.0/52.1

50.8/56.1/53.5
49.6/57.6/53.6

Table 3: Comparison of different model sizes and
RR-Prompt variants. R1 represents standard models
trained without additional text reading prompt. R2 em-
ploys explicit initial text reading steps for text-rich taks.
R3 carries out text reading at the end, while R4 provides
OCR results just as context without explicit supervision.

1B-R1 3.8B-R1 7B-R1  mm== 13B-R1

g 1B-R2 3.8B-R2  mm== 7B-R2 === 13B-R2
O
(2] 52.252.452 051.9
° 50.851.2 465 463
2 48.345.7+0.846.0+03
4] 429*L:
o 40.640,040.8
> .
z 375303
350 33.133.4 32 2330'3
312322 ’—*—‘ |_| - :
= i =i
Text-Centric General

Figure 4: Impact of RR-Prompt with a 10% dataset
subset. Results demonstrate effects during training.

visual instruction tuning remains underexplored.

Table 3 shows ablation studies investigating text
reading tasks during visual instruction tuning. Set
R1 follows standard practices using datasets with-
out additional text reading components. In R2,
inspired by Prompting (Brown et al., 2020), we
incorporate an initial QA task, “What is written in
this image?” before QA on text-rich images. For
example, with an image of a restaurant menu, the
model first reads all text before querying about
menu items or prices. This incremental addition
improves performance significantly from R1 to R2,
especially in text-rich tasks. We annotate datasets
using OCR engines for this purpose.

Our further explorations assess this approach in
resource-scarce environments, using 10% of the
original instruction tuning dataset size. Figure 4
shows results across 1B to 13B parameter models.
We also explore the supervision structure’s impact
by comparing “Read-and-Reason” versus “Reason-
and-Read” approaches. R3 models perform text
reading last to evaluate this. Results confirm that
“Read and Reason” is more effective, emphasizing
structured prompting’s importance in model learn-
ing. Lastly, we evaluate the effect of providing read
text as context without explicit supervision (R4).
Explicit supervision with text information yields
marginal improvements in text-centric tasks.

In summary, the proposed core idea is to uti-
lize Read-and-Reason Prompt (RR-Prompt) dur-
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ing model training to enhance text understanding
in images. This approach, validated through ab-
lation studies, shows significant performance im-
provements, especially in text-rich tasks. Note that
the RR-Prompt is used during training; during
inference, the model directly engages in reason-
ing, leveraging the enhanced capabilities acquired
through the RR-Prompt, ensuring efficiency with-
out needing an explicit text reading stage.

4.5 Bringing It All Together

To develop a more robust model capable of han-
dling a wider range of tasks, we scale up the model
development by incorporating diverse datasets be-
yond merely text-centric tasks. Our final model
integrates four additional datasets: Vision-Flan (Xu
et al., 2024), RefCOCO (Kazemzadeh et al., 2014),
VG (Krishna et al., 2017), and CORD (Park et al.,
2019). By incorporating these additional datasets,
we aim to enhance both the performance and gener-
alizability of our model. The final training involved
11K steps with a batch size of 128. The specific
dataset details and schedules are in Appendix B. As
demonstrated in Figure 1, our final configuration
shows solid performance.

5 Experimental Assessment

In this section, we rigorously test and evaluate our
ELVA models under varying conditions. We aim
to understand their capabilities and limitations by
benchmarking them against baseline models across
both text-based and image-based tasks.

5.1 Framework

Our evaluation process extends beyond our ini-
tial eight datasets, utilized in our ablation stud-
ies (See §4.2). To further enrich our examina-
tion, we have included additional diverse datasets
such as AI2D (Kembhavi et al., 2016), MathVista-
TestMini (Lu et al., 2024) (Math), LLaVA-
Bench (Liu et al., 2023b) (LBen), along with
Parsing-Bench (PBen) proposed in this work.

5.2 Generated Scenario-Based Benchmarks

In our research, we identify a significant gap in
datasets representing real-world user scenarios for
document assistants. To address this, we create the
following datasets. These datasets will be open-
source, and more details are in Appendix E.

CORD-Instruct. Building on the CORD dataset,
which consists of Indonesian receipts and their

JSON annotations, CORD-Instruct provides in-
structional sets for models to generate outputs in
JSON, XML, or Markdown formats. We utilize the
OpenAl GPT-3.5 API to create these instructional
sets, ensuring the exclusion of any erratic samples.

Parsing-Bench. Inspired by the LLaVA-Bench
and LLM-as-a-Judge (Zheng et al., 2023a), we de-
velop Parsing-Bench to address the limitations of
existing benchmarks like LLaVA-Bench, which
include limited document-related samples and do
not sufficiently reflect real user needs. Figure 6
presents example cases and model predictions. To
test the model’s ability to extract information from
new documents, we create this dataset using 30 im-
ages from Brazilian Identity Documents (Alysson
Soares et al., 2020) and SROIE (Huang et al., 2019),
which are not used during training.

5.3 Results

Table 4 provides a comprehensive comparison
of our ELVA models against baselines such as
PaliGemma (Beyer et al., 2024), Qwen-VL (Bai
et al., 2024), and LLaVA models (Liu et al., 2023b,
2024b,c) across multiple tasks. The results, either
reproduced or sourced from original papers, are
validated using VLMEvalKit (Contributors, 2023)
and the official code by Liu et al. (2023b).

The ELVA models consistently exhibit strong
performance on both text-centric and general multi-
modal benchmarks. The ELVA-0.2B model, despite
its smaller parameter count, performs commend-
ably across various tasks. Larger models ranging
from 1B to 13B demonstrate superior performance,
highlighting the advantages of increased model ca-
pacity. Notably, ELVA achieves excellent latency
and memory efficiency, reinforcing its practicality
for diverse real-world applications.

Although the text-centric benchmark perfor-
mance is strong, there is a slight difference com-
pared to concurrent leading specialized models (Hu
et al., 2024), as shown in Table 5. However, our fo-
cus is on developing generalist models rather than
specialized models. A detailed analysis on this is
provided in Section 6.1. Additionally, a notable
limitation is observed in the LLaVA-Bench, where
ELVA models underperform compared to LLaVA
models. As this dataset comprises only 24 images,
interpretation requires caution. Further analysis is
discussed in Section 6.4.

In summary, ELVA models demonstrate robust
performance across a wide range of tasks and
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# Param . Text-Centric Benchmarks General Multimodal Benchmarks
Model . #tok s/img vram

Vision LM Doc Chart Info SD2P PBen |SD-I MMS SciQA Hall AI2D Math LBen
LLaVA-v1-13B 300M 13B 576 143 269(98 7.0 199 395 140|512 329 624 430 439 259 699
LLaVA-1.5-7B 300M 7B 576 046 147|228 17.8 224 412 179|659 33.1 69.2 485 556 256 59.6
LLaVA-1.5-13B 300M 13B 576 0.66 27.0(24.5 185 249 444 19.6 |68.2 34.1 723 457 60.7 27.7 66.1
LLaVA-NeXT-7B | 300M 7B 1728-2880 1.01 20.0/68.3 519 31.6 51.7 49.6 | 698 382 69.0 448 668 31.8 723
LLaVA-NeXT-13B | 300M 13B 1728-2880 1.78 40.1/69.8 59.0 349 55.6 573 |71.5 412 734 467 71.7 341 723
ELVA-0.2B (ours) 88M 0.2B 98-637 0.24 1.4|447 503 148 314 123 |37.8 31.5 39.0 48.1 31.0 27.0 284
ELVA-1B (ours) 88M 1B 98-637 0.41 33(62.6 57.7 237 36.8 27.3|523 326 633 504 469 31.7 36.0
ELVA-3.8B (ours) 88M 3.8B 98-637 045 9.1/66.1 619 242 447 310|613 369 742 527 63.0 356 453
ELVA-7B (ours) 88M 7B 98-637 0.54 14.5/69.1 61.8 30.7 47.7 450 |62.6 354 747 56.8 662 36.6 50.7
ELVA-13B (ours) 88M 13B 98-637 0.72 27.0|71.7 65.2 34.6 526 59.2|653 379 77.7 56.8 693 381 51.0
Supplementary baselines
Qwen-VL-7B 1882M 7B 224 050 19.2{65.1 602 - 410 - |565 339 60.6 374 572 155 129
Qwen-VL-7B-Chat | 1882M 7B 224 0.56 19.2162.6 493 - 469 - |629 340 64.0 40.8 59.7 349 677
PaliGemma-3B 428M 3B 1024 098 103 - 338 - 498 - |70.0 48.6 943 53.0 693 28.7 369

Table 4: Performance comparison across different models and benchmarks. This table summarizes model sizes
(Vision and LM), token counts (#tok), latency (s/img), and memory cost (vram). The performance metrics across
various benchmarks are presented, showcasing each model’s strengths and weaknesses in different challenges.

Model ‘ Doc Chart SD2P ‘ SD-I MMS SciQA Hall LBen Method ‘ sfimg vram ‘ Doc Chart Info SD2P

DocOwl11.5-8B 81.6 707 502 | 502 347 65.7 289 353 LLaVA-NeXT-7B 1.01 200 | 683 519 31.6 517

DocOwl1.5-8B-Chat | 82.2  69.6 524 | 509 344 65.0 304 395 —w/max. 1728 tokens | 0.70 17.1 | 51.7 48.0 279 449

Elva-7B (ours) 69.1 618 477 | 62.6 354 747 568 50.7 ELVA-7B (ours) 0.54 145 | 69.1 61.8 30.7 47.7
Elva-13B (ours) 717 652 526 | 653 379 717 568 51.0

LLaVA-NeXT-13B 178 40.1 | 69.8 59.0 349 556

—w/ max. 1728 tokens | 1.11 304 | 53.9 523 309 492

Table 5: Comparison with Specialized VLMs. ELvA ELVA-13B (ours) 072 270 | 717 652 346 526

shows the balanced scores on diverse benchmarks.

benchmarks. While increased model capacity gen-
erally enhances performance, efficiency and latency
considerations are essential for practical deploy-
ment. Our main results highlight ELVA’s efficiency
and balanced performance, underscoring the con-
tributions and objectives of our study.

6 Further Analyses and Discussions

6.1 Comparisons with Specialized Models

Given the rapid evolution in this field, evaluating
our model against recent advancements is vital to
highlight our contributions. We compare our work
with mPLUG-DocOwl1.5 (Hu et al., 2024), one
of the concurrent state-of-the-art models. Since
their results on general multimodal benchmarks
are not available, we measure the performances,
ensuring accuracy with a sanity check on ChartQA.
The results in Table 5 suggest that while mPLUG-
DocOwl1.5 excels in text-rich document VQA, it
faces challenges in general multimodal tasks. This
underscores our focus on developing a generalist
model that balances task proficiency and broader
efficiency.

Table 6: Ablations on reduced vision token counts.
Given time and memory costs, ELVA shows benefits.

6.2 Ablations with LLaVA-NeXT Variants

To test the impact of reducing the number of tokens
in LLaVA-NeXT models, we constraine the grid
size, resulting in a maximum token count of 1728
(either 336x672 or 672x336 pixels). As shown in
Table 6, reducing the vision token count leads to
significant performance drops across all evaluated
tasks. For example, the performance of the 13B
model on DocVQA decreases from 69.8 to 53.9
when the token count is restricted, with similar
trends observed in other variants. This analysis
highlights the trade-off between token count and
model performance: while reducing tokens can
enhance computational efficiency, it may lead to a
compromise in accuracy.

In contrast, ELVA models demonstrate strong
performance along with improved efficiency in
both speed and memory usage, underlining their
robustness in handling high-resolution text-centric
tasks efficiently. The ELVA models effectively bal-
ance performance and efficiency, outperforming the
LLaVA-NeXT variants with reduced token counts.
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Figure 5: Latency comparison across multiple bench-
marks. ELVA delivers promising results.

6.3 Discussion on Memory and Time Costs

We evaluate latency for ChartQA and DocVQA,
as these tasks relate closely to real-world docu-
ment information extraction scenarios and offer
user-centric metrics. Multiple-choice evaluations
like SD-I are less indicative of actual user scenar-
ios. Benchmarks requiring longer answers, such as
LLaVA-Bench, show inconsistent results due to var-
ied answer lengths across models. Consequently,
we focus on ChartQA and DocVQA for latency as-
sessments but also include SD-I and LLaVA-Bench
results in Figure 5. These findings indicate ELVA
maintains promising latency across varied contexts.
While this study primarily focuses on inference
time costs, training costs are equally important for
practitioners. Despite handling large datasets, our
lightweight vision encoding ensures high training
throughput. With training time costs 1.32 to 1.78
times that of LLaVA-NeXT, we find this a fair trade-
off for the gains in efficiency and performance. Our
approach remains competitive and more resource-
efficient compared to several contemporary models.
For detailed analysis, please refer to Appendix A.
Regarding memory usage, practical deployment
often uses quantization (Dettmers et al., 2023), sig-
nificantly reducing memory costs. For instance,
the LLaVA-NeXT-13B model originally requires
two V100 GPUs but can run on a single V100 with
quantization, albeit with more latency and some
performance loss. Despite these drawbacks, quan-
tization shows promise and will likely improve.
Our ELVA models, built for efficiency, complement
these advancements, promising even greater value
when combined with quantization techniques.

6.4 Case Study on LL.M-as-a-Judge Sets

ELVA models perform robustly across benchmarks,
excelling in text-centric tasks, but show perfor-
mance dips on LLaVA-Bench. These issues often
arise from entity recognition failures, leading to
penalized scores despite the response being logi-
cally sound. For example, when asked to name

The name of the character is not visible
| intheimage. The im a
ga, but

C

What is the name of the character? y

character from an ar 2 0

| the name of that character is
unfortunately not visible. The image only
shows the che

What is the name of the man in the photo?

e, : I'm sorry, | cannot provide the name of the man in the
photo. (...) the image does not provide any identifiable
information about the man's name or any context that
would allow me to provide it. The focus of the image is
on the man and the teddy animal, and there is no visible
text or context that could help identify the man.

oy

Elva received 2/10

Can you summarize the purchased item information, including the name, price,
and quantity, in XML format?

Certainly, here is the purchased item information in XML format

ROCKU YAKINIKU

REEN TEA</name>

TOTAL 181,55

CHANGE 20.00

JFFET DINNER (ADULT)</name>

Elva received 9/10

Figure 6: Example Results of ELVA on LLaVA-Bench
and Parsing-Bench. The strengths and weaknesses of
ELVA are illustrated.

an anime character, ELVA scores 0.5 for failing
to provide the correct name despite a detailed de-
scription. Similarly, it scores 0.2 in identifying a
person in a photo without textual clues. These dips
highlight limitations in the ELVA-Encoder’s (§88M)
entity memorization capacity and its reliance on
sufficient information present in images. Adding
targeted data to memorize entities during instruct
tuning might address these issues, though feasibil-
ity is debatable. On the other hand, ELVA excels
in tasks like summarizing receipt data into XML
format, scoring 0.9, demonstrating its ability to
accurately read, comprehend, and organize text in-
formation. For more discussion and analysis on
this, refer to Section 9 and Appendix A.4.

6.5 Discussion on Leveraging OCR

Incorporating OCR can be an effective option for
handling text-rich high-resolution images (Kim
et al., 2023a). When OCR outputs are incorpo-
rated as contextual information during inference,
as demonstrated in Table 7, notable enhancements
are observed, particularly benefiting ELVA. How-
ever, OCR processing has costs. Using the CLOVA
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Method Doc Chart Info SD2p

LLaVA-NeXT-7B | 74.5(16.2) 53.7(11.8) 355(13.9) 553 (13.6)
ELVA-7B (ours) 77.8 (18.7) 64.0 (12.2) 39.5(18.8) 55.7 (18.0)
LLaVA-NeXT-13B \ 76.5(16.7) 62.5(13.5) 40.4(15.5) 58.9(13.3)
ELVA-13B (ours) 81.1(19.4) 67.5(12.3) 44.8(110.2) 60.6 (18.0)

Table 7: Performance gains with OCR integration.
ELVA excels in both OCR-free and OCR-based modes.

OCR API?, our tests on the DocVQA dataset av-
erage about 4 seconds per sample. Faster OCR
engines exist but often at the expense of accuracy.
Additionally, upscaling VLMs to handle very high
resolutions (e.g., 4K, 8K) may not be practical.
Thus, leveraging OCR and similar tools remains a
valuable area of exploration, aiming to balance spe-
cialized tools and VLMs for optimal performance.

7 Related Work

Visually-Situated Natural Language Under-
standing (NLU). Visually-situated NLU requires
detailed image comprehension and high-resolution
processing. Initial VLMs relied on OCR for text
extraction. For instance, Xu et al. (2020) utilizes
OCR and integrates textual and layout information
for document understanding. The field then moved
to OCR-free methods (Kim et al., 2022, 2023b; Lee
et al., 2023), with models like Donut (Kim et al.,
2022) enabling efficient visually-situated NLU.

Multimodal LLMs (MLLMs). MLLMs en-
hance multimodal comprehension by utilizing
LLMs’ language understanding. Early models,
such as LLaVA (Liu et al., 2023b) and BLIP-
2 (Liet al., 2022), align visual representations with
frozen LLMs. More recent models, such as LLaVA-
1.5 (Liu et al., 2024b), LLaVA-NeXT (Liu et al.,
2024c¢), and Qwen-VL (Bai et al., 2024), unfreeze
LLM parameters and use extensive resources (Lau-
rencgon et al., 2024b,a; Dong et al., 2024; Hu et al.,
2024). Studies like MM 1 (McKinzie et al., 2024)
provide thorough architecture ablations but focus
less on visually-situated NLU, and without offering
code or model weights. Laurencon et al. (2024b)
conduct multiple ablations and make their methods
more accessible to the public, but focus less on re-
ducing resource costs. Small VLMs with under 3B
scales (Chu et al., 2024) are emerging. However,
there is still a need for compact VLMs for tasks
like high-resolution document image processing,
emphasizing our work’s focus and contribution.

https://clova.ai/ocr/en

MLLMs for Visually-Situated NLU. Early ef-
forts integrated OCR for text-heavy inputs (Liu
et al., 2023b; Li et al., 2022; Liu et al., 2024b),
but there is a shift to OCR-free designs (Kim
et al., 2023a; Liu et al., 2024c; Laurencon et al.,
2024b,a; Dong et al., 2024; Hu et al., 2024).
High-performance models use increased input res-
olutions, raising costs. For instance, LLaVA-
NeXT (Liu et al., 2024c) uses 2880 tokens for
672x672 pixels, leading to high costs, furthered
by later models (Dong et al., 2024; Wang et al.,
2024). Dong et al. (2024) scaled input resolution
to 3840x1600 pixels, requiring over 8K tokens.

MLLMs with Vision Token Sampling. To re-
duce token usage, studies have explored vision
token sampling techniques. For example, Qwen-
VL (Bai et al., 2024) and Idefics2 (Laurencon et al.,
2024b) utilize the Perceiver resampler (Alayrac
et al., 2022). These models, however, entail high
training costs: Qwen-VL uses over 1.4B data points
and Idefics2 over 1B, contrasting with smaller
data usage in the LLaVA series (Liu et al., 2023b,
2024b,c). Some studies (Liu et al., 2024b; Dai et al.,
2023) have found that models using resamplers can
face challenges in generating both lengthy and brief
responses, leading to the development of additional
models like Qwen-VL-Chat (Bai et al., 2024) and
Idefics2-Chatty (Laurencon et al., 2024b). Simpler
approaches, such as using convolutional or pooling
layers, have also been explored (Cha et al., 2024;
Abdin et al., 2024). These methods align orthog-
onally with the proposed methods in this paper,
underscoring the potential for combined use.
Overall, further research is needed to identify
key factors for effective VLM design. For addi-
tional comparisons, please refer to Appendix A.

8 Conclusion

This study introduces ELVA, a robust and efficient
model framework for diverse multimodal tasks, in-
cluding visually-situated NLU. Empirical results
demonstrate that ELVA surpasses existing baselines,
with notable memory and latency efficiency. Com-
prehensive experiments and analyses identify key
components driving ELVA’s enhanced performance.
Additionally, our analysis highlights both strengths
and limitations, offering insights for further de-
velopment. We envision our approach extending
to other domains and tasks, particularly those re-
quiring high-resolution and visually-situated NLU,
even in resource-constrained environments.
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9 Limitations

Despite the significant advancements demonstrated
by ELVA, several limitations remain. Firstly, ELVA
occasionally struggles to recognize specific entities
within images, leading to reduced accuracy in re-
sponses, even when they are logically sound. This
suggests that the vision encoder may have limita-
tions in recognizing long-tail entities, highlighting
the need for further analyses and future research.

Managing very high-resolution images (4K or
8K) is still challenging. While the proposed meth-
ods advance the handling of such images, they are
not sufficient for easy processing beyond this reso-
lution. We should continue to balance performance
improvements with computational resource require-
ments. For high-resolution document images, in-
corporating OCR could be a viable option, but it in-
troduces latency and potential accuracy trade-offs,
necessitating additional research.

Although ELVA achieves lower inference costs
and maintains reasonable training times, process-
ing large data volumes can lead to moderate time
differences. As discussed in Appendix A, we have
made significant improvements with acceptable in-
creases in training costs, but ongoing optimization
in both training efficiency and performance remains
necessary.

Future research should focus on enhancing en-
tity recognition, improving training efficiency, and
refining OCR integration. Exploring the balance be-
tween specialized tools like OCR and an end-to-end
VLM is crucial for optimizing performance. Addi-
tionally, expanding ELVA’s capabilities to handle
multilingual or video tasks would further increase
its applicability and utility.

10 Ethical Considerations

Developing ELVA involves important ethical re-
sponsibilities such as reducing data biases and en-
suring transparency. To manage these, we use only
controlled and verified open-source datasets for
model training. Currently, we rely on the autore-
gressive models’ direct output, but we could also
use post-processing techniques or additional train-
ing methods to address biases and privacy issues
better. By open-sourcing our models and datasets,
we encourage peer reviews and collaboration to
solve ethical challenges, promoting accountability.
These steps help ensure that ELVA upholds high
ethical standards and is used for beneficial purposes
while minimizing risks.
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A Additional Analysis and Comparison

A.1 Model Training Cost and Data Efficiency

Table 8 provides a detailed analysis of the training
costs associated with different model sizes of ELVA,
using 8 NVIDIA A100 80GB GPUs. According
to estimates from the official LLaVA-NeXT blog?,
our models take approximately 1.32 to 1.78 times
longer to train. The blog reports that it takes 20
hours to train a 7B model with 8 A100 GPUs and
24 hours for a 13B model using 16 A100 GPUs.
While training times can vary depending on the
testing environment, our data shows that ELVA’s
training duration results in a moderate increase that
remains within reasonable expectations.

This observation becomes clearer when ELVA
is compared to other contemporary, data-intensive
models. For instance, Qwen-VL (Bai et al., 2024)
requires 1.4B data points for pretraining and SOM
data points for instruction tuning, whereas ELVA

3https://llava—vl.github.io/blog/
2024-01-30-1lava-next

Base Model

Llama-160M
Tiny-Vicuna-1B
Phi3-3.8B
Vicuna-7B
Vicuna-13B

Alignment Time Instruct Tuning Time Total Time

0.5 hours 3.5 hours
1.5 hours 6 hours
4.5 hours 16.5 hours
6.5 hours 29 hours
11 hours 52.5 hours

4 hours
7.5 hours
21 hours
35.5 hours
63.5 hours

Table 8: Training times for various model sizes on 8
A100 GPUs.

demonstrates a more moderate yet effective use of
resources. Similarly, models such as Shikra (Chen
et al., 2023a), Idefics2 (Laurengon et al., 2024b),
and InternLM-XComposer2-4KHD (Dong et al.,
2024) illustrate varying scales of resource utiliza-
tion, with Shikra using 600K data points for align-
ment and 5.5M for instruction tuning, Idefics2
achieving results with over 1B data points, and
InternLM-XComposer2-4KHD demonstrating scal-
ability with a massive dataset and more than 8K
input tokens.

Our observations in Section 4.3 further rein-
force the argument for ELVA’s efficiency. Despite
the extended data, LLaVA-1.5 failed to surpass
the overall score we achieved with ELVA (C5 vs.
C6), corroborating the efficiency and effectiveness
of ELVA. Furthermore, it is crucial to highlight
the importance of inference cost. Models aim-
ing for reduced inference costs often face expen-
sive training costs and challenges in maintaining
instruction-following capabilities across varied re-
sponse lengths (Dai et al., 2023; Liu et al., 2024b;
Laurencon et al., 2024b). Thus, ELVA emerges as
a quick, lightweight, and cost-effective alternative
within LLaVA-like simple architectures.

A.2 Ablations with AnyRes and Resampler

As discussed in Section 7, previous research (Liu
et al., 2024b; Dai et al., 2023) highlights several
limitations associated with resampler-based tech-
niques. To fully understand the limitations, it is es-
sential to empirically investigate them. This section
presents our additional experiments on the effec-
tiveness of the Perceiver Resampler (Alayrac et al.,
2022), a tool commonly used in many MLLMs to
reduce vision token counts (Cha et al., 2024). We
conduct these experiments using the Vicuna-7B
model.

For this experiment, we begin by training mod-
els using CLIP-Large-336-14, as employed in
LLaVA-1.5 (Liu et al., 2024b). We then intro-
duce AnyRes (Liu et al., 2024c), which can be
interpreted as training the LLaVA-NeXT architec-
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Configuration | Chart SD2P SD-I | MMS SciQA Hall AI2D Math

Base LLM Chart SD2P SD-I | MMS SciQA Hall AI2D Math

ELVA-88M ‘ 61.8 477  62.6 ‘ 354 747 568 662  36.6
CLIP-L-300M 439 473 668 | 382 803 556 689 35.6
+ AnyRes 616 538 679 | 39.8 773 558 668 378
+ Resampler | 18.7 382 431 | 302 724 509 628 285

Table 9: Performance evaluation with AnyRes and
Perceiver resampler. This table illustrates the perfor-
mance of our proposed ELVA-Encoder (88M) and Ope-
nAl CLIP-Large-336-14 (300M) configurations with
AnyRes and Resampler optimizations across diverse
tasks. All configurations are trained using the same
alignment and visual instruction tuning schedule to guar-
antee consistent evaluation conditions. For the ELvA
setting, the vision token ranges are 98-637, 576 for
CLIP-Large; for AnyRes, it is expanded to 1728-2880,
and with Resampler, it ranges between 432-720 tokens.

ture on our same dataset and training parameters.
Finally, we apply the Perceiver Resampler in an
attempt to reduce the token count.

Our findings are summarized in Table 9. The
results suggest that performance is notably con-
strained. This limitation likely arises from the dis-
parity in resources and data used during our com-
pact ELVA training, which may not be sufficient
for the resampler to fully realize its potential. In-
creasing the dataset size and training steps might
enhance the effectiveness of the resampler. Addi-
tionally, as discussed in Section 7, several improved
resampling methods are emerging, and combining
them with our approach would likely yield better
results.

A.3 Additional Model Variants

In this paper, we employ different LLM fami-
lies across each scale. We adopt Vicuna as our
base model to enable fair comparisons with the
LLaVA family (Liu et al., 2023b, 2024b,c). While
more advanced LLM:s like LLaMA-3* could poten-
tially achieve better scores, reaching state-of-the-
art benchmarks is not our primary goal. There-
fore, we stick with the Vicuna family for con-
sistency. For other scales, we select LLMs that
have garnered attention in recent open-source VLM
projects. Tiny-Vicuna and LLaMA-Chat are cho-
sen because they are fully open-source models, de-
veloped transparently by academic practitioners
with limited resources.

We acknowledge that using LLMs trained on
the same corpus could provide additional insights
into scaling effects. If all these models are trained
using different datasets or regimes, it may com-

*https://ai.meta.com/blog/meta-1lama-3

LLaMA-160M 50.3 314 378 | 315 39.0 481 31.0 270
OpenELM-270M | 54.4 324 450 | 309 462 469 348 295
OpenELM-450M | 56.8 354 504 | 31.8 623 515 440 291
Tiny-Vicuna-1.1B | 57.7 369 523 | 326 633 504 469 317
OpenELM-1.1B 59.3 40.1  57.1 | 31.7 67.8 503 544 337

Table 10: Performance results across different LLM
variants. The results demonstrate the scalability and
consistency of our proposed ELVA model across differ-
ent architectures.

Configuration Size  Text-Centric General Overall LLaVA-Bench
C1. CLIP-B-Anyres  88M 44.0 58.5 512 51.1
C5. Elva-Encoder  83M 50.4 574 53.9 473
C6. CLIP-Large 300M 39.6 60.9 50.3 69.1

Table 11: Performance comparison across different
vision encoder configurations. The table shows the
text-centric, general, and overall benchmark scores, as
well as the LLaVA-Bench scores.

plicate the evaluation setup, making it difficult
to precisely identify performance-related issues.
To address this, we also train more variants us-
ing the OpenELM family (Mehta et al., 2024),
which has been recently released as open-source
models. OpenELM offers transparent training de-
tails, which help elucidate scaling effects more
clearly. Table 10 presents the results, demonstrat-
ing that our proposed ELVA model scales effec-
tively and consistently across various LLM archi-
tectures, thereby validating the robustness of our
approach.

A.4 Further Analysis on LLaVA-Bench

In Section 6.4, we examine the lower performance
of the ELVA model on the LLaVA-Bench. Given
the small number of model parameters in the ELVA-
Encoder, we hypothesize that its ability to memo-
rize entities might be limited, potentially contribut-
ing to its lower performance. While ELVA often
provides logically sound responses to user queries,
it sometimes fails to recall specific entity names—a
situation comparable to humans struggling to re-
member the name of an unfamiliar animated char-
acter without any contextual clues.

To investigate this further, we consider whether
increasing model scale can enhance memorization
capacity. We revisit our ablation models from Sec-
tion 4.3, focusing on the 13B models shown in
Figure 3. Table 11 presents additional evaluations
on the LLaVA-Bench using these models.

The results indicate that CLIP-Large performs
exceptionally well on the LLaVA-Bench. However,
both smaller encoder settings, C1 and CS5, face
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Figure 7: Results from the ELVA model. The model
accurately predicts the correct answer, with the correct
token emerging early in the processing layers, highlight-
ing effective vision and text integration.

challenges on this benchmark. Despite these chal-
lenges, we find the Elva-Encoder to be effective in
many other scenarios.

Through this analysis, we recognize the benefits
of larger encoders. However, whether increasing
parameters significantly enhances memorization
is still an open question for future research. We
also question whether VLMs should even prioritize
memorizing all entities. Our work lays a solid
foundation for exploring the trade-offs between
model scalability and performance.

A.5 Preliminary Analysis on Hallucinations

As demonstrated in Section 4.1, we explore in-
creasing input resolution without significantly rais-
ing inference costs by integrating AnyRes into the
LLaVA-1.5 model, thus avoiding excessive growth
in vision token counts. Additionally, we enhance
performance by expanding the training dataset. De-
spite these improvements, as discussed in Section
4.2, the model still faces performance issues, par-
ticularly in generating hallucinations—incorrect

0.2 0.4 0.6 0.8

-age adjust ed ¢ ere bro vas cular mort ality rate  sw eden
-age adjust ed c ere bro vas cular mort ality rate un eden
-age adjust ed ¢ ere bro vas cular mort ality rate | un |eden
-age adjust ed ¢ ere bro vas cular mort ality rate -eden

-age adjust ed ¢ ere [BFo! vas cular mort ality rate “eden
-age adjust ed mort ere |bro vas cular mort ality rate Meden
EX-divst ed mort ere JBEBJ Vas cular mort ality rate T eden

madjust ed mort ere --cular mort ality rate m-

-adjustm mort - cular mort ality rate ww

wadjustm mort m lar mort ality rate mw

| [merimon mort iy
i < |

ok & [mysal [iben] rate | penentbolds
i et ment mmn ] 6 sl oo [rte || it ot
i | in_[mont| ousammerauc | log | de | son rate | | g wum
i stra [mon brie w1 | log [ Tog [ rate | | id s
i |~ [mont| cra - shammbambidabe

5 p
Figure 8: Results from the ablated model. This model
incorrectly predicts “sweden” as the answer, demon-
strating the challenges faced without the ELVA-Encoder

and RR-Prompt enhancements.
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Figure 9: DocVQA sample. The question posed is,
“What is the title of the plot?” The model received in-
structions to respond concisely in lowercase. For the
query, “age adjusted cerebrovascular mortality rate
united states” is the expected answer.

responses due to inherent bias rather than accu-
rate visual interpretation. This section delves into
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our preliminary analysis, presenting and explaining
samples that illustrate these issues.

Without applying the proposed modules, the ab-
lation model sometimes produces unexpectedly in-
correct responses in tasks that require interpreting
text within images. However, it’s important to note
that this model, which excludes the Elva-Encoder
and RR-Prompt, is not inherently inadequate. In
fact, as shown in Figure 1, its overall performance
significantly surpasses that of LLaVA-1.5 (improv-
ing from 40.1 to 50.7). This underscores the sig-
nificant impact of our methods. Figures 7, 8, and
9 illustrate results from our ELVA model at the 7B
scale, an ablation model without the ELVA-Encoder
and RR-Prompt, and a DocVQA sample used for
analysis. To better understand the model’s inter-
nal processes, we employ the Logit Lens technique
from Nostalgebraist (2020) to visualize the behav-
ior across all model layers in this study.

As seen in Figure 7, the Elva model accurately
identifies the correct answer, with the correct token
emerging as the top candidate relatively early in the
processing layers. For simplicity, this analysis did
not differentiate between uppercase and lowercase
letters. On the other hand, Figure 8 presents an in-
triguing result where the model becomes confused
among various country names and incorrectly out-
puts “sweden” as the answer. Notably, Figure 9
shows that there is no indication in the image that
resembles “sweden.” This suggests that Vicuna-
7B’s inherent language modeling capabilities pos-
sibly override image reference interpretation.

Through this analysis, as explained in Section
4.2, we hypothesize two main challenges: (1) inad-
equate embeddings from the vision encoder and (2)
a poor grasp of basic text comprehension tasks, cru-
cial for complex document interpretation. These
insights guide our strategic approach in developing
ELVA, addressing these challenges step by step.

B Experimental Details

B.1 Software and Hardware Setup

Our experiments are based on the official codebase’
of LLaVA (Liu et al., 2023b). We utilize NVIDIA
V100 32GB and A100 80GB GPUs for the compu-
tations. Ablation studies are conducted on V100
GPUs, whereas the final configuration models run
on A100 GPUs. We do not observe any significant
performance difference based on the type of GPU

Shttps://github.com/haotian-1liu/LLaVA

Dataset # Samples
LLaVA 157,712
SG40k 40,688
VQA-v2 82,783
GQA 72,140
OKVQA 8,998
OCRVQA 80,000
A-OKVQA 66,160
TextCaps 21,953
RefCOCO 48,447
VG 86,417

Table 12: Curated dataset from LLaVA-1.5. Dataset
proportions are shown. RefCOCO and VG are not used
in the ablation studies.

used. However, training on V100 GPUs is approx-
imately 2 to 3 times slower per step compared to
A100 GPUs. Although our codebase is based on
LLaVA, to ensure better reproducibility, we will
release the scripts used for training our models and
any necessary code modifications as open-source.

B.2 Datasets and Hyperparameters

Curated Dataset from LLaVA-1.5. Table 12
provides detailed quantities of the subsets within
the dataset®.

Curated Dataset from ELVA. Table 13 lists
the datasets in ELVA’s final configuration. Mean-
while, for the alignment phase, we use the align-
ment datasets from LLaVA (Liu et al., 2023b) and
LLaVAR (Zhang et al., 2023), which consist of
558K and 422K samples respectively.

Hyperparameters. Table 14 and Table 15 pro-
vide the hyperparameters used during the alignment
and instruction tuning stages, noting that smaller
models benefit from larger learning rates. In the
final model training configuration, we employ the
data and sampling ratios outlined in Table 13 and
train the model for 11K steps. Calculating the exact
number of unique images is complex due to overlap
across datasets; however, we estimate using approx-
imately 1M unique images. LLaVA-NeXT reported
using 760K samples’, and our use represents a mod-
est increase. Furthermore, as we leverage multiple
curated datasets with slightly different questions
on the same images, we consider a synthetic epoch
to consist of 1.4M examples. Thus, with a batch
size of 128, we complete 11K steps (1.4M / 128).

®https://huggingface.co/datasets/liuhaotian/
LLaVA-Instruct-150K/blob/main/1lava_v1_5_mix665k.
json

7https://llava—vl.github.io/blog/
2024-01-30-1lava-next
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Dataset # Samples Sampling Ratio %

Model Size | LR Epsilon Grad Clip Norm Weight Decay Warmup Ratio

LLaVA-1.5-Set (See Table 12) 665,298 46.49
Vision-Flan-Set (Xu et al., 2024) 186,103 12.99
‘WikiArt (Chen et al., 2023b) 500 0.03
Celebrity (Chen et al., 2023b) 498 0.03
Landmark (Chen et al., 2023b) 500 0.03
Share-TextVQA (Chen et al., 2023b) 500 0.03
DocVQA (Mathew et al., 2021) 11,480 1.60
ChartQA (Masry et al., 2022) 18,317 2.56
*Cauldron-Set-AI2D 2,434 0.17
*Cauldron-Set-Chart2Text 26,961 1.88
*Cauldron-Set-Diagram-Image-to-Text 300 0.02
*Cauldron-Set-HITAB 2,500 0.17
*Cauldron-Set-JAM 5,663 0.40
*Cauldron-Set-Rendered Text 10,000 0.70
*Cauldron-Set-Robut-SQA 8,514 0.59
*Cauldron-Set-Robut-WTQ 38,246 2.67
*Cauldron-Set-ScienceQA 4,976 0.35
*Cauldron-Set-Screen2words 15,730 1.10
*Cauldron-Set-STVQA 17,247 1.20
*Cauldron-Set-TabMWP 22,722 1.59
*Cauldron-Set-InfoVQA 2,118 0.15

*Cauldron-Set-TQA 1,493 0.10
CORD-Instruct (Proposed in this work, §5.2) 680 0.05

VisualMRC (Tanaka et al., 2021) 7,959 0.56
LLaVAR-Inst (Zhang et al., 2023) 19,732 1.38

DocReason (Hu et al., 2024) 25,877 1.81

DocVQA-single’ 44,815 9.38

ChartQA-single’ 28,068 5.88

Layout—en-sampledi (Kim et al., 2023a) 50,000 3.49
DVQA—samplE:di (Kafle et al., 2018) 10,000 0.70
MMC—Chart—sampledi (Liu et al., 2024a) 10,000 0.70
ScreenQA-sampled‘ (Hsiao et al., 2024) 10,000 0.70
LRV—Chart-sampledi (Liu et al., 2023a) 6,746 0.47

Table 13: Overview of datasets used in the final data
configuration. All datasets are open-source and freely
accessible. Datasets marked with * are subsets curated
by Laurencon et al. (2024b), with only selected portions
adopted in this work. T indicates that each question-
answer pair is considered as a single sample. Datasets
marked with ¥ had a large volume of data, hence, only
partial images were randomly sampled.

For ablation studies, we exclude datasets like VG,
RefCOCO, and Vision-Flan to minimize costs, re-
sulting in 9K training steps. Additionally, we find
that the 0.2B model converges more slowly, so we
extend its instruct tuning to twice the number of
steps compared to the other models (1B to 13B).
This increased number of steps is applied solely to
the 0.2B scale.

B.3 Evaluation Details

As described in Section 4.2, which outlines our
strategic model development approach, we use
eight benchmarks: DocVQA (Doc) (Mathew et al.,
2021), ChartQA (Chart) (Masry et al., 2022), Info-
graphicVQA (Info) (Mathew et al., 2022), SEED-
2-Plus (SD2P) (Li et al., 2024a), SEED-IMG
(SD-I) (Li et al., 2024b), MMStar (MMS) (Chen
et al., 2024), ScienceQA-IMG (SciQA) (Lu et al.,
2022), and HallusionBench (Hall) (Guan et al.,
2024). Additionally, for the main experiments
and analyses, we include several more bench-
marks: AI2D (Kembhavi et al., 2016), MathVista-

0.2B le-3 le-6 0.5 0.0 0.03
1B le-3 le-6 0.5 0.0 0.03
3.8B le-3 le-6 0.5 0.0 0.03
7B le-4 le-6 0.5 0.0 0.03
13B le-4 le-6 0.5 0.0 0.03

Table 14: Hyperparameters used during the align-
ment stage.

Model Size ‘ LR Epsilon Grad Clip Norm Weight Decay Warmup Ratio

0.2B 3e-4 le-6 0.5 le-3 0.03
1B 2e-4 le-6 0.5 le-3 0.03
3.8B 2e-4 le-6 1.0 0.0 0.03
7B 2e-5 le-6 1.0 0.0 0.03
13B 2e-5 le-6 1.0 0.0 0.03

Table 15: Hyperparameters used during the instruct
tuning stage. Larger learning rates were noted to be
more effective for smaller models.

TestMini (Math) (Lu et al., 2024), LLaVA-Bench
(LBen) (Liu et al., 2023b), and the Parsing-Bench
(PBen) proposed in this work. We conduct eval-
uations using VLMEvalKit (Contributors, 2023)
and the official code by Liu et al. (2023b). When
evaluating LLaVA-Bench, we transition to using
gpt-4-0613 for judging, as the previously widely-
used gpt-4-0314 is deprecated.

DocVQA and InfographicVQA employ active
leaderboards®, which require JSON-formatted sub-
missions for performance verification. This pro-
cedure, while thorough, can hinder rapid evalu-
ations needed for iterative experimentation. To
mitigate this, our ablation studies detailed in Sec-
tion 4 utilize custom evaluation scripts for Doc
and Info. This involves parsing ground truth data:
for DocVQA, we extract information from CSV
files provided by the leaderboard, while we use
the validation set for InfographicVQA. Our custom
evaluation scores show high correlation with the
official leaderboard results, confirming their cred-
ibility. That is, for ablation studies, we adopt a
simplified evaluation to effectively compare differ-
ent architectures within the ELVA framework.

However, for the main results and analyses (e.g.,
Table 4, 5, 6, and 7), which require comparisons
with other models, we use test set performance met-
rics from the official leaderboard to ensure accurate,
apple-to-apple comparisons.

C Details on ELVA-Encoder Training

C.1 Dataset and Hyperparameters

Our primary training focus is on text reading tasks,
aimed at enhancing the vision encoder’s text recog-

8https://rrc.cvc.uab.es
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Batch Size Learning Rate (LR) Weight Decay

128 Se-5 le-3
128 6e-5 le-3
128 Te-5 le-3
128 8e-5 le-3
256 Se-5 le-3
256 6e-5 le-3
256 Te-5 le-3
256 8e-5 le-3
512 Se-5 0.0
512 6e-5 0.0
512 Te-5 0.0
512 8e-5 0.0

Table 16: Configurations for 12 REncoder trainings.
The table shows batch size, learning rate, and weight de-
cay. All other hyperparameters are essentially identical
to those in §B.2.

nition capabilities. The training datasets include
OCR-IDL (Biten et al., 2023) (837,922 samples),
PDFA® (1,048,569 samples), as well as the align-
ment sets from LLaVA (Liu et al., 2023b) and
LLaVAR (Zhang et al., 2023). We employ du-
plicate sampling, treating 3.5M samples as a syn-
thetic epoch, completing one epoch as detailed in
Table 16. This process is repeated to produce 12
distinct REncoder variants. With the selected 1B
model scale, each training session requires approx-
imately 1.7 days using 8 V100 GPUs.

C.2 Details on Small VLM Usage

As outlined in Section 4.3, each REncoder vari-
ant undergoes training by unfreezing the vision
encoder and fine-tuning it within a 1-billion-
parameter model setting focused on text-centric
datasets. We selected the 1B scale to balance com-
putational demands and model performance. Pre-
liminary experiments, detailed in Table 17, sug-
gest that while a 0.2B ELVA-Encoder configuration
offers some benefits, the 1B variant yields notice-
ably better results. We attribute this improvement
to the 1B model’s superior text reading capabili-
ties, enhancing learning outcomes during the ELVA-
Encoder process. Although coupling each REn-
coder with a larger model could further improve
text recognition, it comes at the cost of increased
computational resources and training time. For
instance, a 3.8B model requires about 3.5 times
longer to train than a 1B model, making it less
feasible for many practitioners. Thus, the 1B pa-
rameter model was chosen to achieve significant
enhancements while maintaining computational ef-
ficiency.

9https://huggingface.co/datasets/pixparse/
pdfa-eng-wds

With 0.2B Trained With 1B Trained’
ELVA-Encoder ELvVA-Encoder

Target Size | No ELVA-Encoder*

0.2B 32.1 35.0 34.9
1B 43.0 44.4 45.5
3.8B 47.4 49.4 50.2

Table 17: Effect of ELVA-Encoder integration. This
table illustrates the performance impact across various
model sizes with and without ELVA-Encoder integration,
as well as the influence of VLM size used in ELVA-
Encoder training. Columns marked with * correspond
to results for C1 in Section 4.3, while those marked with
T correspond to C5 in the same section.

Ratio ‘ Text-Centric General Overall ‘ Desc.

0% 414 46.5 439 REncoder (Denoted as C3 in Sec 4.3)
5% 41.8 457 437

7% 41.5 46.6 44.0 C7in Sec 4.3

10% 41.3 46.5 439

25% 41.2 46.5 439

50% 41.2 49.1 45.1 Avg (CLIP&RE) (C4 in Sec 4.3)
100% 374 48.6 43.0 CLIP-B-224-AnyRes (C1 in Sec 4.3)

Table 18: Performance outcomes with varying weight
averaging ratios. This table illustrates the text-centric,
general, and overall scores derived from different inte-
gration ratios of OpenAl CLIP weights and REncoder
contributions. Notable configurations such as C1, C3,
C7, and C4 are reported as detailed in Section 4.3.

C.3 Details on Model Weight Averaging

In this study, we propose an approach to develop
an efficient and effective vision encoder by keeping
the encoder’s parameters learnable within a small
VLM training framework. The resulting special-
ized vision encoder weights are merged with the
original CLIP weights, known for general image
understanding prowess. The idea of simply averag-
ing multiple model weights has been shown to be
effective in various studies (Wortsman et al., 2022;
Jang et al., 2024). Our approach closely relates to
the Uniform Soup method used as a baseline by
Wortsman et al. (2022), where uniform merging is
applied. Recently, more advanced weight merging
techniques have been explored (Wortsman et al.,
2022; Jang et al., 2024). Given our framework’s
orthogonal nature to these methods, we expect our
proposed practice to be complementary and poten-
tially used in conjunction with these novel tech-
niques.

In addition, we present supplementary experi-
mental results conducted to design the experiment
in Section 4.3. These experiments are carried out
using multiple 1B scale VLMs. First, we exam-
ine how different mixing ratios of OpenAl CLIP
weights influence performance. It is observed that
a balanced improvement in performance occurs
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No merge Avg (CLIP&RE) w/2REs w/4REs w/8REs w/12REs

Text 37.4 41.2 41.7 41.9 42.0 42.4
General 48.6 49.1 47.6 45.1 46.3 48.6
Overall 43.0 45.1 447 435 44.1 455

Table 19: Effect of increasing the number of REn-
coders on performance. This table presents the text-
centric, general, and overall scores resulting from uti-
lizing different numbers of REncoder integrations, de-
tailing the observed trends in performance improvement
across configurations.

across various ratios (see Table 18). Subsequently,
we increase the number of REncoder instances used
in merging, with results presented in Table 19. As
shown, performance generally improves as more
REncoder instances are included, with our deci-
sion ultimately favoring the use of 12 encoders as a
promising configuration. Importantly, this does not
imply that 12 is an optimal or necessary quantity,
as the use of even a single trained encoder followed
by weight averaging results in appealing perfor-
mance. With weight merging algorithms continu-
ing to advance (Wortsman et al., 2022), we believe
achieving higher performance with lower training
costs is feasible and a potential direction for future
work. Given our framework’s orthogonal nature to
these methods, we expect our proposed practice to
be complementary and potentially used in conjunc-
tion with these novel techniques (Wortsman et al.,
2022; Jang et al., 2024).

D Details on RR-Prompt

In our study, we employ the RR-Prompt strategy
to enhance the text understanding capability of the
ELVA model. This strategy involves inserting an
initial QA turn for text-rich images requiring rea-
soning, prompting the model to first identify the
text within the image. This approach ensures that
the model reads the text before engaging in com-
plex reasoning within a dialogue scenario. We ap-
ply the RR-Prompt selectively to specific text-rich
datasets from our curated dataset, as shown in Ta-
ble 13, ensuring that not all text-containing datasets
are affected, to avoid potential mismatches.

Even within applicable subsets, RR-Prompt is
not uniformly applied to all samples; samples with
too little or too much text are excluded, and 20%
of samples are randomly skipped to help the model
balance between reading all text when prompted
and performing direct reasoning during inference.
This selective application enables robust operation
out-of-the-box without notable mismatches. To

prevent over-specialization to a single OCR engine,
we generate annotations using a combination of
MS OCR'? and CLOVA OCR!!. Processing text-
heavy samples, such as those in DocVQA, takes
approximately 4 seconds per call using the CLOVA
OCR API. However, we anticipate optimizing this
cost in future iterations.

As shown in Table 20, the RR-Prompt incorpo-
rates an initial QA turn that instructs the model
to read the text using straightforward commands.
Furthermore, Table 21 presents a sample where
the RR-Prompt is applied. Despite its simplicity,
this approach significantly enhances the training
outcomes.

E Details on the Construction of
CORD-Instruct and Parsing-Bench

E.1 CORD-Instruct

The Consolidated Receipt Dataset (CORD), intro-
duced by Park et al. (2019), is crafted for post-OCR
parsing tasks, featuring Indonesian receipt images
with structured data in JSON format. Our goal
is to adapt this dataset to scenarios where models
must generate user-requested structured informa-
tion in formats like JSON, XML, or Markdown.
To achieve this, we construct CORD-Instruct us-
ing the OpenAI GPT-3.5 API'?. A detailed prompt,
presented in Table 22, guides the API in generating
synthetic user queries and corresponding responses
based on the provided structured information.

After generating initial instructions and API re-
sponses, we manually filter out any unsuccessful
samples. This process involves verifying that sam-
ples reflect real-world scenarios, removing ambigu-
ous instructions, and correcting errors in JSON,
XML, or Markdown transcriptions. Examples of
the generated CORD-Instruct data are shown in
Figure 10.

E.2 Parsing-Bench

Parsing-Bench is a dataset designed to fulfill the
practical needs of visual document assistants. In-
spired by LLaVA-Bench (Liu et al., 2023b), this
task requires the model to accurately interpret and
analyze input document images to generate the
desired structured output. Many industries have ex-
pressed a need to extract specific information from

Ohttps://docs.microsoft.com/en-us/azure/
cognitive-services/computer-vision/overview-ocr

llht’cps: //clova.ai/ocr/en

12Specifically, gpt-3.5-turbo-0125.
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Prompt

Carefully decipher the text in this image. Provide the text in the image only.

Investigate the image for any text. Provide the text in the image only.

Examine the image for any letters or words. Provide the text in the image only.

Identify all written characters present in the image. Provide the text in the image only.

Do a careful reading of the image and transcribe all text. Provide the text in the image only.
Inspect the image and write down all readable characters. Provide the text in the image only.
Translate the image content into written text. Provide the text in the image only.

Review the image and offer a transcription of the text. Provide the text in the image only.

Look over the image and jot down all visible text. Provide the text in the image only.

Scrutinize the image for any discernible words or letters. Provide the text in the image only.
Study the image and document all characters found within. Provide the text in the image only.
Assess the image and record any visible words or letters. Provide the text in the image only.
Kindly extract any text or characters from this image. Provide the text in the image only.
Evaluate the image and isolate all written content. Provide the text in the image only.

Assimilate all readable characters within the image. Provide the text in the image only.

Decode any legible text visible in the image. Provide the text in the image only.

Grasp all written elements within the image. Provide the text in the image only.

Conduct a thorough examination of the image and capture all text. Provide the text in the image only.
Peel all readable characters out from the image. Provide the text in the image only.

Interpret all characters from the image. Provide the text in the image only.

Understand and transcribe any textual content from the image. Provide the text in the image only.
Dissect the image and recover any written characters. Provide the text in the image only.

Deduce and present all visible text from the image. Provide the text in the image only.

Inspect the image and translate any visible characters into text. Provide the text in the image only.

Table 20: Prompt examples for text reading tasks used in RR-Prompt.

A data sample from our train set

User: Deduce and present all visible text from the image.

Assistant: 13 PAKET WEEKEND 1 55.000 715.000 6 PAKET
WEEKEND 2 (...) 6 Qty: 23 Tunai 1.250.000 Kembali 29.500

User: Can you provide the menu items extracted from the docu-
ment image in Markdown format?

Assistant: Sure, here are the menu items:

- PAKET WEEKEND 1: $55.000 x 13 = $715.000
- PAKET WEEKEND 2: $80.000 x 6 = $480.000
- ES JERUK: $13.000

- ES TEH TAWAR: $3.000

- KOPI HITAM: $8.500

- ES BATU: $1.000

Table 21: An example data sample from our train set
with RR-Prompt applied.

document images and convert it into formats like
JSON or XML (Kim et al., 2022). Parsing-Bench
uses Brazilian Identity Documents (BID) (Alysson
Soares et al., 2020) and SROIE (Huang et al., 2019)
as image sources. Figure 11 visually depicts the
overall evaluation process for better comprehension
of our method.

To create the benchmark, we first extract context
information from images, with prompts detailed in
Table 23. An example is shown in Figure 11. This
extracted context is utilized during the LLM-as-a-
Judge (Zheng et al., 2023a) evaluation process.

B Q: Can you extract the information from the provided image
and give it to me in JSON format?

A: Certainly, here's the extracted information in JSON format:
json

IASI + AYAM KATSU TER. "price": "31,819" }.
EH PANAS®, “cnt": "1, "price": "5,455" },
. "ES TEH MANIS", "cnt": "1", "price": "7,273" },

Prestsses TR {"nm": "CH CORDON BLEU NASI", "cnt": "1", "price": "42,728" }
s ]
i BTN "sub_total”: {

"subtotal_price”: "87,275", "tax_price": "8,728", "etc": "-3"

7,273
CH CORDON BLEU NAST 42,728

"total": {
“total_price": "96,000", "creditcardprice":
"96,000", "menuqty_cnt": "ITEMS :4"

}

}

—
1 acan you extract the information from the provided image and give it
to me in Markdown format?

A: Sure, here's the extracted information in Markdown format:

# Menu
- Name: Gangster BZR
- Quantity: 1
T - Price: $30.00
- Submenu: +Level 0
(SR ._......
| -

- # Subtotal
1 Gangster BZR 30.000

e ile - Subtotal Price: $30.00
Subtotal 30.000 # Total
Total 30.000 - Total Price: $30.00
S o - Cash Price: $30.00
CASH 30.990 | . Change Price: $0
Kembalian o

Figure 10: The generated CORD-Instruct examples.

We prepare reference answers using the OpenAl
GPT-40 API model'? to serve as benchmarks for
evaluation. Evaluation rules, or the rubric, are de-
tailed in Table 23. Finally, the judge model, utiliz-
ing the OpenAl GPT-40 API, evaluates the target

13Speciﬁcally, gpt-40-2024-05-13.
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e N N
Can you summarize the purchased item information, including the name, price, 8R§V'EW:
and quantity, in XML format?
girltnajmy here is the purchased item information in XML format: Assistant 1 provided a clear and accurate summary of the
- f purchased items in XML format. However, the XML tags used
ROCKU YAK purchased_items> .. s "o CRC]= PO i :

oo o0 . 80, ¢ <item> ("Receipt", "Item", "Name", "Price", "Quantity") are not consistent
<name>GREEN TEA</name> with the tags used in the original XML provided by the user. This
<quantity>1</quantity> inconsistency might cause confusion or require additional work to

] <price>3.00</price> integrate with the user's existing data structure.
ot P ' an <litem>
F g <item> Assistant 2 also provided a clear and accurate summary of the
e *®*T1 <name>GREEN TEA</name> purchased items in XML format. The tags used ("purchased_items",
e ,wwzz,«.d.\, <quantity>1</quantity> "item", "name", "quantity”, "price") are more consistent with the
e <price>3.00</price> original XML structure provided by the user, making it easier to
e </item> integrate and more relevant. Additionally, Assistant 2's response
e <item> includes a root tag ("purchased_items") that encapsulates all items,
<name>BUFFET DINNER (ADULT)</name> which is a good practice for XML structure.
<quantity>3</quantity>
‘” % <<I;mce>49 90</price> Overall, both assistants performed well, but Assistant 2's response
0% o litem>
. tem is slightly more aligned with the user's existing data structure and
Signature:___ </purchased_items> ; ) )
Thark you, Ploses cime ooy includes better XML formatting practices.
. Elva received 9/10
J

/The image is a scanned receipt from ROCKU YAKINIKU, a restaurant located at CPI ROCKU SDN. BHD. (1096317-P), LOT F355/356/357, FIRST \
FLOOR, RAINFOREST, 1 UTAMA SHOPPING CENTRE, LEBUH BANDAR UTAMA, 47800 PETALING JAYA. The receipt includes the GST number
000446271488. The transaction took place on 19/02/2018 at 17:43, with the cashier identified as CASHIER and the server as BISWASH(ip). The table
number is A9, and there were 3 people (Pax: 3). The bill number is 063975.

The items ordered include:

-1 Green Tea at RM 3.00

- 1 Green Tea at RM 3.00

- 3 Buffet Dinner (Adult) at RM 49.90 each, totaling RM 149.70

The subtotal is RM 155.70. Additional charges include a 10% service charge of RM 15.57 and a 6% GST of RM 10.28, bringing the total to RM 181.55.
The payment was made in cash, with RM 201.55 given, resulting in a change of RM 20.00.

The GST Summary shows:
- T: 6% GST on an amount of RM 171.27, with a tax of RM 10.28
- Z: Zero Rated with an amount of RM 0.00 and a tax of RM 0.00

The receipt concludes with a space for a signature and a thank you note, "Thank you. Please come again." The bill was closed at 19:08:04.

Syl
<receipt>
<restaurant>
<name>ROCKU YAKINIKU</name><company>CP| ROCKU SDN. BHD. (1096317-P)</company><gst_no>000446271488</gst_no>
<address><lot>LOT F355/356/357, FIRST FLOOR</lot><location>RAINFOREST, 1 UTAMA SHOPPING CENTRE</location><street>LEBUH
BANDAR UTAMA</street><city>47800 PETALING JAYA</city></address>
</restaurant>
<transaction>
<date>19/02/2018</date><time>17:43</time><terminal>T001</terminal><bill_no>A063975</bill_no>
<cashier>CASHIER</cashier><server>BISWASH(ip)</server><table>A9</table><pax>3</pax><bill>063975</bill>
</transaction>
<items>
<item><name>GREEN TEA</name><quantity>1</quantity><price>3.00</price><total>3.00</total><tax>T</tax></item>
<item><name>GREEN TEA</name><quantity>1</quantity><price>3.00</price><total>3.00</total><tax>T</tax></item>
<item><name>BUFFET DINNER (ADULT)</name><quantity>3</quantity><price>49.90</price><total>149.70</total><tax>T</tax></item>
</items>
<summary><subtotal>155.70</subtotal><service_charge>15.57</service_charge><gst>10.28</gst><total>181.55</total>
<payment><method>CASH</method><amount>201.55</amount><change>20.00</change></payment>
</summary>
<gst_summary>
<gst><type>T</type><rate>6%</rate><amount>171.27</amount><tax>10.28</tax></gst>
<gst><type>Z</type><rate>Zero Rated</rate><amount>0.00</amount><tax>0.00</tax></gst>
</gst_summary>
<footer>
<signature> </signature><note>Thank you. Please come again</note><bill_close>19:08:04</bill_close>
</footer>
<[receipt>

\ /

Figure 11: Overview of Parsing-Bench with an example. The top left shows the question and model predictions.
The top right contains the evaluation review. The bottom section, discussed in Section E.2, shows context extracted
from the image using prompts. Evaluation compares two model predictions input into a high-performance LLM
judge model. In this example, ELVA is Assistant 2, highlighting its comparative performance.

model outputs by comparing them against these Unlike traditional benchmarks relying on rigid
reference answers, using the rubric and context to  rule-based evaluations, Parsing-Bench offers more
determine performance scores. adaptability for assessing MLLMs. Parsing-Bench
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CORD-Instruct Generation Prompt

Create a synthetic user query requesting information
extraction from a given document image. The ex-
tracted information should be provided in various
formats such as JSON, XML, or Markdown based
on the user’s request. Users may ask for specific
parts of the information, like menu items or payment
amounts. Your task is to generate both a user query
and the corresponding response from the information
extraction system. Ensure the queries and responses
vary in detail and format. Sometimes include concise
responses, particularly when indicated with the word
"concisely."

The provided JSON is to guide your response cre-
ation - do not display or mention it in the user queries.
Specifically, do not create queries that ask for in-
formation extraction from a provided JSON (e.g.,
"Can you extract the information from the provided
JSON" is not allowed). Additionally, you do not
need to strictly follow the tag names in the provided
JSON while creating your responses (e.g., "nm" can
be "name" or "cnt" can be "count" ). Return results
strictly in the format shown below:

Query: I need the payment amount
from the document in this image
in JSON format, answer concisely.
Answer: <<<json
{

"payment_amount"”: "$123.45"
}

>>>

Query: Please parse the input document
and provide the menu details in XML.
Answer: Certainly, here is the menu
information in XML format:...

Query: Can you provide the extracted
customer information from the document
image in Markdown?

Answer: Sure, here it is:

<<

# Customer Information

- Name: John Doe

- Email: john.doe@example.com

>>>

Remember, the goal is to include appropriate for-
matting such as JSON, XML, or Markdown in your
responses to correspond with the user’s query.

Table 22: CORD-Instruct data generation prompt.

includes 30 examples that test models’ comprehen-
sion and reasoning from document images. We
believe that future work can expand Parsing-Bench
by increasing the number of examples and encom-
passing a wider variety of documents and sce-
narios, enhancing its robustness and applicabil-
ity. In line with our commitment to open research,
we will make these datasets publicly available at
https://github.com/naver-ai/elva.

Parsing-Bench BID Context Generation Prompt

Using the provided Brazilian Identity Document im-
age, please compose a comprehensive and detailed
caption that encapsulates all the elements depicted
in the image. Ensure precision in extracting any text
present, maintaining case sensitivity and retaining the
exact original form. Begin with a well-written cap-
tion in natural language, detailing the image’s content,
layout, and nuances. Conclude with a well-structured
XML format that meticulously documents the ex-
tracted information, preserving the image’s original
layout and details.

Parsing-Bench SROIE Context Generation Prompt

| r

Using the provided scanned receipt image, please
compose a comprehensive and detailed caption that
encapsulates all the elements depicted in the image.
Ensure precision in extracting any text present, main-
taining case sensitivity and retaining the exact orig-
inal form. Begin with a well-written caption in nat-
ural language, detailing the image’s content, layout,
and nuances. Conclude with a well-structured XML
format that meticulously documents the extracted in-
formation, preserving the image’s original layout and
details.

Parsing-Bench Evaluation Rubric

| r

We would like to request your feedback on the perfor-
mance of two Al assistants in response to the user’s
question displayed above. The user asks the question
related to the document image. For your reference,
the visual content in the document image is described
with a caption, and a corresponding XML file sum-
marizes the information. Please note that the infor-
mation provided in the caption and XML file may
not be completely perfect. Please rate the helpful-
ness, relevance, accuracy, and level of detail of their
responses. Each assistant receives an overall score on
a scale of 1 to 10, where a higher score indicates bet-
ter overall performance. Please first output a single
line containing only two values indicating the scores
for Assistant 1 and 2, respectively. The two scores
should be separated by a space. In the subsequent
line, please provide a comprehensive explanation of
your evaluation, avoiding any potential bias and en-
suring that the order in which the responses were
presented does not affect your judgment. Keep in
mind that the XML file is a summarized version of
the full information and may not be directly related
to the user’s question. Providing unrelated informa-
tion will not be particularly beneficial. Responses
should directly address the user’s query in a clear and
useful manner to achieve a higher score. Focus espe-
cially on whether the responses would be convenient
and useful for the user. Minor typographical errors
should not heavily impact the scoring. When parsing
data formats like XML or JSON, if the user hasn’t
specified a particular format, minor differences in tag
or key names are acceptable as long as the overall
meaning is preserved.

Table 23: Parsing-Bench context generation prompts
and LLM-as-a-Judge evaluation rules.
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