
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 16658–16680
November 12-16, 2024 ©2024 Association for Computational Linguistics

Small LLMs Are Weak Tool Learners: A Multi-LLM Agent

Weizhou Shen1, Chenliang Li2, Hongzhan Chen1, Ming Yan2*,
Xiaojun Quan1∗, Hehong Chen2, Ji Zhang2, Fei Huang2

1School of Computer Science and Engineering, Sun Yat-sen University, China
2Alibaba Group

shenwzh3@mail3.sysu.edu.cn, quanxj3@mail.sysu.edu.cn,
ym119608@alibaba-inc.com

https://github.com/X-PLUG/Multi-LLM-Agent

Abstract

Large Language Model (LLM) agents signif-
icantly extend the capabilities of standalone
LLMs, empowering them to interact with exter-
nal tools (e.g., APIs, functions) and complete
various tasks in a self-directed fashion. The
challenge of tool use demands that LLMs not
only understand user queries and generate an-
swers accurately but also excel in task plan-
ning, tool invocation, and result summariza-
tion. While traditional works focus on train-
ing a single LLM with all these capabilities,
performance limitations become apparent, par-
ticularly with smaller models. To overcome
these challenges, we propose a novel approach
that decomposes the aforementioned capabili-
ties into a planner, caller, and summarizer. Each
component is implemented by a single LLM
that focuses on a specific capability and collab-
orates with others to accomplish the task. This
modular framework facilitates individual up-
dates and the potential use of smaller LLMs for
building each capability. To effectively train
this framework, we introduce a two-stage train-
ing paradigm. First, we fine-tune a backbone
LLM on the entire dataset without discrimi-
nating sub-tasks, providing the model with a
comprehensive understanding of the task. Sec-
ond, the fine-tuned LLM is used to instanti-
ate the planner, caller, and summarizer respec-
tively, which are continually fine-tuned on re-
spective sub-tasks. Evaluation across various
tool-use benchmarks illustrates that our pro-
posed multi-LLM framework surpasses the tra-
ditional single-LLM approach, highlighting its
efficacy and advantages in tool learning.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing with remarkable
proficiency in understanding and generating text.
Despite their impressive capabilities, LLMs are

* Corresponding authors.

Planner

Caller

Summarizer

Single LLM

Guidance & control Feedback

Instruction

Instruction
Tools

Tools

Figure 1: A conceptual comparison of the traditional
single-LLM agent framework (top) and the proposed
multi-LLM agent framework, α-UMi (bottom).

not without limitations. Notably, they lack domain
specificity, real-time information, and face chal-
lenges in solving specialized problems such as
mathematics (Gou et al., 2023) and program compi-
lation (OpenAI, 2023a). Hence, integrating LLMs
with external tools, such as API calls and Python
functions, becomes imperative to extend their capa-
bilities and enhance the overall performance. Con-
sequently, LLM agents have become a prominent
area for both academia and industry, employing
large language models to determine when and how
to utilize external tools to tackle various tasks.

In addition to exploring proprietary LLMs like
GPT-4, researchers have also actively engaged in
developing customizable agent systems by fine-
tuning open-source LLMs on diverse tool-use
datasets (Patil et al., 2023; Tang et al., 2023; Qin
et al., 2023b; Gou et al., 2023). The challenge of
tool learning demands sufficiently large and com-
plex LLMs. These models must not only compre-
hend user queries but also excel in task planning,
tool selection and invocation, and result summariza-
tion (Yujia et al., 2023). These capabilities draw
upon different facets of the LLMs; for instance,
planning relies more on reasoning ability, while
tool selection and invocation demand legal and ac-

16658

https://github.com/X-PLUG/Multi-LLM-Agent

curate request writing, and result summarization
requires adept conclusion-drawing skills. While
conventional approaches (Qin et al., 2023b; Gou
et al., 2023; Zeng et al., 2023) focus on training
a single open-source LLM with all these capabili-
ties, notable performance limitations have been ob-
served, especially with smaller open-source LLMs
(Touvron et al., 2023a,b). Moreover, the tools could
be updated frequently in practical scenarios, when
the entire LLM requires potential retraining.

To address these challenges, we propose a multi-
LLM agent framework for tool learning, α-UMi1.
As illustrated in Figure 1, α-UMi decomposes the
capabilities of a single LLM into three components,
namely planner, caller, and summarizer. Each of
these components is implemented by a single LLM
and trained to focus on a specific capability. The
planner is designed to generate the rationale based
on the current state of the system and weighs be-
tween selecting the caller or summarizer to gener-
ate downstream output, or even deciding to termi-
nate the execution. The caller is directed by the ra-
tionale and responsible for invocating specific tools.
The summarizer is guided by the planner to craft
the ultimate user answer based on the execution
trajectory. These components collaborate seam-
lessly to accomplish various tasks. Compared to
previous approaches, our modular framework has
three distinct advantages. First, each component
undergoes training for a designated role, ensuring
enhanced performance for each capability. Second,
the modular structure allows for individual updates
to each component as required, ensuring adaptabil-
ity and streamlined maintenance. Third, since each
component focuses solely on a specific capability,
potentially smaller LLMs can be employed.

To effectively train this multi-LLM framework,
we introduce a novel global-to-local progressive
fine-tuning strategy (GLPFT). First, an LLM back-
bone is trained on the original training dataset
without discriminating between sub-tasks, enhanc-
ing the comprehensive understanding of the tool-
learning task. Three copies of this LLM backbone
are created to instantiate the planner, caller, and
summarizer, respectively. In the second stage, the
training dataset is reorganized into new datasets tai-
lored to each LLM’s role in tool use, and continual

1In astronomy, the name “α-UMi” is an alias of the Polaris
Star (https://en.wikipedia.org/wiki/Polaris), which
is actually a triple star system consisting of a brighter star (cor-
responding to the planner) and two fainter stars (corresponding
to the caller and the summarizer).

fine-tuning of the planner, caller, and summarizer
is performed on their respective datasets.

We employ LLaMA-2 (Touvron et al., 2023b) se-
ries to implement the LLM backbone and evaluate
our α-UMi agent on several tool learning bench-
marks (Qin et al., 2023b; Tang et al., 2023). Ex-
perimental results demonstrate that our proposed
framework outperforms the single-LLM approach
across various model and data sizes. Moreover, we
show the necessity of the GLPFT strategy for the
success of our framework and delve into the rea-
sons behind the improved performance. Finally, the
results confirm our assumption that smaller LLMs
can be used in our multi-LLM framework to culti-
vate individual tool learning capabilities and attain
a competitive overall performance.

To sum up, this work makes three critical contri-
butions. First, we demonstrate that small LLMs are
weak tool learners and introduce α-UMi, a multi-
LLM framework for building LLM agents, that
outperforms the existing single-LLM approach in
tool use. Second, we propose a GLPFT fine-tuning
strategy, which has proven to be essential for the
success of our framework. Third, we perform a
thorough analysis, delving into data scaling laws
and investigating the underlying reasons behind the
superior performance of our framework.

2 Related Works

2.1 Tool Learning

The ability of LLMs to use external tools has be-
come a pivotal component in the development of
AI agents, attracting rapidly growing attention (Qin
et al., 2023b; Schick et al., 2023; Yang et al., 2023b;
Shen et al., 2023; Patil et al., 2023; Qin et al.,
2023a). Toolformer (Schick et al., 2023) was one of
the pioneering work in tool learning. Subsequently,
a diverse array of external tools has been employed
to enhance LLMs in various ways, including the
knowledge retriever (Yang et al., 2023a; Nakano
et al., 2021), visual models (Yang et al., 2023b; Wu
et al., 2023a; Yang et al., 2023c; Shen et al., 2023),
code and math reasoning (Gou et al., 2023; OpenAI,
2023a), and APIs (Li et al., 2023; Qin et al., 2023b).
Different from previous approaches relying on a
single LLM for tool learning, we introduce a novel
multi-LLM collaborated tool learning framework
designed for smaller open-source LLMs.

16659

https://en.wikipedia.org/wiki/Polaris

Planner Next:
Caller？

Caller

Next:
Summarizer？

Summarizer

Instruction

Tool call &Observation Action 𝑎!

Rationale 𝑟!

Final answer

Give up
Yes

No

Yes

No

Planner prompt Caller prompt Summarizer prompt

Figure 2: An illustration of how α-UMi works to complete a task.

2.2 LLM-powered Agents

Leveraging the capabilities of LLMs such as GPT-
3.5 (OpenAI, 2022) and GPT-4 (OpenAI, 2023b),
AI agent systems have found application in di-
verse scenarios. For instance, BabyAGI (Naka-
jima, 2023) and AutoGPT (Gravitas, 2023) have
been developed to address daily problems, while
Voyager (Wang et al., 2023) and Ghost (Zhu et al.,
2023) engage in free exploration within Minecraft
games. Additionally, MetaGPT (Hong et al., 2023),
ChatDev (Qian et al., 2023a), and AutoGen (Wu
et al., 2023b) contribute to the development of
multi-agent frameworks tailored for software de-
velopment and problem-solving.

3 Methodology

3.1 Preliminary

Agents for tool learning are systems designed to
assist users in completing tasks through a series
of decision-making processes and tool use (Yujia
et al., 2023). In recent years, these agents com-
monly adhere to the ReACT framework (Yao et al.,
2022). The backbone of the agent is an LLM de-
noted as M. Given the user instruction q and the
system prompt P , the agent solves the instruction
step by step. In the tth step, the LLM M gener-
ates a rationale rt and an action at based on the
instruction and the current state of the system:

rt, at = M(P, τt−1, q), (1)

where τt−1 = {r1, a1, o1, ..., rt−1, at−1, ot−1} de-
notes the previous execution trajectory. Here, ot
denotes the observation returned by tools when the
action at is supplied. In the final step of the inter-
action, the agent generates rationale rn indicating
that the instruction q is solved along with the final
answer an or that it will abandon this execution run.
Therefore, no observation is included in this step.

3.2 The α-UMi Framework

As previously mentioned, the task of tool learning
imposes a significant demand on the capabilities
of LLMs, including task planning, tool invocation,
and result summarization. Coping with all these
capabilities using a single open-source LLM, espe-
cially when opting for a smaller LLM, appears to
be challenging. To address this challenge, we in-
troduce the α-UMi framework, which breaks down
the tool learning task into three sub-tasks and as-
signs each sub-task to a dedicated LLM. Figure 1
presents an illustration of our framework, which in-
corporates three distinct LLM components: planner
Mplan, caller Mcall, and summarizer Msum. These
components are differentiated by their roles in tool
use, and each component model has a unique task
definition, system prompt2, and model input.

The workflow of α-UMi is shown in Figure 2.
Upon receiving the user instruction q, the planner
generates a rationale comprising hints for the this
step. This may trigger the caller to engage with the
tools and subsequently receive observations from
the tools. This iterative planner-caller-tool loop
continues until the planner determines that it has
gathered sufficient information to resolve the in-
struction. At this point, the planner transitions to
the summarizer to generate the final answer. Al-
ternatively, if the planner deems the instruction
unsolvable, it may abandon the execution.

Planner: The planner assumes responsibility
for planning and decision-making, serving as the
“brain” of our agent framework. Specifically, the
model input for the planner comprises the system
prompt Pplan, the user instruction q, and the previ-
ous execution trajectory τt−1. Using this input, the
planner generates the rationale rt:

rt = Mplan(Pplan, τt−1, q). (2)

2The prompts for each LLM are provided in Appendix A.

16660

Pre-trained LLMGlobal
Fine-tuning

Thought: …
Action: …
Action input: …
…
Answer: …

…<msk><msk>
Thought: …
Next: …
<msk><msk>…

…<msk><msk>
Action:…
Action input: …
<msk><msk>…

…<msk><msk>
Final Answer:…Subtasks

&
Local

Fine-tuning

Single-LLM

Planner Caller Summarizer

Figure 3: Global-to-local progressive fine-tuning.

Following the rationale, the planner generates the
decision for the next step: (1) If the decision is
“Next: Caller”, the caller will be activated and an
action will be generated for calling tools. (2) If the
decision is “Next: Summarizer”, the summarizer
will be activated to generate the final answer for
the user, and the agent execution will finish. (3) If
the decision is “Next: Give up”, it means that the
user’s instruction cannot be solved in the current
situation, and the system will be terminated.

Caller: Interacting with the tools requires the
LLM to generate legal and useful requests, which
may conflict with other abilities such as reasoning
and general response generation during fine-tuning.
Therefore, we train a specialized caller to generate
the action for using tools. The caller takes the user
instruction q and the previous execution trajectory
τt−1 as input. To make the caller focus on the plan-
ner’s rationale rt in the current step, we also design
a prompt Pcall to explicitly remind the caller:

at = Mcall(Pcall, τt−1, q, rt). (3)

Summarizer: The agent’s final response, which
aims to offer informative and helpful information
to the user, is distinct from the rationales that pri-
marily focus on planning and reasoning. Therefore,
we employ a dedicated summarizer tasked with
generating the final answer an. This model utilizes
a concise prompt Psum designed to guide the model
in concentrating on summarizing the execution tra-
jectory and presenting the answer to the user:

an = Msum(Psum, τn−1, q, rn). (4)

In Figure 7 and Figure 8, we show several cases
of our α-UMi on downstream tasks.

3.3 Global-to-Local Progressive Fine-Tuning

To effectively fine-tune the above multi-LLM sys-
tem is a complex endeavor: On one hand, generat-
ing the rationale, action, and final answer can fa-
cilitate each other during the training process, and
enhance the model’s comprehension of the entire
agent task (Chen et al., 2023). On the other hand,
the constraints on model capacity make it chal-
lenging to fine-tune a small LLM to achieve peak
performance in generating rationales, actions, and
final answers simultaneously (Dong et al., 2023).
Taking into account these two points, we propose
a global-to-local progressive fine-tuning (GLPFT)
strategy for α-UMi. The motivation behind this
strategy is to first exploit the mechanism by which
the generation of rationale, action, and final answer
can mutually enhance each other. Then, once the
single LLM reaches its performance ceiling, it is
subsequently split into planner, caller and summa-
rizer for further fine-tuning, in order to enhance its
capabilities in the subtasks and mitigate the perfor-
mance constraints due to limited model capacity.

As depicted in Figure 3, this GLPFT strategy
comprises two distinct stages. The first stage in-
volves global fine-tuning, where we fine-tune a
backbone LLM on the original training dataset
without distinguishing between sub-tasks. After
this stage, the backbone LLM is trained to sequen-
tially output the rationale, action, and answer as
introduced in Section 3.1. Then, we create three
copies of the backbone LLM, designated as the
planner, caller, and summarizer, respectively.

The second stage is local fine-tuning, where
we reorganize the training dataset tailored to each
LLM’s role, as introduced in Section 3.2. We then
proceed to fine-tune the planner, caller, and sum-
marizer on their respective datasets, thereby further
enhancing their specific abilities in each sub-task.
During this local fine-tuning stage, we opt to reuse
the set of user instructions curated in the global
fine-tuning stage. The only adjustment made to
the training set is the change in the format of the
training data. As illustrated in Figure 3, the fine-
tuning objective during the second stage for the
planner, caller, and summarizer is oriented towards
generating the rationale, action, and final answer,
respectively. While the gradients from other text
spans are stopped. Simultaneously, we refine the
system prompts for the training data of the planner,
caller, and summarizer, as detailed in Appendix A.

16661

3.4 Discussions

Recent studies have explored multi-agent systems
based on LLMs across various domains, such as
social communication (Park et al., 2023; Wei et al.,
2023), software development (Qian et al., 2023a;
Hong et al., 2023), and tool learning (Song et al.,
2023; Qian et al., 2023b). However, these frame-
works typically rely on robust closed-source LLMs,
demanding advanced functionalities such as auto-
matic cooperation and feedback, capabilities that
surpass those available in open-source LLMs. In
contrast, our α-UMi aims to alleviate the LLM’s
workload in tool-use tasks by integrating multiple
LLMs into an agent, particularly well-suited for
open-source, smaller LLMs. Besides, we introduce
the GLPFT method for fine-tuning the multi-LLM
system, a novel contribution not present in existing
multi-agent frameworks.

4 Experimental Settings

4.1 Benchmarks

We evaluate the effectiveness of α-UMi on the
well recognized tool learning benchmark: Tool-
Bench (Qin et al., 2023b). This benchmark involve
API calls to accomplish tasks, where the agent must
accurately select the appropriate API and compose
necessary API requests. For additional details and
statistics regarding these datasets, please refer to
Appendix B. We also evaluate α-UMi on other
benchmarks such as ToolAlpaca (Tang et al., 2023)
and program-aided agent for mathematical reason-
ing (Hendrycks et al., 2021; Cobbe et al., 2021).
The results are shown in Appendix J.

4.2 Metrics

The tasks in ToolBench involve calling APIs
through RapidAPI3. This process frequently en-
counters problems such as API breakdowns, which
impacts the fairness of the comparison. To address
this problem, we introduce two types of evaluations
for ToolBench. In Section 5.1, we first compare
the output of agent with the annotated reference
at each step4, which avoids real-time API callings.
The metrics for this evaluation include Action EM
(Act. EM), Argument F1 (Arg. F1), and Rouge-L
(R-L) as proposed by Li et al. (2023). Moreover,
we examine the frequency of API name halluci-
nations (Hallu.) and the accuracy (Plan ACC) of

3https://rapidapi.com/hub.
4Refer to Appendix C for more details of the evaluation.

the agent’s planning decisions at each step for us-
ing tools invocation, generating answer, or giving
up. The reference annotations are based on verified
GPT-3.5 execution results provided in ToolBench.
We also provide the results based on real-time Rap-
idAPI calling in Section 5.2, which is the original
evaluation method used by the ToolBench team.

4.3 Implementation Details

We opt for LLaMA-2-chat-7B/13B (Touvron et al.,
2023b) as the backbone to implement our frame-
work. In the first stage of our GLPFT, we conduct
fine-tuning for the backbone LLM with a learning
rate of 5e-5 for 2 epochs. Then, we create three
copies of this fine-tuned backbone to instantiate
the planner, caller, and summarizer, respectively.
In the second stage, we fine-tune the three LLMs
with a reduced learning rate of 1e-5. The planner
and caller undergo fine-tuning for 1 epoch, while
the summarizer undergoes fine-tuning for 2 epochs.
We set the global batch size to 48 and employ Deep-
Speed ZeRO Stage3 (Rajbhandari et al., 2021) to
speed up the fine-tuning process. All experimental
results are obtained using greedy decoding, with
the maximum sequence length set at 4096.

4.4 Baselines

We compare our method with three baseline meth-
ods, namely Single-LLM, Multi-LLMone-stage and
Single-LLMmulti-task. Single-LLM refers to the
traditional single-LLM tool learning approach.
Multi-LLMone-stage involves directly fine-tuning
the planner, caller, and summarizer on their own
sub-task datasets, without employing our two-stage
fine-tuning strategy. Single-LLMmulti-task refers to
using the same LLM to fulfill the roles of planner,
caller, and summarizer. This particular LLM is
fine-tuned on a combined dataset comprising the
three sub-task datasets and functions similarly to
our multi-LLM framework. We also evaluate the
performance of GPT-3.5 and GPT-4 with 0-shot
setting, and ToolLLaMA (Qin et al., 2023b), which
is a 7B LLaMA model fine-tuned on ToolBench.

5 Results and Analysis

5.1 Overall Results

The main results are presented in Table 1. We elab-
orate on our observations from six perspectives:
α-UMi v.s. Existing Methods: When compared

to GPT-3.5 and ToolLLama, α-UMi outperforms
them on all metrics. α-UMi exceeds these two

16662

Model ToolBench (in-domain) ToolBench (out-of-domain)
Plan ACC Act. EM Hallu. Arg. F1 R-L Plan ACC Act. EM Hallu. Arg. F1 R-L

Close-Source LLM
GPT-3.5-turbo (0-shot) 83.33 58.67 7.40 45.61 23.08 81.62 54.67 8.19 40.08 22.85
GPT-4 (0-shot) 80.28 55.52 5.98 48.74 28.69 77.80 55.26 5.12 47.45 30.61

Model Size = 7B (LoRA)
Multi-LLMone-stage (LoRA) 77.76 41.20 2.18 33.21 22.02 79.05 39.25 2.58 33.29 24.66
α-UMi (LoRA) 83.45 44.34 9.61 38.35 34.75 85.84 50.61 4.58 44.65 43.89

Model Size = 7B
ToolLLaMA (len = 4096) 66.42 19.47 33.94 15.98 2.06 68.21 30.75 25.35 25.07 5.78
ToolLLaMA (len = 8192) 77.02 47.56 4.03 42.00 15.26 77.76 45.07 3.45 40.41 18.10
Single-LLM 81.92 53.26 2.32 45.57 42.66 84.61 56.54 2.26 50.09 47.99
Multi-LLMone-stage 87.52 45.11 7.71 38.02 41.01 88.42 53.40 2.52 45.79 46.39
Single-LLMmulti-task 85.06 51.83 2.96 44.25 27.40 86.55 56.89 2.77 49.50 32.58
α-UMiw/o reuse 88.24 55.50 0.53 48.97 39.98 87.91 58.02 2.32 50.55 42.59
α-UMiw/ reuse 88.92 58.94 0.57 52.24 43.17 89.72 60.47 0.45 53.60 46.26

Model Size = 13B
Single-LLM 81.01 59.67 1.53 52.35 42.16 86.74 60.04 2.03 52.94 48.46
Multi-LLMone-stage 86.49 50.54 5.11 41.96 36.21 87.45 56.71 3.23 47.49 41.62
Single-LLMmulti-task 86.36 58.96 2.00 49.28 28.41 86.64 62.78 3.42 53.29 35.46
α-UMiw/o reuse 86.33 60.07 0.39 53.11 35.09 87.75 61.63 2.95 52.54 37.70
α-UMiw/ reuse 87.87 63.03 0.37 57.65 43.46 88.73 64.21 0.24 57.38 42.50

Table 1: Overall evaluation results on ToolBench.

baselines in terms of Plan ACC and R-L consider-
ably, demonstrating its alignment with annotated
reference in terms of planning execution steps and
generating final answers. It is worth mentioning
that ToolLLaMA only exhibits acceptable perfor-
mance when the input length is 8192. At an input
length of 4096, ToolLLaMA shows deterioration
across various metrics, particularly exhibiting a
very high hallucination rate. In contrast, α-UMi
only requires the input length of 4096 to achieve a
satisfying performance.

α-UMi v.s. Single-LLM: α-UMi outperforms
the Single-LLM agent. On ToolBench, we unveil
substantial improvements with α-UMi, particularly
in Plan ACC, Act. EM, Hallu., and Arg. F1. This
finding not only confirm the effectiveness of α-
UMi in enhancing the agent’s planning and API
calling capabilities but also suggest a notable de-
crease in hallucinations, which can significantly
elevate user satisfaction.

Model Scales: When comparing the results of
methods with different model sizes, we note that
agents with a 13B backbone exhibit superior per-
formance compared to their 7B counterparts. This
observation implies that the shift from a 7B to a
13B model results in a improvement in tool uti-
lization capabilities. Significantly, α-UMi with a
7B backbone even outperforms the Single-LLM
baseline with a 13B LLM, confirming our earlier
assumption that smaller LLMs can be utilized in
our multi-LLM framework to develop each capabil-
ity and achieve competitive overall performance.

Multi-LLM Fine-tuning: α-UMi outper-
forms Multi-LLMone-stage and Single-LLMmulti-task.
Multi-LLMone-stage even exhibits suboptimal per-
formance compared to the Single-LLM baseline in
metrics assessing API calling abilities, such as Act.
EM, Hallu., and Arg. F1. This finding highlights
the limitations of training each LLM on individ-
ual sub-tasks, compromising the comprehensive
understanding of the tool-use task. Moreover, the
subpar performance of Single-LLMmulti-task indi-
cates that, the limited capacity of small LLMs hin-
ders the agent from effectively fulfilling the roles
of planner, caller, and summarizer simultaneously.
In contrast, through the application of the GLPFT
strategy, α-UMi successfully mitigates this limi-
tation, showcasing its effectiveness in achieving
comprehensive tool learning capabilities.

Full Fine-tuning v.s. LoRA: In Multi-
LLMone-stage (LoRA), we directly fine-tuned three
LoRAs (Hu et al., 2022) for planner, caller and
summarizer, respectively. This strategy is similar to
AutoACT (Qiao et al., 2024), while its performance
fails to outperform α-UMi with GLPFT. Moreover,
we can implement LoRA on the backbone LLM
obtained from the first stage of the GLPFT (α-
UMi (LoRA)). Applying LoRA on top of this back-
bone yields better results than Multi-LLMone-stage
(LoRA), but still underperforms the full parameter
updating strategy GLPFT. Therefore, we conclude
that employing full fine-tuning is necessary when
constructing multi-LLM frameworks.

Instruction Reusing: α-UMiw/o reuse represents

16663

Method Model I1-Inst. I1-Tool I1-Cat. I2-Inst. I2-Cat. I3-Inst. Average
Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win

ReACT

Claude-2 5.5 31.0 3.5 27.8 5.5 33.8 6.0 35.0 6.0 31.5 14.0 47.5 6.8 34.4
GPT-3.5 41.5 - 44.0 - 44.5 - 42.5 - 46.5 - 22.0 - 40.2 -
ToolLLaMA 25.0 45.0 29.0 42.0 33.0 47.5 30.5 50.8 31.5 41.8 25.0 55.0 29.0 47.0
GPT-4 53.5 60.0 50.0 58.8 53.5 63.5 67.0 65.8 72.0 60.3 47.0 78.0 57.2 64.4

DFSDT

Claude-2 20.5 38.0 31.0 44.3 18.5 43.3 17.0 36.8 20.5 33.5 28.0 65.0 43.1 43.5
GPT-3.5 54.5 60.5 65.0 62.0 60.5 57.3 75.0 72.0 71.5 64.8 62.0 69.0 64.8 64.3
ToolLLaMA 57.0 55.0 61.0 55.3 62.0 54.5 77.0 68.5 77.0 58.0 66.0 69.0 60.7 60.0
GPT-4 60.0 67.5 71.5 67.8 67.0 66.5 79.5 73.3 77.5 63.3 71.0 84.0 71.1 70.4
α-UMi (7B) 65.0 59.5 68.0 66.0 64.0 57.0 81.5 76.5 76.5 72.0 70.0 63.0 70.9 65.9
α-UMi (13B) 65.5 61.5 69.0 66.0 65.0 62.5 84.5 75.0 81.0 74.5 71.0 66.0 72.2 67.7

Table 2: Results of real-time evaluation on ToolBench. “ReACT” and “DFSDT” denote reasoning strategies used
to construct agents, as detailed in Section 5.2. “Win” measures the relative win rate of each agent compared to
GPT-3.5-ReACT (“Method”=ReACT, “Model”=GPT-3.5), which does not have an associated win rate.

that instead of reusing the user instructions in the
first fine-tuning stage of GLPFT, a new set of user
instructions are employed for the second stage of
GLPFT. Previous works(Chung et al., 2022) has
demonstrated that increasing the diversity of user
instructions during fine-tuning can improve the per-
formance and generalizability of LLMs. However,
as presented in Table 1 and visualized in Figure 4,
α-UMiw/o reuse does not outperform α-UMiw/ reuse.
We attribute this unexpected result to the follow-
ing explanation: The objectives of the two training
stages are different, using distinct sets of user in-
structions may introduces a harmful inductive bias
that solving one group of the instructions in single-
LLM format while the other group in multi-LLM
format. In contrast, through the reuse of user in-
structions, the impact of varying distributions from
different sets is mitigated.

5.2 Real-Time Test on ToolBench

To assess the performance of LLMs for solving
real tasks via RapidAPI, we follow the ToolEval
method (Qin et al., 2023b) proposed by the Tool-
Bench team to conduct a real-time evaluation on the
test set of ToolBench. The LLMs under considera-
tion include Claude-2 (Anthropic, 2023), GPT-3.5,
GPT-4, and ToolLLaMA. We apply two reasoning
strategies for these LLMs to construct tool learn-
ing agents: the ReACT method, as introduced in
Section 3.1, and the Depth First Search-based De-
cision Tree (DFSDT) (Qin et al., 2023b), which
empowers the agent to evaluate and select between
different execution paths. Two metrics are included
to measure these LLMs’ performance: pass rate,
which calculates the percentage of tasks success-
fully completed, and win rate, which compares
the agent’s solution path with that of the standard
baseline, GPT-3.5-ReACT. The above two metrics

are assessed by a GPT-3.5 evaluator with carefully
crafted criteria. The empirical results presented in
Table 2 demonstrate that our α-UMi (7B) surpasses
both GPT-3.5 and ToolLLaMA by significant mar-
gins in terms of pass rate (+6.1 and +10.2, respec-
tively) and win rate (+1.6 and +5.9, respectively).
While α-UMi underperforms GPT-4 in win rate,
it exhibits pass rates on par with GPT-4 or even
exceeds it in certain test groups such as I1-Inst. and
I2-Inst.. Combining the findings from Section 5.1
and this section, we note that our multi-LLM agent
outperforms several established baselines across di-
verse metrics on ToolBench, validating its efficacy.

5.3 Data Scaling Law

To assess the impact of the amount of training data
on performance, we conduct a data scaling law anal-
ysis with the 7B backbone on ToolBench, varying
the number of annotated training instances from
12.1k to 62.7k. The results in different metrics are
depicted in Figure 45. Several observations can
be drawn from the results. Firstly, when compar-
ing α-UMi (solid red curves) to Single-LLM (solid
blue curves), there are significant and consistent
enhancements in metrics such as Plan ACC, Act.
EM, Hallu., and Arg. F1 across various scales of
training data. While only minor improvements are
observed in the R-L metric, which directly reflects
the performance of the summarizer, this suggests
that the performance enhancement of our frame-
work is mainly attributed to the separation of the
planner and the caller. Secondly, the performances
of Multi-LLMone-stage and Single-LLMmulti-task ex-
hibit severe fluctuations in all metrics except for
Plan ACC, indicating instability in training the

5The trend of Arg. F1 is similar to that of Act. EM.,
therefore its results are not displayed to save space. We have
included the complete results in Figure 6 in Appendix.

16664

12.1k 31.3k 47.0k 62.7k

80

85

(a) Plan ACC
12.1k 31.3k 47.0k 62.7k

50

55

60

(b) Act. EM
12.1k 31.3k 47.0k 62.7k

2

4

6

8

(c) Hallu.
12.1k 31.3k 47.0k 62.7k

30

40

(e) R-L

Single-LLM Multi-LLMone stage Single-LLMmulti task -UMiw/o reuse -UMiw/ reuse

Figure 4: Results of data scaling law study on ToolBench with different evaluation metrics: (a) Plan ACC, (b) Act.
EM, (c) Hallu, and (d) R-L. We randomly sampled five training sets with the scales of 12.1k, 15.7k, 31.3k, 47.0k,
and 62.7k instances, accounting for 19.2%, 25%, 50%, 75%, and 100% of the training set, respectively.

0 1 2 3
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Rationale (Single-LLM)
Action (Single-LLM)
Answer (Single-LLM)
Rationale (-UMi)
Action (-UMi)
Answer (-UMi)

Figure 5: Curves of training loss.

framework through direct fine-tuning or multi-task
fine-tuning. Thirdly, Single-LLM achieves opti-
mal results in different metrics at different data
scales. For example, it attains peak performance in
Plan ACC with 31.3k instances and the best Arg.
F1 and R-L with 62.7k instances. This suggests
the challenge of obtaining a single LLM that uni-
formly performs well across all metrics. In contrast,
the performance of our framework consistently im-
proves with increased data scale across all metrics.

5.4 Why α-UMi Works?

We track the training process of our α-UMi ap-
proach to examine what makes it different from the
Single-LLM baseline. We track the training loss on
the rationale, action, and answer. The results are
depicted in Figure 5. As introduced in Section 4.3,
α-UMi employs GLPFT and deviates from Single-
LLM after two training epochs. Therefore, our
discussion focuses on the training curves of α-UMi
from the third epoch.

The curves reveal a consistent decrease in the
training loss for rationale, action, and answer dur-
ing the initial two epochs. However, in the third
epoch, the losses of Single-LLM exhibit a nearly
stagnant trend. In contrast, α-UMi experiences
continued reductions in the losses associated with
rationale and action, indicating further optimiza-

tion within our α-UMi framework.
These observations suggest that the key factor

contributing to the success of α-UMi lies in its
ability to surpass the performance upper-bound
of Single-LLM. This is achieved by leveraging
GLPFT and decomposing the agent into a multi-
LLM system, even after Single-LLM has attained
its upper-bound abilities via sufficient fine-tuning.

5.5 More Discussions

More detailed experimental results and discussions
are provided in the Appendix: In Appendix D, we
discuss the cost of α-UMi during training and de-
ployment. In Appendix E, we show Single-LLM
sees negligible improvement with higher compu-
tational budgets comparing to α-UMi. In Ap-
pendix F, we find α-UMi mitigates error accumu-
lation by allowing the Caller to implicitly correct
mistakes in rationales. In Appendix G, we analysis
the performance of α-UMi when combining dif-
ferent size of Planner and Caller. In Appendix H,
we further conduct an ablation on which module
contributes most to the final performance by merg-
ing different components in α-UMi. Finally, in
Appendix I, we include some case studies.

6 Conclusion

The objective of this paper is to address the chal-
lenge of designing and fine-tuning a single small
LLM to acquire the extensive abilities required for
a tool learning agent. To this end, we introduce α-
UMi, a multi-LLM tool learning agent framework
that breaks down the tool learning task into three
distinct sub-tasks delegated to three small LLMs:
planner, caller, and summarizer. Moreover, we
propose a global-to-local progressive fine-tuning
strategy and demonstrate its effectiveness in train-
ing the multi-LLM framework. We evaluate our
approach against single-LLM baselines on four tool
learning benchmarks, supplemented by various in-

16665

depth analyses, including a data scaling law exper-
iment. Our findings highlight the significance of
our proposed method, validating that the system’s
design for decomposing tool learning tasks and the
progressive fine-tuning strategy contribute to en-
hancing the upper-bound ability of a single LLM.
Besides, we acknowledge the potential to utilize
small LLMs to surpass the capabilities of an agent
framework that relies on a single, larger LLM.

7 Limitations

While our framework has been demonstrated to out-
perform the single-LLM framework in tool learn-
ing tasks, there are still some limitations to this
work. Firstly, there are additional avenues for ex-
ploration, such as integrating small LLMs with a
powerful closed-source LLM like GPT-4 to cre-
ate a “large + small” collaborative multi-LLM tool
learning agent. Secondly, our framework could
be further optimized to enhance its flexibility and
applicability to a wider range of agent tasks.

8 Ethical Statement

The α-UMi framework is trained on the public
ToolBench and ToolAlpaca benchmarks, with their
original purpose being to enhance the tool invoca-
tion capabilities of LLMs and improve their perfor-
mance in assisting users to complete tasks. This
framework has not been trained on any data that
poses ethical risks. The backbone model it uses,
LLaMA-2-chat, has undergone safety alignment.

References
Anthropic. 2023. Claude-2. Website. https://www.

anthropic.com/news/claude-2.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:
Toward language agent fine-tuning. arXiv preprint
arXiv:2310.05915.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Guanting Dong, Hongyi Yuan, Keming Lu, Cheng-
peng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,

Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023.
How abilities in large language models are affected
by supervised fine-tuning data composition. arXiv
preprint arXiv:2310.05492.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al.
2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Significant Gravitas. 2023. Autogpt: the heart of the
open-source agent ecosystem. Github repository.
https://github.com/Significant-Gravitas/
Auto-GPT.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Ceyao Zhang, Zili Wang, Steven Ka Shing
Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, et al.
2023. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint
arXiv:2308.00352.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Chenliang Li, Hehong Chen, Ming Yan, Weizhou Shen,
Haiyang Xu, Zhikai Wu, Zhicheng Zhang, Wen-
meng Zhou, Yingda Chen, Chen Cheng, Hongzhu
Shi, Ji Zhang, Fei Huang, and Jingren Zhou. 2023.
Modelscope-agent: Building your customizable
agent system with open-source large language mod-
els.

Yohei Nakajima. 2023. Babyagi. Github repository.
https://github.com/yoheinakajima/babyagi.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

OpenAI. 2022. Chatgpt: Conversational ai language
model. Website. https://openai.com/chatgpt.

OpenAI. 2023a. Gpt-4 code interpreter. Web-
site. https://chat.openai.com/?model=
gpt-4-code-interpreter.

OpenAI. 2023b. Gpt-4 technical report.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S Bern-
stein. 2023. Generative agents: Interactive simulacra

16666

https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2309.00986
http://arxiv.org/abs/2309.00986
http://arxiv.org/abs/2309.00986
https://github.com/yoheinakajima/babyagi
https://openai.com/chatgpt
https://chat.openai.com/?model=gpt-4-code-interpreter
https://chat.openai.com/?model=gpt-4-code-interpreter
http://arxiv.org/abs/2303.08774

of human behavior. In Proceedings of the 36th An-
nual ACM Symposium on User Interface Software
and Technology, pages 1–22.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023a. Communicative agents for software de-
velopment. arXiv preprint arXiv:2307.07924.

Chen Qian, Yufan Dang, Jiahao Li, Wei Liu, Weize
Chen, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. 2023b. Experiential co-learning of software-
developing agents.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. 2024. Autoact: Automatic
agent learning from scratch via self-planning.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, et al. 2023a. Tool
learning with foundation models. arXiv preprint
arXiv:2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and
Maosong Sun. 2023b. Toolllm: Facilitating large
language models to master 16000+ real-world apis.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:
Breaking the gpu memory wall for extreme scale
deep learning. In SC21: International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–15. IEEE Computer Society.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
hugging face. arXiv preprint arXiv:2303.17580.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, Ye Tian, and Sujian Li.
2023. Restgpt: Connecting large language models
with real-world restful apis.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Jimmy Wei, Kurt Shuster, Arthur Szlam, Jason We-
ston, Jack Urbanek, and Mojtaba Komeili. 2023.
Multi-party chat: Conversational agents in group
settings with humans and models. arXiv preprint
arXiv:2304.13835.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong
Wang, Zecheng Tang, and Nan Duan. 2023a.
Visual chatgpt: Talking, drawing and editing
with visual foundation models. arXiv preprint
arXiv:2303.04671.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023b. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Linyao Yang, Hongyang Chen, Zhao Li, Xiao Ding, and
Xindong Wu. 2023a. Chatgpt is not enough: Enhanc-
ing large language models with knowledge graphs
for fact-aware language modeling. arXiv preprint
arXiv:2306.11489.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2023b. Gpt4tools: Teaching
large language model to use tools via self-instruction.
arXiv preprint arXiv:2305.18752.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. 2023c. Mm-
react: Prompting chatgpt for multimodal reasoning
and action. arXiv preprint arXiv:2303.11381.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Qin Yujia, Yankai Lin Shengding Hu, Weize Chen, Ning
Ding, Ganqu Cui, Zheni Zeng, et al. 2023. Tool
learning with foundation models. arXiv preprint
arXiv:2304.08354.

16667

http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2312.17025
http://arxiv.org/abs/2312.17025
http://arxiv.org/abs/2401.05268
http://arxiv.org/abs/2401.05268
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Wei-
jie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu,
Xiaogang Wang, et al. 2023. Ghost in the minecraft:
Generally capable agents for open-world enviroments
via large language models with text-based knowledge
and memory. arXiv preprint arXiv:2305.17144.

A System prompts

A.1 Pplan for ToolBench and ToolAlpaca

You have assess to the following apis:
{doc}
The conversation history is:
{history}
You are the assistant to plan what
to do next and whether is caller’s or
conclusion’s turn to answer.
Answer with a following format:
The thought of the next step, followed by
Next: caller or conclusion or give up.

A.2 Pcall for ToolBench and ToolAlpaca

You have assess to the following apis:
{doc}
The conversation history is:
{history}
The thought of this step is:
{thought}
Base on the thought make an api call in
the following format:
Action: the name of api that should be
called in this step, should be exactly in
{tool_names},
Action Input: the api call request.

A.3 Psum for ToolBench and ToolAlpaca

Make a conclusion based on the
conversation history:
{history}

A.4 Pplan for MATH and GSM8K

Solve the math problem step by step by
integrating step-by-step reasoning and
Python code,
The problem is: {instruction}
The historical execution logs are:
{history} You are the assistant to plan
what to do next, and shooce caller to
generate code or conclusion to answer the
problem.
Answer with a following format:
The thought of the next step, followed by
Next: caller or conclusion.

A.5 Pcall for MATH and GSM8K

The problem is: {instruction}
The historical execution logs are:
{history}
The thought of this step is:

16668

{thought}
generate the code for this step

A.6 Psum for MATH and GSM8K
The problem is: {instruction}
The historical execution logs are:
{history} Make a conclusion based on the
conversation history

B Details of Benchmarks

B.1 ToolBench
ToolBench (Qin et al., 2023b) is a benchmark for
evaluating an agent’s ability to call APIs. The Tool-
Bench team collects 16,464 real-world APIs from
RapidAPI and a total of 125,387 execution trajec-
tories as the training corpus. We randomly sample
62,694 execution trajectories as the training set,
and the average number of execution steps is 4.1.

The test set of ToolBench is divided into 6
groups, namely I1-instruction, I1-tool, I1-category,
I2-instruction, I2-category, and I3-instruction. The
groups whose name ends with “instruction” means
the test instructions in these groups use the tools
in the training set, which is the in-domain test data.
Otherwise, the groups whose name ends with “tool”
or “category” means the test instructions do not
use the tools in the training set, which is the out-
of-domain test data. Each group contains 100 user
instructions, therefore the total in-domain test set
contains 400 instructions, while the out-of-domain
test set contains 200 instructions.

The original evaluation metrics in ToolBench
are the pass rate and win rate judged by GPT-3.5.
However, as introduced in Section 4.2, the APIs in
RapidAPI update every day, which can cause net-
work block, API breakdown, and exhausted quota.
Therefore, to make a relatively fair comparison,
we adopt the idea of Modelscope-Agent (Li et al.,
2023) to compare the predictions of our model
with the annotated GPT-4 outputs on the step level.
Specifically, for the tth step, we input the model
with the previous trajectory of GPT-4, ask our
framework to generate the rationale and action of
this step, and then compare the generated rationale
and action of this step with the output of GPT-4.

C Static Evaluation on ToolBench

The evaluation method for ToolBench introduced
in Section 4.2 is a static approach that assesses
the output of the agent at each step individually.
Specifically, for each step t, given the ground-truth

Model Storage Train Infer.
Flops Time GPU Mem. Time (Per Inst.)

Model Size = 7B
Single-LLM 7B 4.8 ∗ 1015 41.54h 206G 6.41s
α-UMi 7B*3 6.2 ∗ 1015 63.34h 206G 6.27s

Model Size = 13B
Single-LLM 13B 7.2 ∗ 1015 89.56h 308G 11.91s
α-UMi 13B*3 9.7 ∗ 1015 129.96h 308G 11.09s

Table 3: The cost of training and inference.

annotation of the previous execution trajectory τ∗<t,
the agent generates the rationale r̂t and action ât
for this step:

r̂t, ât = Agent(τ∗<t). (5)

Then, metrics are computed by comparing the gen-
erated r̂t and ât with the annotated ground-truth
rationale r∗t and action a∗t for this step:

Metric = Evaluate(r̂t, ât, r∗t , a
∗
t). (6)

The advantage of this evaluation method is as
follows. At each step, the agent only needs to take
the previous ground-truth trajectory as input and
outputs the current step’s rationale and action. This
prevents error propagation due to factors such as
network blocks, API breakdowns, and exhausted
quotas in any particular step, which could affect
the fairness of comparison. This evaluation method
is an effective complement to real-time evaluation.

D Cost of α-UMi

Given that α-UMi operates as a multi-LLM frame-
work, it introduces potential additional costs in
terms of training, storage, and deployment. Ta-
ble 3 provides a summary of the costs associated
with Single-LLM and α-UMi, based on execution
logs on 8 Nvidia A100 GPUs with a 40G capacity.
Our observations are threefold. Firstly, owing to
its composition of a planner, a caller, and a sum-
marizer, α-UMi demands three times the storage
capacity compared to the Single-LLM framework,
assuming they employ backbones of the same size.
Secondly, the training of α-UMi requires 1.3 times
the computational resources and 1.5 times the train-
ing duration compared to Single-LLM, while the
GPU memory cost for training remains consistent
between the two methods. Thirdly, during infer-
ence, the time required for both Single-LLM and
α-UMi is similar, as we only distribute sub-tasks
(rationale, action, and answer) to the three LLMs,
without forcing them to generate extra contents,
thus bringing nearly no extra cost when inference.

Note that based on the findings presented in Ta-
ble 1, α-UMi with a 7B backbone can outperform

16669

Single-LLM with a 13B backbone. Furthermore,
the cost associated with α-UMi featuring a 7B
model is lower than that of Single-LLM featuring
a 13B model, both in terms of training and infer-
ence. This underscores the cost-effectiveness of
α-UMi as a means to achieve, and even surpass,
the performance of a larger LLM.

E Continue Training of Single-LLM

The additional training invested in α-UMi can ef-
fectively enhance the performance of the model. To
assess whether increasing computational resources
during training can enhance the performance of
the Single-LLM framework, we extended the train-
ing of a Single-LLM (7B) by an additional epoch,
amassing a computational budget of 6.4 ∗ 1015

FLOPS. We refer to this model as Single-LLM
(7B, Continue Train). The final comparative re-
sults between Single-LLM (7B, Continue Train)
and α-UMi are shown in Table 4.

It can be observed that the results of Single-LLM
(Continue train) show no significant improvement
over Single-LLM . However, our proposed α-UMi
demonstrates a clear performance gain compared
to both of these models. This empirical evidence
indicates the importance of our GLPFT approach.

F Study on Error Accumulation

The splitting method of α-UMi has certain refer-
ence significance for the industry, as it allows for
better and more cost-effective deployment. How-
ever, it inherently leads to error accumulation, sim-
ilar to traditional pipelines. To study whether the
Multi-LLM framework can cause error accumula-
tion, we introduce a simple experiment to gauge the
frequencies of several cases at the agent executing
steps where the API names were mentioned during
the generation of rationales, and draw the confusion
matrix w.r.t the rationales and the actions.

In Table 5 and Table 6, "Correct Thought"
and "Wrong Thought" correspond the ratio-
nale(thought) mentioned correct or incorrect API
name that should be called in this step, respec-
tively. Our findings indicate that the Single-LLM
exhibits approximately an 86% (637/(104+637))
likelihood of "error accumulation", where an er-
roneous thought leads to an incorrect action. In
contrast, our α-UMi demonstrates a reduced "er-
ror accumulation" probability of 81%. This sug-
gests that our multi-LLM framework could enable
the Caller model to implicitly correct mistakes in

thoughts generated by the Planner, thus mitigating
the issue of error accumulation.

G Small-Large Coorperation

We have conducted a comparative analysis of the
combination of planners and callers with different
types of LLMs. The experimental results are in
Table 7.

As observed, using either a stronger Planner or
Caller can enhance the framework’s performance in
both planning and API calling capabilities. Notably,
the improvement is significant when utilizing to a
more powerful Caller.

H Impact of Different Components

To further analyze the contributions of individual
modules to the system, we conducted an additional
analysis. We compared the experimental results
of combining the capabilities of the Planner and
Caller, Planner and Summarizer, Caller and Sum-
marizer into a single model, respectively. The re-
sults are presented in Table 8.

From the results, we observe that training the
Planner and Caller within the same model leads
to the most significant performance degradation.
This may indicate a conflict between the reasoning
capabilities, tool calling and grounding skills dur-
ing training. Hence, it seems necessary to separate
the Planner and Caller. Furthermore, integrating
the Caller with the Summarizer in a single model
also results in a notable decline in performance,
suggesting that the API calling ability, managed by
the Caller, adversely affects the training of other
abilities. On the other hand, training the Planner
and Summarizer into a single model results in the
least performance degradation.

I Case Study

Figure 7 and Figure 8 show two cases of our α-
UMi executing real tasks in ToolBench. In the case
of Figure 7, the user specifies the available tools
in the instructions, making the tool invocation pro-
cess simpler. The α-UMi framework completes
the task within two steps through the collabora-
tion of the planner, caller, and summarizer. In the
case of Figure 8, α-UMi initially attempts to use
the “video_for_simple_youtube_search” to obtain
detailed video information at step 0. However, it
realizes that this API has broken and cannot be in-
voked. Therefore, the planner informs the caller

16670

Model FLOPS ToolBench (in-domain) ToolBench (out-of-domain)
Plan ACC Act. EM Hallu. Arg. F1 R-L Plan ACC Act. EM Hallu. Arg. F1 R-L

Single-LLM 4.8 ∗ 1015 81.92 53.26 2.32 46.53 42.68 84.61 56.54 2.26 50.09 47.99
Single-LLM (Continue Train) 6.4 ∗ 1015 81.52 53.50 2.82 46.85 40.68 85.58 60.29 2.19 53.02 45.49
α-UMi 6.2 ∗ 1015 88.92 58.94 0.57 52.24 43.17 89.72 60.47 0.45 53.60 46.26

Table 4: Comparing Single-LLM (Continue train) with α-UMi.

Correct Action Wrong Action
Correct Rational 931 226
Wrong Rationale 104 637

Table 5: Confusion matrix of Single-LLM.

Correct Action Wrong Action
Correct Rational 1409 148
Wrong Rationale 184 757

Table 6: Confusion matrix of α-UMi.

to try an alternative API and obtain accurate infor-
mation. Ultimately, the user’s task is successfully
resolved.

To further analyze the specific advantages of
our α-UMi and Single-LLM frameworks in task
execution, we have presented some comparative
examples of the two frameworks in Tables 10, 11,
12, and 13. Tables 10 and 11 illustrate simple
tasks that require only a single step tool invoca-
tion to be completed, in which case both α-UMi
and Single-LLM can successfully accomplish the
tasks. However, in the complex tasks presented
in Tables 12 and 13, where the tasks require the
models to accomplish some composite objectives,
α-UMi’s planner can quickly understand the user’s
intentions and plan out steps based on the prompts
provided by the caller and summarizer. On the
other hand, Single-LLM exhibited some behaviors
that did not align with the user’s intentions during
planning, such as invoking APIs that did not match
the intent and entering loops in these misaligned
APIs, ultimately failing to provide sufficient infor-
mation to complete the user’s instructions. This
result indicates that α-UMi’s decomposing Single-
LLM into a planner, caller, and summarizer reduces
the burden on the model during reasoning, allowing
the planner model to focus solely on understanding
the user’s intentions and making effective plans,
thereby better accomplishing the tasks.

J α-UMi on Other Benchmarks

Apart from ToolBench, we also evaluate α-UMi on
ToolAlpaca (Tang et al., 2023), MATH (Hendrycks
et al., 2021) and GSM8K (Cobbe et al., 2021).

ToolAlpaca is another benchmark for evaluating

API calling. Unlike ToolBench, the APIs and API
calling results in ToolAlpaca are mocked from GPT-
3.5 by imitating how the real APIs work. The
total number of training instances in ToolAlpaca is
4098, with an average of 2.66 execution steps per
instance. The test set of ToolAlpaca contains 100
user instructions. The evaluation of ToolAlpaca is
carried out by a simulator where the agent solves
the instruction with the tools mocked by GPT-3.5.
Finally, GPT-4 judges if the execution process of
the agent is consistent with the reference process
pre-generated by GPT-3.5 (Proc. correctness) and
whether the final answer generated by the agent
can solve the user instruction (Ans. correctness).

The MATH (Hendrycks et al., 2021) and
GSM8K (Cobbe et al., 2021) benchmarks are
originally designed to test the mathematical rea-
soning ability of LLMs. Following ToRA (Gou
et al., 2023), we employ a program-aided agent
to solve the mathematical problems presented in
these datasets. In our scenario, the planner will
generate certain rationales and comments to guide
the generation of program, the caller will gener-
ate program to conduct mathematical calculation,
and finally the summarizer will conclude the final
answer. Since ToRA has not released its training
data, to facilitate the training of our framework, we
utilize gpt-3.5-turbo-1106 (OpenAI, 2022) and
gpt-4 (OpenAI, 2023b) to collect execution tra-
jectories in the training set of MATH and GSM8K
and filter out the trajectories that do not lead to the
correct final answer. Finally, we collect 5536 trajec-
tories from GPT-3.5, 573 trajectories from GPT-4
on MATH, and 6213 from GPT-3.5 on GSM8K.

The test set sizes of MATH and GSM8K are
5000 and 1319, respectively. During testing, we
feed our agent with each of the test instructions
and execute the agent with a Python code inter-
preter. We follow the original evaluation methods
of MATH and GSM8K to evaluate the performance
of the agent with the accuracy of the final answer.

As the evaluation results shown in Table 9, our α-
UMi can still outperform the baselines on ToolAl-
paca, MATH and GSM8K, verifying its effective-
ness.

16671

Model ToolBench (in-domain) ToolBench (out-of-domain)
Plan ACC Act. EM Hallu. Arg. F1 Plan ACC Act. EM Hallu. Arg. F1

Planner (7b) + Caller (7b) 88.92 58.94 0.57 52.24 89.72 60.47 0.45 53.60
Planner (7b) + Caller (13b) 88.92 59.13 0.23 53.18 89.72 61.32 0.15 54.93
Planner (7b) + Caller (gpt-4) 88.92 63.12 0.14 56.51 89.72 63.19 0.02 56.97
Planner (13b) + Caller (7b) 87.87 62.13 0.39 55.32 88.73 62.12 0.31 54.29
Planner (gpt-4) + Caller (7b) 85.23 57.39 0.65 50.56 84.28 58.98 0.41 52.38

Table 7: Combining Different Size of Planner and Caller.

Model ToolBench (in-domain) ToolBench (out-of-domain)
Plan ACC Act. EM Hallu. Arg. F1 R-L Plan ACC Act. EM Hallu. Arg. F1 R-L

Single-LLM 81.92 53.26 2.32 45.57 42.66 84.61 56.54 2.26 50.09 47.99
α-UMi 88.92 58.94 0.57 52.24 43.17 89.72 60.47 0.45 53.60 46.26
Merging Planner and Caller 82.88 53.17 5.30 46.93 41.33 85.26 56.40 2.41 49.71 45.30
Merging Planner and Summarizer 86.53 56.88 1.83 48.62 42.03 88.43 58.19 1.04 51.64 44.41
Merging Caller and Summarizer 88.92 52.82 6.80 45.24 41.76 89.72 55.15 4.65 48.88 46.88

Table 8: Combining Different Component fo α-UMi.

Model ToolAlpaca MATH GSM8K
Proc. Ans. ACC

Model Size = 7B
Single-LLM 11 11 17.38 37.90
Multi-LLMone-stage 2 9 15.46 38.96
Single-LLMmulti-task 28 18 14.18 27.97
α-UMi 41 38 25.60 49.73

Model Size = 13B
Single-LLM 33 29 20.26 44.88
Multi-LLMone-stage 22 19 20.32 44.57
Single-LLMmulti-task 28 16 15.34 34.79
α-UMi 41 35 28.54 54.20

Table 9: Overall results on ToolAlpaca, MATH and
GSM8K.

16672

12.1k 31.3k 47.0k 62.7k

80.0

82.5

85.0

87.5

(a) Plan ACC
12.1k 31.3k 47.0k 62.7k

50

55

60

(b) Act. EM
12.1k 31.3k 47.0k 62.7k

2

4

6

8

(c) Hallu.

12.1k 31.3k 47.0k 62.7k
40

45

50

(d) Aug. F1
12.1k 31.3k 47.0k 62.7k

25

30

35

40

45

(e) R-L

Single-LLM
Multi-LLMone stage

Single-LLMmulti task

-UMiw/o reuse
-UMiw/ reuse

Figure 6: Results of data scaling law study on ToolBench with different evaluation metrics: (a) Plan ACC, (b) Act.
EM, (c) Hallu, (d) Arg. F1, and (e) R-L. We randomly sampled five training sets with the scales of 12.1k, 15.7k,
31.3k, 47.0k, and 62.7k instances, accounting for 19.2%, 25%, 50%, 75%, and 100% of the training set, respectively.

Figure 7: A case study of α-UMi. In this case, the user specifies the available tools in the instructions, making
the tool invocation process simpler. The α-UMi framework completes the task within two steps through the
collaboration of the planner, caller, and summarizer.

16673

Figure 8: A case study of α-UMi, in which α-UMi initially attempts to use the “video_for_simple_youtube_search”
to obtain detailed video information at step 0. However, it realizes that this API has broken and cannot be invoked.
Therefore, the planner informs the caller to try an alternative API and obtain accurate information. Ultimately, the
user’s task is successfully resolved.

16674

Case #1 of α-UMi In ToolBench
Instruction: I want to explore the catalog of products available in the ’Electronics’ category. Please
provide me with the list of products along with their details.
Planner Based on the user’s request to explore the catalog of products in the ’Electronics’ cate-

gory, I need to call the ’get_products_in_category_for_demo_project_v13’ function
with the arguments ’limit’: 10, ’skip’: 0, and ’category’: ’Electronics’. This will
allow me to retrieve the list of products along with their details specifically from the
’Electronics’ category. By calling this function, I can fulfill the user’s request and
provide them with the desired information. Next: caller.

Caller Action: get_products_in_category_for_demo_project_v13
Action Input: "{ "limit": 10, "skip": 0, "category": "Electronics"}"

Observation {’products’: [{’id’: 893292, ’name’: ’TV’, ’category’: ’electronics’}, {’id’: 893293,
’name’: ’TV’, ’category’: ’electronics’}, {’id’: 894481, ’name’: ’Gorgeous Plastic
Bench’, ’category’: ’Electronics’}, {’id’: 896484, ’name’: ’Fantastic Rubber Gloves’,
’category’: ’Electronics’}, {’id’: 912179, ’name’: ’daniel’, ’category’: ’electron-
ics’}, {’id’: 916400, ’name’: ’Tasty Frozen Pants’, ’category’: ’Electronics’}, {’id’:
917106, ’name’: ’Tasty Wooden Chips’, ’category’: ’Electronics’}, {’id’: 917821,
’name’: ’Pizza’, ’category’: ’Electronics’}, {’id’: 917875, ’name’: ’Tuna’, ’cate-
gory’: ’Electronics’}, {’id’: 917998, ’name’: ’Intelligent Frozen Pizza’, ’category’:
’Electronics’}], ’summary’: {’count’: 105}}

Planner I have retrieved the list of products available in the ’Electronics’ category. Here are
some of the products along with their details:
1. Product ID: 893292, Name: TV, Category: Electronics
2. Product ID: 893293, Name: TV, Category: Electronics
3. Product ID: 894481, Name: Gorgeous Plastic Bench, Category: Electronics
4. Product ID: 896484, Name: Fantastic Rubber Gloves, Category: Electronics
5. Product ID: 912179, Name: daniel, Category: Electronics
6. Product ID: 916400, Name: Tasty Frozen Pants, Category: Electronics
7. Product ID: 917106, Name: Tasty Wooden Chips, Category: Electronics
8. Product ID: 917821, Name: Pizza, Category: Electronics
9. Product ID: 917875, Name: Tuna, Category: Electronics
10. Product ID: 917998, Name: Intelligent Frozen Pizza, Category: Electronics
Next: conclusion.

Summarizer Here are some of the products available in the ’Electronics’ category:
1. Product ID: 893292, Name: TV, Category: Electronics
2. Product ID: 893293, Name: TV, Category: Electronics
3. Product ID: 894481, Name: Gorgeous Plastic Bench, Category: Electronics
4. Product ID: 896484, Name: Fantastic Rubber Gloves, Category: Electronics
5. Product ID: 912179, Name: daniel, Category: Electronics
6. Product ID: 916400, Name: Tasty Frozen Pants, Category: Electronics
7. Product ID: 917106, Name: Tasty Wooden Chips, Category: Electronics
8. Product ID: 917821, Name: Pizza, Category: Electronics
9. Product ID: 917875, Name: Tuna, Category: Electronics
10. Product ID: 917998, Name: Intelligent Frozen Pizza, Category: Electronics

Table 10: A case of α-UMi in ToolBench.

Case #1 of Single-LLM In ToolBench

16675

Instruction: I want to explore the catalog of products available in the ’Electronics’ category. Please
provide me with the list of products along with their details.
Assistant Based on the previous actions, it seems that the function

"get_categories_for_demo_project_v13" was called to retrieve the categories,
but it returned an error. To proceed differently, I will call the function
"get_products_in_category_for_demo_project_v13" with the category set to
"Electronics" to fetch the products in the Electronics category.
Action: get_products_in_category_for_demo_project_v13
Action Input: { "limit": 10, "skip": 0, "category": "Electronics" }

Observation {’products’: [{’id’: 893292, ’name’: ’TV’, ’category’: ’electronics’}, {’id’: 893293,
’name’: ’TV’, ’category’: ’electronics’}, {’id’: 894481, ’name’: ’Gorgeous Plastic
Bench’, ’category’: ’Electronics’}, {’id’: 896484, ’name’: ’Fantastic Rubber Gloves’,
’category’: ’Electronics’}, {’id’: 912179, ’name’: ’daniel’, ’category’: ’electron-
ics’}, {’id’: 916400, ’name’: ’Tasty Frozen Pants’, ’category’: ’Electronics’}, {’id’:
917106, ’name’: ’Tasty Wooden Chips’, ’category’: ’Electronics’}, {’id’: 917821,
’name’: ’Pizza’, ’category’: ’Electronics’}, {’id’: 917875, ’name’: ’Tuna’, ’cate-
gory’: ’Electronics’}, {’id’: 917998, ’name’: ’Intelligent Frozen Pizza’, ’category’:
’Electronics’}], ’summary’: {’count’: 105}}

Assistant I have retrieved the list of products available in the ’Electronics’ category. Here are
some of the products along with their details:
1. Product ID: 893292, Name: TV, Category: Electronics
2. Product ID: 893293, Name: TV, Category: Electronics
3. Product ID: 894481, Name: Gorgeous Plastic Bench, Category: Electronics
4. Product ID: 896484, Name: Fantastic Rubber Gloves, Category: Electronics
5. Product ID: 912179, Name: daniel, Category: Electronics
6. Product ID: 916400, Name: Tasty Frozen Pants, Category: Electronics
7. Product ID: 917106, Name: Tasty Wooden Chips, Category: Electronics
8. Product ID: 917821, Name: Pizza, Category: Electronics
9. Product ID: 917875, Name: Tuna, Category: Electronics
10. Product ID: 917998, Name: Intelligent Frozen Pizza, Category: Electronics

Table 11: A case of Single-LLM in ToolBench.

Case #2 of α-UMi In ToolBench
Instruction: I am planning a vacation with my family and we are interested in scuba diving. Can
you recommend some dive sites in Thailand? Additionally, we would like to know the top-tier stays
available in that area for accommodation options.
Planner Based on the user’s request, I need to recommend dive sites in Thailand and provide

information about the top-tier stays in the area. To accomplish this, I will call the
"esites_by_a_country_or_a_region_for_world_scuba_diving_sites_api" function with
the argument "country" set to "Thailand". This will allow me to retrieve the relevant
dive sites and accommodation options specifically for Thailand. By using this API, I
can efficiently gather the necessary information for the user’s vacation planning. Next:
caller.

Caller Action: esites_by_a_country_or_a_region_for_world_scuba_diving_sites_api
Action Input: "{ "country": "Thailand" }"

16676

Observation {’data’: [{’id’: ’0126ccc3-6d33-4cb9-a6dd-1519273acf43’, ’name’: ’The Rock’,
’region’: ’Racha Noi Island, Phuket’, ’lat’: ’7.552420449639636’, ’lng’:
’98.33433151245119’, ’ocean’: ’Indian Ocean, Andaman Sea, Strait Of Malacca’,
’Location’: ’Asia, Thailand, Southern Thailand, Phuket, Racha Noi Island’}, {’id’:
’01c6e49f-45ab-4bb4-bfee-eff9c67f9d22’, ’name’: ’Paradise Reef’, ’region’: ’Phuket,
Southern Thailand’, ’lat’: ’7.893819147272116’, ’lng’: ’98.2584571838379’, ’ocean’:
’Indian Ocean, Andaman Sea, Strait Of Malacca’, ’Location’: ’Asia, Thailand,
Southern Thailand, Phuket’}, {’id’: ’02446f8e-9466-4cec-8a7e-940fa2946c44’,
’name’: ’Shark Fin Reef’, ’region’: ’Payang Island, Similan Islands’, ’lat’:
’8.50966017107524’, ’lng’: ’97.66388654708864’, ’ocean’: ’Indian Ocean, Andaman
Sea’, ’Location’: ’Asia, Thailand, Southern Thailand, Phang Nga, Similan Islands,
Payang Island’}, {’id’: ’02dea021-ef79-4ee4-929a-46dfb03e5f6e’, ’name’: ’Bang
Bao Reef’, ’region’: ’Kut Island, Trat’, ’lat’: ’11.612304159956192’, ’lng...

Planner Based on the user’s request, I need to recommend dive sites in Thailand and provide
information about the top-tier stays in the area. To accomplish this, I will call
the "get_top_tier_stays_filter_for_airbnb_v2" function. Since the user specifically
mentioned the need for top-tier accommodations, I will call this function without any
arguments to retrieve the relevant options. By using this API, I can efficiently gather
the necessary information for the user’s vacation planning and ensure they have a great
experience during their trip. Next: caller.

Caller Action: get_top_tier_stays_filter_for_airbnb_v2
Action Input: "{}"

Observation {’status’: True, ’message’: ’Success’, ’timestamp’: 1688973421406, ’data’: [{’id’:
’1’, ’title’: ’Airbnb Plus’, ’subtitle’: ’Every Plus home is reviewed for quality’}, {’id’:
’2’, ’title’: ’Airbnb Luxe’, ’subtitle’: ’Handpicked luxury homes with personally
arranged services’}]}

Planner The user has requested recommendations for dive sites in Thailand and informa-
tion about top-tier stays in the area. To fulfill their request, I called the "es-
ites_by_a_country_or_a_region_for_world_scuba_diving_sites_api" function with
the argument "country" set to "Thailand". This API allows me to efficiently retrieve
relevant dive sites and accommodation options specifically for Thailand. By using
this function, I can provide the user with accurate and up-to-date information for their
vacation planning. Additionally, I called the "get_top_tier_stays_filter_for_airbnb_v2"
function to retrieve the available options for top-tier accommodations. By using
these APIs, I can ensure that the user has a great experience during their trip. Next:
conclusion.

Summarizer Here are some dive sites in Thailand: The Rock in Racha Noi Island, Phuket; Paradise
Reef in Phuket, Southern Thailand; Shark Fin Reef in Payang Island, Similan Islands;
Bang Bao Reef in Kut Island, Trat. For accommodation options, you can consider
Airbnb Plus and Airbnb Luxe, which offer high-quality and luxury homes respectively.
Enjoy your scuba diving adventures in Thailand!

Table 12: A case of α-UMi in ToolBench.

Case #2 of Single-LLM In ToolBench
Instruction: I am planning a vacation with my family and we are interested in scuba diving. Can
you recommend some dive sites in Thailand? Additionally, we would like to know the top-tier stays
available in that area for accommodation options.

16677

Assistant Based on the previous action, it seems that the API call to get dive sites in Thai-
land was not successful. To generate a different action, I will try using the
"ranked_world_crime_cities_for_ranked_crime_cities" function to get a list of ranked
crime cities. This will help me identify if Thailand is listed as a crime-free city.
Action:ranked_world_crime_cities_for_ranked_crime_cities
Action Input: {}

Observation {’products’: [{’id’: 893292, ’name’: ’TV’, ’category’: ’electronics’}, {’id’: 893293,
’name’: ’TV’, ’category’: ’electronics’}, {’id’: 894481, ’name’: ’Gorgeous Plastic
Bench’, ’category’: ’Electronics’}, {’id’: 896484, ’name’: ’Fantastic Rubber Gloves’,
’category’: ’Electronics’}, {’id’: 912179, ’name’: ’daniel’, ’category’: ’electron-
ics’}, {’id’: 916400, ’name’: ’Tasty Frozen Pants’, ’category’: ’Electronics’}, {’id’:
917106, ’name’: ’Tasty Wooden Chips’, ’category’: ’Electronics’}, {’id’: 917821,
’name’: ’Pizza’, ’category’: ’Electronics’}, {’id’: 917875, ’name’: ’Tuna’, ’cate-
gory’: ’Electronics’}, {’id’: 917998, ’name’: ’Intelligent Frozen Pizza’, ’category’:
’Electronics’}], ’summary’: {’count’: 105}}

Assistant Based on the previous action, it seems that the API call to get dive sites in Thai-
land was not successful. To generate a different action, I will try using the
"get_city_by_filter_for_ranked_crime_cities" function to get the details of a spe-
cific city in Thailand. This will help me determine if Thailand is listed as a crime-free
city.
Action: get_city_by_filter_for_ranked_crime_cities
Action Input: {"id":1}

Observation {"message": "Function executing from my_tools.Travel.ranked_crime_cities.api im-
port get_city_by_filter error... get_city_by_filter() got an unexpected keyword argu-
ment ’id’"}

Assistant Based on the current state and the previous actions, it seems that the API calls to get
dive sites in Thailand have been unsuccessful. To generate a different action, I will
try using the "esites_by_a_country_or_a_region_for_world_scuba_diving_sites_api"
function to get a list of dive sites in Thailand. This might provide the desired informa-
tion about dive sites in the country.
Action: esites_by_a_country_or_a_region_for_world_scuba_diving_sites_api
Action Input: {"country": "Thailand"}

Observation {’data’: [{’id’: ’0126ccc3-6d33-4cb9-a6dd-1519273acf43’, ’name’: ’The Rock’,
’region’: ’Racha Noi Island, Phuket’, ’lat’: ’7.552420449639636’, ’lng’:
’98.33433151245119’, ’ocean’: ’Indian Ocean, Andaman Sea, Strait Of Malacca’,
’Location’: ’Asia, Thailand, Southern Thailand, Phuket, Racha Noi Island’}, {’id’:
’01c6e49f-45ab-4bb4-bfee-eff9c67f9d22’, ’name’: ’Paradise Reef’, ’region’: ’Phuket,
Southern Thailand’, ’lat’: ’7.893819147272116’, ’lng’: ’98.2584571838379’, ’ocean’:
’Indian Ocean, Andaman Sea, Strait Of Malacca’, ’Location’: ’Asia, Thailand,
Southern Thailand, Phuket’}, {’id’: ’02446f8e-9466-4cec-8a7e-940fa2946c44’,
’name’: ’Shark Fin Reef’, ’region’: ’Payang Island, Similan Islands’, ’lat’:
’8.50966017107524’, ’lng’: ’97.66388654708864’, ’ocean’: ’Indian Ocean, Andaman
Sea’, ’Location’: ’Asia, Thailand, Southern Thailand, Phang Nga, Similan Islands,
Payang Island’}, {’id’: ’02dea021-ef79-4ee4-929a-46dfb03e5f6e’, ’name’: ’Bang
Bao Reef’, ’region’: ’Kut Island, Trat’, ’lat’: ’11.612304159956192’, ’lng...

16678

Assistant Based on the current state and the previous actions, it seems that the API calls to get
dive sites in Thailand have been successful. I have retrieved a list of dive sites in
Thailand, including The Rock in Racha Noi Island, Phuket, Paradise Reef in Phuket,
Southern Thailand, and Shark Fin Reef in Payang Island, Similan Islands. These dive
sites offer potential accommodation options for your family vacation. Now, I will
proceed to provide you with the final answer.
conclusion:Here are some dive sites in Thailand that you might find interesting:
1. The Rock - Racha Noi Island, Phuket
2. Paradise Reef - Phuket, Southern Thailand
3. Shark Fin Reef - Payang Island, Similan Islands
4. Bang Bao Reef - Kut Island, Trat
These dive sites offer potential accommodation options for your family vacation.
Enjoy your scuba diving adventure in Thailand!

Table 13: A case of Single-LLM in ToolBench.

Case In ToolAlpaca
Instruction: I’m moving to a new apartment and need to update my address with various companies.
Can you first verify if my new address is valid and then standardize it? Here’s the address: 321
Maple Dr, Apt 12C, Houston, TX, 77002.
Planner I need to verify the address and then standardize it.

Next: caller.
Caller Action: verifyUSAddress

Action Input: {"addressLine1": "321 Maple Dr", "addressLine2":"Apt 12C", "city":
"Houston", "state": "TX", "zipCode": "77002"}

Observation {"status":"valid","standardizedAddress":{"addressLine1":"123 Main
St","addressLine2":"Apt 4B","city":"New York","state":"NY","zipCode":"10001"}}

Planner The address is valid and has been successfully standardized.
Next: conclusion.

Summarizer The address you provided is valid and has been successfully standardized. The
standardized address is 123 Main St, Apt 4B, New York, NY, 10001

Table 14: A case study of α-UMi in ToolAlpaca.

Case In MATH
Instruction: Compute the range of the function $f(x) = sqrt{x**2}$.
Planner Next: caller.
Caller from sympy import symbols, Interval, oo

def function_range():
x = symbols(‘x’)
f = sqrt(x**2)
range_f = Interval(0, oo)
return range_f

result = function_range()
print(result)

Observation NameError: name ’sqrt’ is not defined
Planner The code provided for the solution to the given problem will result in an error. To fix

this error, the ‘sqrt‘ function needs to be imported from the ‘sympy‘ library.
Next: caller.

16679

Caller from sympy import symbols, Interval, oo, sqrt
def function_range():

x = symbols(‘x’)
f = sqrt(x**2)
range_f = Interval(0, oo)
return range_f

result = function_range()
print(result)

Observation Interval(0, oo)
Planner Next: conclusion.
Summarizer The range of the function $f(x) = sqrt{x*2}$ is $boxed{[0, infty)}$.

Table 15: A case study of α-UMi in MATH.

16680

