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Abstract

Text summarization, a key natural language
generation (NLG) task, is vital in various do-
mains. However, the high cost of inaccurate
summaries in risk-critical applications, par-
ticularly those involving human-in-the-loop
decision-making, raises concerns about the re-
liability of uncertainty estimation on text sum-
marization (UE-TS) evaluation methods. This
concern stems from the dependency of uncer-
tainty model metrics on diverse and potentially
conflicting NLG metrics. To address this issue,
we introduce a comprehensive UE-TS bench-
mark incorporating 31 NLG metrics across
four dimensions. The benchmark evaluates
the uncertainty estimation capabilities of two
large language models and one pre-trained lan-
guage model on three datasets, with human-
annotation analysis incorporated where applica-
ble. We also assess the performance of 14 com-
mon uncertainty estimation methods within this
benchmark. Our findings emphasize the im-
portance of considering multiple uncorrelated
NLG metrics and diverse uncertainty estima-
tion methods to ensure reliable and efficient
evaluation of UE-TS techniques. Our code and
data are available here.

1 Introduction

Text summarization (Tas and Kiyani, 2007) is a rep-
resentative NLG task that generates summaries for
given texts. This study researches abstractive sum-
marization (Nallapati et al., 2016), which is more
flexible than extractive summarization (Gupta and
Lehal, 2010). In many scenarios (e.g., finance and
health), there are serious consequences if relying
on false predicted summaries. For instance, an in-
accurate financial report summary could lead to
incorrect financial decisions, resulting in financial
losses (GOomez-Guillamén, 2003). Consequently,
" *This work was done before joining Amazon.

"Ming Jin and Chang-Tien Lu are co-corresponding au-
thors.

the task of UE-TS, which measures the likelihood
that a generated summary is low-quality, has gar-
nered significant interest (Gidiotis and Tsoumakas,
2021b; Fadeeva et al., 2023; He et al., 2024). How-
ever, an overlooked question persists regarding the
validity (the ability to accurately measure what it
intends) and robustness (consistency across various
scenarios and datasets) of the UE-TS evaluation
framework.

This concern arises due to two primary factors.
First, common UE-TS evaluation metrics, such
as forced-choice evaluation (He et al., 2024) and
Prediction Rejection Ratio (PRR) (Malinin et al.,
2017a; Fadeeva et al., 2023), rely on the alignment
between two types of sample rankings: those based
on uncertainty scores from an estimation method
(e.g., entropy of generation semantics (Kuhn et al.,
2023)) and those derived from a specific NLG met-
ric (e.g., ROUGE (Lin, 2004)). While higher align-
ment suggests better uncertainty estimation, the
reliance on a single NLG metric may not fully cap-
ture the nuances of summary quality.

Second, the inherent label diversity in NLG
tasks, particularly text summarization, necessitates
the use of various NLG metrics. For instance,
in text summarization, summaries like “The cat
chased the mouse” and “The mouse was pursued by
the kitty” convey identical messages using different
expressions. Due to the multiple valid responses
possible in such tasks (Vijayakumar et al., 2016), it
is unreasonable to expect NLG predictions to per-
fectly match the labels, unlike in NLU tasks (Hu
and Khan, 2021; He et al., 2020). Consequently,
each NLG metric emphasizes different aspects of
the diverse labels. For instance, ROUGE (Lin,
2004) and BLEU (Papineni et al., 2002) assess the
similarity between the prediction and label based
on n-gram overlap, while SummaC (Laban et al.,
2022) examines the level of hallucination between
the generation and reference text.

Collectively, previous evaluations of UE-TS
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models (Gidiotis and Tsoumakas, 2021b; Fadeeva
et al., 2023; He et al., 2024) typically relied on one
or two uncertainty estimation metrics, each depen-
dent on a single type of NLG metric. This limited
evaluation raises a critical question:

How reliable and valid are current meth-
ods for evaluating uncertainty estimation
in text summarization?

Answering this question is essential for develop-
ing reliable UE-TS methods that can mitigate the
risks associated with inaccurate summaries in criti-
cal applications, such as financial decision-making
or healthcare. Moreover, our research aims to ex-
plore the broader relationship between uncertainty
estimation and NLG metric scores, the impact of
NLG metric diversity on experimental design and
analysis, and the effective selection of diverse un-
certainty estimation methods. This comprehensive
exploration will inform and enhance future UE-TS
research. To address these questions, we introduce
a UE-TS benchmark incorporating a diverse set
of text generation metrics. Our contributions are
summarized below.

* To the best of our knowledge, we are the first
to highlight a critical issue regarding the reli-
ability of performance evaluation for UE-TS
methods. We propose addressing this concern
by evaluating UE-TS methods using a diverse
set of NLG metrics. These NLG metrics span
four dimensions crucial for NLG evaluation,
including coherence, consistency, fluency, and
relevance, following Zhong et al. (2022).

* We present a UE-TS benchmark for eval-
uating uncertainty estimation through vari-
ous NLG metric perspectives, marking the
first endeavor to our knowledge. This bench-
mark assesses two Large Language Models
(LLMs) and one Pre-trained Language Model
(PLM) across three datasets focusing on UE-
TS. Within this benchmark, we incorporate 31
NLG metrics and fourteen uncertainty estima-
tion methods. To facilitate future research, the
intermediate results encompass each sample’s
NLG metric and uncertainty scores. An in-
termediate result for an original text includes
the generated summaries obtained from re-
spective summarization models, the uncer-
tainty scores for the sample via different un-
certainty estimation methods, and the NLG

metric scores via different NLG metrics for
the sample. The statistics reported in our ta-
bles and figures can be reproduced with these
intermediate results.

* We also conduct human experimental analy-
sis via a publicly available human-annotation
dataset. It finds that the NLG metrics do not
always correlate closely with the human an-
notation. However, the NLG metrics can still
be used to find the best uncertainty estimation
method, which saves the cost and shows some
similar uncertainty estimation method rank as
that ranked via human annotation.

* We have uncovered intriguing findings out-
lined in Sec. 6. Because text summarization
is a representative NLG task, our findings in
text summarization tasks could also motivate
design and analysis on uncertainty estimation
in other NLG tasks.

2 Related Work

Text summarization. There are two types of
text summarization: extractive text summariza-
tion (Wong et al., 2008; Liu, 2019), which extracts
the original sentences from the text for summa-
rization, and abstractive text summarization (Liu
and Lapata, 2019; Nallapati et al., 2016), which
directly generates summaries from the text. Due
to the flexibility of abstractive text summarization,
we focus on abstractive text summarization. Re-
cent models for abstractive text summarization are
typically divided into two categories: PLMs (e.g.,
BART (Lewis et al., 2019)) and LLMs (e.g., Llama
2 (Touvron et al., 2023)). To conduct comprehen-
sive research on our question, we test abstractive
summarization models from both PLM and LLMs.
Uncertainty estimation on text summarization.
The UE-TS methods primarily fall into four cate-
gories (Fadeeva et al., 2023): information-based,
density-based, ensemble-based, and prompt-based
methods. Information-based methods use middle
output (e.g., token probability) to obtain uncer-
tainty scores (Beigi et al., 2024). For example,
Tsvigun et al. (2023) calculate uncertainty scores
based on token logits in two ways: mean and Monte
Carlo Dropout (Wang et al., 2019). Similarly, Simp-
son et al. (2020); Zhang et al. (2022) also calcu-
late uncertainty based on token logits. Density-
based methods leverage latent representations of in-
stances, which are further used to construct a proba-
bility density. For example, Ren et al. (2022) detect
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Figure 1: Diagram of the relationship between the Uncertainty Estimation (UE) metric, NLG metrics, and UE
methods in the evaluation process. Specifically, the evaluation process for UE-TS methods involves using the
generated texts (or intermediate outputs, such as token probabilities) and the optional input text (or ground-truth
summary) to obtain NLG metric scores and uncertainty scores for all test samples, through an NLG metric and a UE
method, respectively. Finally, the NLG metric scores and uncertainty scores for all testing samples are both inputted
into a UE metric to obtain an uncertainty metric score of the UE method.

low-quality generations by a density learned on the
given sample embeddings. Ensemble-based meth-
ods use ensembles to approximate Bayesian Neural
Networks (BNN) (Mukhoti et al., 2023) or use vari-
ance of ensembled generation to obtain uncertainty
scores. For example, dropout (Gal and Ghahra-
mani, 2016) is used in Gidiotis and Tsoumakas
(2021b) to approximate BNN. Also, Chuang et al.
(2024) obtain the uncertainty score by the variance
of ensembling predictions. As for prompt-based
methods, they refer to the methods that ask the gen-
eration model via a prompt to obtain the uncertainty
score (Kadavath et al., 2022). Some methods, like
the SiCF score (He et al., 2024), integrate aspects
of multiple uncertainty estimation methods, such
as information and ensemble methods. To ensure
comprehensive research on UE-TS methods, our
benchmark includes representative methods from
each category, following Fadeeva et al. (2023).

Performance evaluation of uncertainty estima-
tion in text summarization. As for the uncertainty
evaluation methods, Gidiotis and Tsoumakas
(2021b,a) obtain the uncertainty score by mea-
suring the variance among ensembled generations
based on an NLG metric, BLEU (Papineni et al.,
2002). BLEU solely assesses uncertainty estima-
tion method performance based on n-gram similar-
ity. Kolagar and Zarcone (2024) compare the an-
notated expression of uncertainty between human
annotations and annotations made by LLM based
on an NLG metric, semantic similarity via Sen-
tenceBERT (Reimers and Gurevych, 2019). Lei

et al. (2024) evaluates UE-TS models based on
the polarity score between prediction and ground
truth summaries. Zhao et al. (2022); Zablotskaia
et al. (2023) evaluate uncertainty estimation meth-
ods solely using one NLG metric, ROUGE (Lin,
2004). Only two NLG metrics, ROUGE and posi-
tion accuracy, have been used separately for evalua-
tion in Zhang et al. (2022). Additionally, ROUGE
and BERTScore (Zhang et al., 2019), measuring
semantic similarity, are both considered in He et al.
(2024); Fadeeva et al. (2023).

Thus, we observed that current evaluations of
uncertainty estimation in text summarization rely
on a limited set of NLG metric scores, which may
lead to inconsistent performance rankings across
other NLG metrics. Hence, our research aims to
comprehensively explore the relationship between
different uncertainty methods and various NLG
metrics.

3 Metrics & Methods in Benchmark
3.1 Our Benchmark: A Global Overview

To answer “How does the choice of NLG met-
ric affect the evaluation of uncertainty estimation
methods in text summarization?”’, our benchmark
aims to explore the uncertainty estimation metric
score across different NLG metrics for a given un-
certainty estimation method. The relationship of
these three items in the model evaluation process
is shown in Figure 1. Below, we formalize the
definition of the three scores we used in our work.

* NLG metric score: reflects the quality of a
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Figure 2: Diagram of the PRy calculation example with testing sample size N = 4. In this example, we have
min-max normalized §y ¢ = [0, 0.56, 0.47, 1], which is not drawn in the figure. Once we have obtained the sample
rank a4 based on a score list from method ¢. We rerank 7y via ag to get 4. Then, we use Eq. 3 to cumulatively
sum the elements and obtain 7. Finally, the PR, is the mean of 7.

generation at the sample level via an NLG
metric (e.g., ROUGE).

* Uncertainty score: reflects the likelihood that
a model generation is low-quality at the sam-
ple level. The likelihood comes from an un-
certainty estimation method (e.g., BNN).

* Uncertainty estimation metric score: re-
flects the performance of an uncertainty es-
timation method at the method level.

Regarding the NLG metrics, we evaluate 31 dif-
ferent ones across four NLG evaluation dimensions,
as proposed by Zhong et al. (2022). For the un-
certainty estimation methods to obtain uncertainty
scores, we examine fourteen common approaches
outlined in Fadeeva et al. (2023). For the uncer-
tainty estimation metric, we adopt a widely used
one, the Prediction Rejection Ratio (PRR) (Malinin
et al., 2017b; Fadeeva et al., 2023). Further details
about these three components are provided below.

3.2 Uncertainty Estimation Metric: PRR

Although uncertainty estimation metrics, such
as force-truth evaluation (He et al., 2024) and
PRR (Malinin et al., 2017b; Fadeeva et al., 2023),
rely on NLG metrics, we opt for PRR in our bench-
mark due to its efficiency. Unlike force-truth eval-
uation, which necessitates repeating NLG metric
calculations ten times, PRR offers a more stream-
lined approach. It is formatted as follows:

1 @
PRuncertainty T a Zizl PRrandom

PRR =
PRoracle — é Z?:l PRyandom

(1
where PRy is a scalar representing the cu-
mulative risk, calculated based on a pre-
dicted sample rank a4 from a method ¢ €
{uncertainty, random, oracle} ' and a list of

"The usage of ¢ and « for PR, qndom Will be introduced
in Sec. 3.3.

NLG metric scores syrg. Specifically, the
snia € RN for N testing samples, is first min-
max normalized to §x7.c € RY. Then, the risk for
N testing samples is as follows,

rnLg = 1—5nLG ()

here, we assume that our chosen NLG metric score
is positively correlated with generation perfor-
mance, and common NLG metrics (e.g., ROUGE)
meet this assumption. Thus, the NLG metric score
(an element in $ 1) is negatively correlated with
the risk (an element in ry 1) of inaccurate gen-
eration. A higher risk indicates a higher chance
of inaccurate generation. We then obtain ry by
ranking r g based on sample rank in ag. This
process is shown in Fig. 2. Further, we obtain a cu-
mulative risk vector 7y, = [T 1,742, ..., Ty n]. Its
k-th element is calculated via cumulative summing
the first k£ elements,

k
ok =D T, 3
=1

finally, PR is the mean of cumulative risk 7.

Because the risk is defined based on the normal-
ized NLG metric score list Sy in Eq. 2, the PR¢
is smaller if the predicted sample rank a4 is more
aligned with the sample rank based on the NLG
metric score. A simple intuition is that if the pre-
dicted sample rank a, is identical to the sample
rank based on ry ¢, PRy is minimized.

3.3 Details about Three PR Calculations

Then, we introduce PR,rqcies PRrandom, and
PRuyncertainty as follows.

For PR, qcle, the predicted sample rank aopqcle
is obtained via an oracle score vector Syrgcle =
—1xsnra. The PR,y qc1e 18 the lowest cumulative
risk we can obtain because a,,qce 18 aligned with
the sample rank via the NLG metric score.
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For PR, 4ndom, We generate a random permuta-
tion of N numbers each time. i Y ity PRrandom
represents the average of « different PR, 4,q0m val-
ues, each calculated using a random permutation.

In our experiments, we set a to 1000.

For PRyncertainty» the predicted sample rank is
obtained from the uncertainty score, which is cal-
culated via an uncertainty estimation method. We
list our uncertainty estimation methods in Sec. 3.4.

As a result, PRR in Eq. 1 calculates the rela-
tive risk between uncertainty scores from an un-
certainty method and NLG metric scores from an
NLG metric. The relative risk is normalized to ran-
dom risk expectation é > i1 PRrandom- A higher
PRR means a more accurate uncertain estimation
model. This is because a smaller PR leads to bet-
ter alignment for method ¢ and the denominator in
Eq. 1 is negative. Thus, a larger PRR means smaller

PR, pcertainty and higher generation quality.

3.4 Uncertainty Estimation Methods

The uncertainty estimation methods utilized in our
benchmark adhere to the framework established
by Fadeeva et al. (2023), as the framework pro-
vides a publicly available uncertainty estimation
tool, enhancing our results’ reproducibility.

The uncertainty estimation methods can be di-
vided into two kinds: white-box methods and black-
box methods. White-box methods refer to uncer-
tainty estimation methods using the intermediate
output, model structure, or model parameters of
the text summarization model (e.g., BART). Black-
box methods refer to uncertainty estimation meth-
ods that require only the final text output from a
text summarization model (e.g., GPT-3.5 (OpenAl,
2023)) for the uncertainty estimation. Below, we
introduce our uncertainty estimation methods one
by one in Sec. A., with a summary provided in
Table 1.

3.5 NLG Metrics

We chose thirty-one commonly used NLG metrics.
To better understand the relationship between these
NLG metrics, we categorize them into four dimen-
sions (Zhong et al., 2022). We first introduce these
four dimensions, then present all thirty-one NLG
metrics with a summary in Table 2. In this table,
except for the LLM-based metrics, most traditional
NLG metrics are tested in Fadeeva et al. (2023).

3.5.1 Dimensions for NLG Metrics

We choose four commonly used dimensions for
NLG metrics, proposed in Zhong et al. (2022) and
listed below.

Relevance refers to whether the generated text con-
tains only the important information from the input
text.

Consistency is the factual alignment between the
generated text and the input text.

Coherence refers to whether all the sentences in
the given generated text form a coherent body.
Fluency represents the quality of individual sen-
tences in the generated text.

Additionally, we also consider the overall di-
mension that rates the generated texts based on all
the above four dimensions.

The detailed explanation for each NLG metric
in Table 2 is in Sec. B.

4 Experiments

4.1 Experimental Settings

Dataset. We employ two widely used text sum-
marization datasets in our experiments. Firstly, we
utilize the AESLC dataset (Zhang and Tetreault,
2019), comprising 1,906 testing texts from the
email domain. Secondly, we incorporate the
XSUM dataset (Narayan et al., 2018), featuring
articles collected from the British Broadcasting
Corporation (BBC) and encompassing 11,334 test-
ing samples.

Besides these two, we are also interested in
human-related experiments. To meet our exper-
imental requirements, we used the TofuEval (Tang
et al., 2024) dataset. This dataset contains 100
dialogue-summary pairs with human annotations
in terms of quality, evaluated from seven dimen-
sions, which will be introduced in Sec. C.2.
Related methods and metrics. We provide de-
tailed descriptions of the uncertainty estimation
methods in Sec.3.4. Additionally, an introduction
to the NLG metrics is presented in Sec.3.5. By
combining the uncertainty scores obtained from
the uncertainty estimation methods with the NLG
metric scores, we calculate the uncertainty metric
score using the PRR method introduced in Sec. 3.2.
Implementation details. To limit diverse gener-
ation, the temperature was set to 0, and a random
seed of 42 was used. The experiments were con-
ducted on a server equipped with a single A100
GPU. For the AESLC dataset, it took approxi-
mately 17 hours to run on GPT-3.5 generation and
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Information-based methods

Maximum Sequence Probability (MSP)
Mean Token Entropy (MTE)
Monte Carlo Sequence Entropy (MCSE)

Density-based methods
White-box

Mahalanobis Distance (MD)
Robust Density Estimation (RDE)

Ensemble-based methods

Token-level Total Uncertainty (T-TU)

Token-level Reverse Mutual Information (T-RMI)
Sequence-level Total Uncertainty (S-TU)

Sequence-level Reverse Mutual Information RMI (S-RMI)

Prompt-based

P(True)

Black-box | Mixture types

Number of Semantic Sets (NumSets)

Eccentricity (ECC)

Lexical Similarity (LexSim)

Sum of Eigenvalues of the Graph Laplacian (EigV)

Table 1: A summary of the fourteen uncertainty methods that are used in our benchmark.

ROUGE-L

Spearman

Kendall-Tau

UniEval (Relevance)
wo-GPT-3.5 (Relevance)
wi-gt-GPT-3.5 (Relevance)
wi-in-GPT-3.5 (Relevance)
wi-ingt-GPT-3.5 (Relevance)
BARTSCORE

SummaC

CTC

UniEval (Consistency)
wo-GPT-3.5 (Consistency)
wi-gt-GPT-3.5 (Consistency)
wi-in-GPT-3.5 (Consistency)
wi-ingt-GPT-3.5 (Consistency)
UniEval (Coherence)
wo-GPT-3.5 (Coherence)
wi-gt-GPT-3.5 (Coherence)
wi-in-GPT-3.5 (Coherence)
wi-ingt-GPT-3.5 (Coherence)
UniEval (Fluency)
wo-GPT-3.5 (Fluency)
wi-gt-GPT-3.5 (Fluency)
wi-in-GPT-3.5 (Fluency)
wi-ingt-GPT-3.5 (Fluency)
UniEval (Overall)
wo-GPT-3.5 (Overall)
wi-gt-GPT-3.5 (Overall)
wi-ingt-GPT-3.5 (Overall)
wi-in-GPT-3.5(Overall)

Relevance

Consistency

Coherence

Fluency

Overall

Table 2: A summary of the thirty-one NLG metrics that
are used in our benchmark.

around 22 hours to run on Llama 2. For the XSUM
dataset, the experiments took approximately six
times longer to run compared to those on AESLC.
The total cost is about 1000 USD for the GPT-3.5-
based generation and GPT-3.5-based evaluation.
For the density-based method, we randomly sam-
pled 1000 training samples with a fixed random
seed from the respective dataset to represent the
training data distribution, following the settings
outlined in Fadeeva et al. (2023).

4.2 Experimental Results about Uncertainty
Estimation Methods

Analysis on ensemble-based uncertainty estima-
tion methods. In the case of ensemble-based un-
certainty estimation methods, T-TU, S-TU, and
S-RMI generally exhibit positive correlations with
all other white-box uncertainty estimation methods,
except for T-RMI. This trend is evident in Figures 6
and 12. Additionally, T-RMI demonstrates nega-
tive correlations with T-TU and S-TU, as well as
a weakly positive correlation with S-RMI. Conse-
quently, we propose that for future applications of
uncertainty estimation methods, focusing on one
of T-TU, S-TU, and S-RMI could be advantageous,
with T-RMI serving as a supplementary baseline.
Analysis on information-based uncertainty es-
timation methods. In the realm of information-
based uncertainty estimation methods, MSP and
MCSE typically exhibit strongly positive corre-
lations with each other, as evidenced in Fig-
ures 6, 8, 12, and 14.

Conversely, MTE exhibits inconsistently strong

positive correlations with MSP and MCSE. For in-
stance, while Figure 8 demonstrates a weakly pos-
itive correlation between them, Figure 12 depicts
a strongly positive correlation. Therefore, we rec-
ommend that in future comparison of uncertainty
estimation methods, when considering MSP and
MCSE, opting for one of them and optionally uti-
lizing MTE as a supplementary baseline could be
beneficial.
Analysis on density-based uncertainty estima-
tion methods. In the domain of density-based
uncertainty estimation methods, MD and RDE typ-
ically demonstrate strongly positive correlations
with each other. This trend is observed in Fig-
ures 6, 12, and 14, with the exception of a weakly
positive correlation in Figure 8.
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NLG Metrics MSP MTE MCSE MD RDE P(True)
ROUGE-L 0.2107  0.1668  0.2082  0.2650  0.1608  -0.0233
BARTSCORE 0.0372  0.2015  0.0418 0.2451  0.1573 0.0615
SummaC -0.1301  -0.0440 -0.1189  0.0739 -0.0182 0.0998
CTC 0.0736 -0.1515  0.0685  0.0457 0.0347 -0.1074
Spearman 0.0656  0.1430  0.0640  0.1429  0.0929  -0.0080
Kendall-Tau 0.0649  0.1412  0.0630  0.1404  0.0904  -0.0084
UniEval (Relevance) -0.0572  0.0769 -0.0309  0.1995 -0.0334  -0.2365
UniEval (Consistency) 0.1408 0.1007 0.1143  0.0224  0.1392  -0.3789
UniEval (Coherence) 0.1804  0.1802  0.1932 02163  0.2332  -0.7554
UniEval (Fluency) -0.0524  -0.3809  0.0079  0.0568 -0.1954  -0.2343
UniEval (Overall) 0.0300  0.0000 0.0563 0.1702 0.0148 -0.4410
wo-GPT-3.5 (Relevance) -0.0863  0.2315 -0.0451 0.1784 -0.0533 0.1029
wo-GPT-3.5 (Consistency) -0.0280  0.1825  0.0025  0.2586  0.0157 0.0849
wo-GP-T3.5 (Coherence) -0.0796  0.0771 -0.0479  0.1672 -0.0712 0.0969
wo-GPT-3.5 (Fluency) -0.0148  0.1498  0.0023  0.1992 -0.0347 0.0615
wo-GPT-3.5 (Overall) -0.0634  0.0976 -0.0794  0.1807  0.0187 0.0399
wi-gt-GPT-3.5 (Relevance) -0.2205  0.0841 -0.2692  0.0835  0.0833  -0.1177
wi-gt-GPT-3.5 (Consistency) -0.2533  -0.0078 -0.2726 -0.0076 -0.0268  -0.0773
wi-gt-GPT-3.5 (Coherence) -0.2991  -0.0493 -0.2979  0.0333 -0.0597 -0.1096
wi-gt-GPT-3.5 (Fluency) -0.2344  -0.0392 -0.2084  0.1485 0.0882  -0.3175
wi-gt-GPT-3.5 (Overall) -0.1829  0.0045 -0.2133 -0.0836 -0.0842  -0.1202
wi-in-GPT-3.5 (Relevance) 0.0185  0.0798 0.0735  0.0608 -0.0820 -0.0239
wi-in-GPT-3.5 (Consistency) 0.1015  0.1054  0.1041  0.1972 0.0545  -0.1937
wi-in-GPT-3.5 (Coherence) -0.0170  0.0653 -0.0206  0.0283 -0.1453  -0.2302
wi-in-GPT-3.5 (Fluency) 0.0808 -0.1020  0.0955  0.1685  0.0308  -0.4904
wi-in-GPT-3.5 (Overall) -0.1816  0.1285 -0.1818  0.0457 -0.0564  -0.0854
wi-ingt-GPT-3.5 (Relevance) -0.1114  0.1486 -0.1015  0.1182  0.0500 -0.0379
wi-ingt-GPT-3.5 (Consistency) | -0.1391  0.1558 -0.1462  0.0934  0.0114  -0.0660
wi-ingt-GPT-3.5 (Coherence) -0.1079  0.0909 -0.0959  0.1531  0.0058 -0.1189
wi-ingt-GPT-3.5 (Fluency) -0.0283  0.0799  0.0065  0.1402 -0.0077 -0.2216
wi-ingt-GPT-3.5 (Overall) -0.1149  0.0485 -0.1011 -0.0094 -0.1268  -0.0594
Col Mean -0.0451  0.0634 -0.0364  0.1204 0.0092  -0.1263

Table 3: Main results of the relationship between the uncertainty estimation methods and NLG metrics on AESLC

dataset using generation from Llama 2.

Hence, we propose that in future applications
of uncertainty estimation methods, utilizing either
MD or RDE alone would suffice rather than using
both of them as the baselines.

Analysis on prompt-based uncertainty estima-
tion methods. In the case of prompt-based un-
certainty estimation methods, P(True) typically ex-
hibits a weak or negative correlation with other
uncertainty estimation methods. This trend is evi-
dent from Figures 8 and 14.

Analysis on black-box uncertainty estimation
methods. In terms of black-box uncertainty esti-
mation methods, ECC, LexSim, and EigV typically
exhibit positive correlations with each other, with
ECC and EigV showing particularly strong correla-
tions. Conversely, NumSets demonstrates a weak
or negative correlation with ECC, LexSim, and
EigV. These trends are shown in Figures 7 and 13.

Hence, we recommend that in future applications
of uncertainty estimation methods involving ECC,
LexSim, and EigV, opting for one of them and
employing NumSets as a complementary measure
could be beneficial.

Analysis on specific uncertainty estimation
methods. Besides, we observed that each UE
method consistently achieves positive UniEval
(Consistency) scores across all eight methods listed
in Table 8. This indicates that all of the afore-
mentioned methods outperform random ranking in
terms of the NLG metric, UniEval (Consistency).

Each uncertainty estimation method exhibits dis-
satisfaction performance with negative ROUGE-L
scores across all eight methods in Table 9. This
suggests that all the methods listed above perform
worse than random ranking in terms of the NLG
metric, ROUGE-L (Consistency).

Each uncertainty estimation method demon-
strates strong performance, achieving positive
scores for both UniEval (Consistency) and UniEval
(Coherence) across all four methods presented in
Table 6. This indicates that all aforementioned
methods outperform random ranking in terms
of both consistency and coherence according to
UniEval assessment. We summarized our findings
in Sec. C.2.
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NLG Metrics El MR SOAF RE TME [0) NMS Row Mean
ROUGE-L -0.5357 0.2070 -0.3931 -0.7112 -0.4778 0.0084  0.0713 -0.2616
SummaC -0.1109  0.0525 0.0981 0.0838 -0.2313 -0.5984 0.1242 -0.0831
CTC -0.4205 0.2899 0.2378  -0.3425 -0.4008 0.0238  0.1431 -0.0670
Spearman -0.4254  0.2311  -0.0991 -0.2111 -0.1136 -0.2723  0.0096 -0.1258
Kendall-Tau -0.4216  0.2387 -0.1086 -0.2151 -0.1111 -0.2905 0.0112 -0.1281
UniEval (Relevance) 0.0388 -0.1822 0.3394 -0.2541 -0.1908 -0.1578 -0.1172 -0.0748
UniEval (Consistency) -0.6647 -0.1144 03829 -0.1344 0.2585 -0.0797 -0.1606 -0.0732
UniEval (Coherence) -0.5794  0.2330 0.6794 -0.4737 -0.2264 0.1767 -0.1442 -0.0478
UniEval (Fluency) -0.0665 0.2300 -0.6612 -0.3210 -0.3194 0.2168 -0.3231 -0.1778
UniEval (Overall) -0.5925 -0.0105 0.5262 -0.3591 -0.0376  0.0002 -0.2080 -0.0973
wi-ingt-GPT-3.5 (Relevance) -0.0991 0.1672 -0.2758 -0.2624 -0.1556 -0.1358 -0.2762 -0.1482
wi-ingt-GPT-3.5 (Consistency) | -0.3081 0.1279  0.0396 -0.3236 -0.4197 -0.0768 -0.0286 -0.1413
wi-ingt-GPT-3.5 (Coherence) -0.2569  0.0856 -0.0278 -0.3163 -0.4721 0.0666  0.1028 -0.1169
wi-ingt-GPT-3.5 (Fluency) -0.1679  0.0791 0.0177 -0.3292 -0.2071  0.0501 0.0548 -0.0718
wi-ingt-GPT-3.5 (Overall) -0.2945  0.0100 0.1369 -0.2878 -0.3577 0.0233 0.2251 -0.0778

Table 4: Main results of the relationship between the NLG metrics and human annotations on TofuEval dataset

using generation from GPT-3.5.

4.3 Results about NLG Metrics

The experimental results and experimental analysis
from the view NLG metrics are in Sec. C.1. Based
on the information presented in these tables and
figures in Sec. C.1, we can address our key ques-
tion: “How does the choice of NLG metric affect
the evaluation of uncertainty estimation methods in
text summarization?” The answer is that using dif-
ferent NLG metrics could lead to different ranks
for uncertainty estimation methods. Therefore,
it is important to design uncertainty estimation met-
rics that are robust across various NLG metrics.
Besides Sec. C.1, more findings are summarized in
Sec. 6.

4.4 Experimental Results Involving Human
Annotations

The experimental results and experimental analysis
involving human annotations are in Sec. C.2. Based
on the human annotation from seven dimensions,
we found that the rankings of certain uncertainty
estimation methods differ between NLG metrics
and human annotation. Also, current uncertainty
estimation methods struggle to attain positive PRR
scores across various perspectives of human anno-
tations. This could be a future direction for the
research. Besides Sec. C.2, more findings are sum-
marized in Sec. 6.

5 Conclusion

Recognizing the dependency of uncertainty model
metrics on diverse NLG metrics, we introduce a
comprehensive UE-TS benchmark to investigate
the impact of NLG metric choice on the evalua-
tion of uncertainty estimation methods in text sum-

marization. This benchmark encompasses three
datasets, fourteen uncertainty estimation methods
(both white-box and black-box), and thirty-one
NLG metrics spanning four evaluation dimensions.
Additionally, we assess one black-box LLM, one
white-box LLM, and one PLM for text summariza-
tion.

Our findings not only highlight the current lim-
itations in UE-TS model evaluation but also con-
tribute to a deeper understanding of the complex
relationship between NLG metrics, uncertainty es-
timation methods, and human annotation. This
knowledge can guide future research, inform the
development of more effective uncertainty estima-
tion methods, and ultimately enhance evaluation
protocols for UE-TS and other NLG tasks.

6 Summary of Our Findings

Below, we summarize our findings, which are take-
away knowledge. The evidence to obtain these
findings is detailed in Sec. 4.2, C.1 and C.2.

From the view of NLG metrics (see Sec. C.1),

* It is evident that evaluating uncertainty esti-
mation models using different NLG metrics
leads to variations in the performance ranking
of these models.

* Some evaluations of uncertainty estimation
models using different NLG metrics could re-
sult in different performance ranks. However,
some evaluations of uncertainty estimation
models using different NLG metrics may re-
sult in the same performance rankings.

* Generation models of the same type across
different datasets usually result in similar cor-
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relations among various methods. However,
this does not apply to the fluency dimension.

* When utilizing LLMs as a type of rele-
vance NLG metric, the choice of target text
source can greatly impact the final conclusion.
Specifically, using ground-truth summaries
versus using input text as the target text source
can result in different performance rankings.

* When using LLMs as an NLG metric, if both
ground-truth summaries and input text are
employed together as the target text source,
ground-truth summaries typically impact met-
ric results more than using only the input text
in most cases.

* GPT-3.5 knows the concept of relevance, over-
all. But it might not know the concept of con-
sistency, coherence. As for the concept of
fluency, it is hard to tell whether the GPT-3.5
itself understand it or not. Therefore, using
GPT-3.5 as an evaluation tool, it would be
better to provide the concept definition in the
prompt.

Specific recommendations for NLG Metrics:

* Relevance: Spearman and Kendall-Tau met-
rics show positive correlations, so either can
be used. When using LLMs as generation
models, UniEval (Relevance) and wo-GPT-
3.5 (Relevance) typically show positive corre-
lations with most other NLG metrics. There-
fore, either of them could serve as a represen-
tative NLG metric in the relevance dimension
(see Sec. C.1.2).

* Consistency: CTC may be preferable to
SummaC or UniEval due to positive corre-
lations. For GPT-3.5-based metrics, it is
recommended to use wi-in-GPT-3.5 (Consis-
tency) alongside wo-gt-GPT-3.5, wi-gt-GPT-
3.5 (Consistency), or wi-ingt-GPT-3.5 (Con-
sistency) (see Sec. C.1.3).

* Coherence: Determining the superior GPT-
3.5-based metric in the coherence dimension
is challenging. But, due to their strongly pos-
itive correlation, either wi-gt-GPT-3.5 (Co-
herence) or wi-in-GPT-3.5 (Coherence) is a
suitable choice. In the coherence dimension,
UniEval (Coherence) could complement ei-
ther wi-gt-GPT-3.5 (Coherence) or wi-in-GPT-
3.5 (Coherence) (see Sec. C.1.4).

* Fluency: We recommend wi-gt-GPT-3.5 (Flu-
ency) and wi-ingt-GPT-3.5 (Fluency) due to
their correlation patterns. UniEval (Fluency)
can supplement a GPT-3.5-based metric (see
Sec. C.1.5).

* The UniEval (Overall) can serve as an op-
tional supplementary tool for GPT-3.5-based
NLG metrics in the overall dimension (see
Sec. C.1.6).

Key insights for uncertainty estimation meth-
ods (see Sec. 4.2): For future applications of uncer-
tainty estimation methods:

e Prioritize one of T-TU, S-TU, and S-RMI,
with T-RMI serving as a supplementary base-
line.

* When considering MSP and MCSE, opting for
one of them and utilizing MTE as an optional
supplementary measure could be beneficial.

* Using either MD or RDE alone would suffice
rather than using both of them as the baselines.

* When considering ECC, LexSim, and EigV,
opting for one of them and employing Num-
Sets as a complementary measure could be
beneficial.

From the view of human annotations (see
Sec. C.2.2,C.2.3,C.2.4),

* Rankings of certain uncertainty estimation
methods differ between NLG metrics and hu-
man annotation.

* Utilizing NLG metrics as an oracle remains
meaningful, as it saves the cost but leads to
an uncertainty estimation method rank that is
inconsistent with human annotations.

* Current uncertainty estimation methods strug-
gle to attain positive PRR scores across vari-
ous perspectives of human annotations. This
could be a future direction for the research.
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8 Ethical Consideration

This study explores the overlooked relationship be-
tween uncertainty metrics and NLG metrics. Dur-
ing our study, we answer the question “Can We
Trust the Performance Evaluation of Uncertainty
Estimation Methods in Text Summarization?”.

Our research employs datasets that are publicly
available, ensuring transparency and accessibility.
The datasets integral to our work are utilized in
adherence to their respective licenses (Tang et al.,
2024; Fadeeva et al., 2023).

We recommend that any future expansion of this
research into areas involving personal or sensitive
data should be approached with stringent ethical
guidelines in place.

9 Limitations

Due to the resources (GPU and budget for calling
GPT APIs), we only conduct one-time experiments.
In contrast, the experiments on BART are set to
use greedy generation for each sample rather than
diverse generations for the robustness of the exper-
iments.
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A More Explanation of Uncertainty
Estimation Methods

Below we give a detailed explanation of the uncer-
tainty estimation methods in Table 1.

A.1 White-Box Methods

The UE-TS methods primarily fall into four cate-
gories (Fadeeva et al., 2023): information-based,
density-based, ensemble-based, and prompt-based
methods.

Information-based methods utilize token prob-
ability to obtain uncertainty scores. Within this
category, we employ the following methods:

(1) Maximum Sequence Probability (MSP): esti-
mates uncertainty score as the log-probability of
the generation in a greedy search way. It is calcu-
lated as the sum of log probabilities in each token.
(2) Mean Token Entropy (MTE): estimates the un-
certainty score as the mean entropy for all tokens
in a generation.

(3) Monte Carlo Sequence Entropy (MCSE): cal-
culates the generation entropy estimations using
Monte-Carlo estimation. It is the “predictive en-
tropy” in Kuhn et al. (2023).

Density-based methods utilize latent representa-
tions of instances to construct a probability density.
Below, we list the related methods compared in our
benchmark.

(4) Mahalanobis Distance (MD): calculates a Gaus-
sian distribution for training samples. Then, the
MD calculates the distance between the testing sam-
ple and the Gaussian distribution as the uncertainty
score (Lee et al., 2018).

(5) Robust Density Estimation (RDE): improves
over MD by reducing the dimensionality via princi-
pal component analysis decomposition (Yoo et al.,
2022).

Ensemble-based methods utilize ensembles to ap-
proximate Bayesian neural networks (BNN) or the
variance of ensemble generations to obtain uncer-
tainty scores. Below are the related methods we
used:

(6) Token-level Total Uncertainty (T-TU): calcu-
lates the entropy of the predictive posterior at token
level as the uncertainty score (Malinin and Gales,
2020; He et al., 2024).

(7) Token-level Reverse Mutual Information (T-
RMI): uses reverse-KL divergence counterpart to
the mutual information at token level as the uncer-
tainty score (Malinin and Gales, 2020).

(8) Sequence-level Total Uncertainty (S-TU): cal-
culates the entropy of the predictive posterior at
sequence level as the uncertainty score (Malinin
and Gales, 2020; He et al., 2024).

(9) Sequence-level Reverse Mutual Information
RMI (S-RMI): uses reverse-KL divergence coun-
terpart to the mutual information at the sequence
level as the uncertainty score (Malinin and Gales,
2020).

Prompt-based methods refer to methods that
prompt the generation model to obtain the uncer-
tainty score (Kadavath et al., 2022). We employ
(10) P(True) (Kadavath et al., 2022), which takes
the uncertainty score as the probability of asking
whether the proposed answer is true or false. This
method assumes that the generation model pos-
sesses superior zero-shot prompt abilities.

A.2 Black-Box Methods

For scenarios where only the final textual output
is available, we utilize the following black-box un-
certainty estimation methods, which have demon-
strated effectiveness in previous studies (Fadeeva
et al., 2023).

(11) Number of Semantic Sets (NumSets): takes
the number of diverse semantic interpretations for
the generation as uncertainty score (Lin et al.,
2023).

(12) Eccentricity (ECC): gets the uncertainty via
calculating a distance between all eigenvectors
that are informative embeddings of graph Lapla-
cian (Lin et al., 2023).

(13) Lexical Similarity (LexSim): obtains the un-
certainty scores via calculating mean similarity be-
tween all pairs of sampled generations (Fomicheva
et al., 2020).

(14) Sum of Eigenvalues of the Graph Laplacian
(EigV): extends the NumSets from integer case
into a continuous case, where the uncertainty score
is calculated based on a matrix trace (Lin et al.,
2023).

B More Explanation of NLG metrics

Below we give a detailed explanation of the NLG
metrics in Table 2.

B.1 Specific NLG Metrics

(1) ROUGE-L: measures the longest common sub-
sequence between the generated text and ground-
truth text (Lin, 2004). It emphasizes relevance.

(2) BARTSCORE: uses an encoder-decoder pre-
trained model to compute a similarity score for
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each token in the generation with each token in the
reference text Yuan et al. (2021). It emphasizes
consistency.

(3) CTC: uses a pretrained model to measure the
alignment between the generation text and ground-
truth text (Deng et al., 2021). It emphasizes consis-
tency.

(4) SummacC: uses pretrained models to seg-
ment both generated and input texts into sentence
units and aggregate scores between pairs of sen-
tences (Laban et al., 2022). It emphasizes consis-
tency.

(5) Spearman Correlation (Spearman) and (6)
Kendall-Tau Correlation (Kendall-Tau) are de-
signed to measure the semantic overlap between
the model output and the reference text via text
embeddings. They have relatively high correlations
in the relevance dimension (Liu et al., 2021; Zhong
etal., 2022).

(7-11) UniEVAL: takes NLG evaluation as
a boolean question answering (QA) task and
guides the model with different questions.
UniEVAL (Zhong et al., 2022) can use one evalua-
tor to evaluate one of the dimensions in Sec. 3.5.1.
(12-16) GPT-3.5 without dimension concepts wo-
GPT-3.5: uses GPT-3.5 (OpenAl, 2023) to prompt
about the generation quality. Among the prompts,
we do not provide any prior knowledge about each
dimension concept described in Sec. 3.5.1. This
method compares the difference between the gen-
erated summaries and ground-truth summaries.
(17-21) GPT-3.5 with dimension concepts wi-gt-
GPT-3.5: uses the GPT-3.5 (OpenAl, 2023) to
prompt about the generation quality. However, the
prior knowledge about each dimension concept is
given in the prompt. This method compares the
difference between the generated summaries and
ground-truth summaries.

(22-26) wi-in-GPT-3.5: is very similar to wi-gt-
GPT-3.5. The only difference is that this method
compares the difference between the generated
summaries and input text.

(27-31) wi-ingt-GPT-3.5: is very similar to wi-gt-
GPT-3.5. The only difference is that this method
compares generated summaries to the input text
and ground-truth summaries.

Although different NLP tasks may use vari-
ous evaluation metrics, such as those in Lin et al.
(2024), we adopt the evaluation metric settings
from Zhong et al. (2022) due to their generalizabil-
ity to other NLG tasks. Consequently, our research
conclusions may be applicable to a broader range

of NLG tasks.

C More Experimental Results

In this subsection, we list more experimental re-
sults below. We first give the experimental results
from the view of NLG metrics. Then, we show the
experimental results involving human annotations.

C.1 Experimental Results about NLG Metrics

Tables 8, 6, 3, 9, 7, and 5 present various uncer-
tainty metric scores obtained from different uncer-
tainty methods alongside different NLG metrics.
Figures 6, 7, 8, 12, 13, and 14 illustrate the correla-
tion of uncertainty methods in terms of uncertainty
metric scores. Additionally, Figures 3, 4, 5, 9, 10,
and 11 depict the correlation of NLG metrics with
uncertainty metric scores.

Based on the information presented in these ta-
bles and figures, we can address our key question:
“How does the choice of NLG metric affect the
evaluation of uncertainty estimation methods in
text summarization?”” The answer is that using dif-
ferent NLG metrics could lead to different ranks
for uncertainty estimation methods. Therefore,
it is important to design uncertainty estimation met-
rics that are robust across various NLG metrics.

Next, we provide a detailed analysis from the
perspectives of NLG metrics and uncertainty esti-
mation methods, respectively.

C.1.1 Analysis Based on All NLG Metrics

Analysis from all five dimensions. Figures 3, 4,
and 5 show the Spearman correlation between NLG
metrics in a comprehensive view of the AESLC
dataset. Figures 9, 10, and 11 show the Spearman
correlation between NLG metrics in a comprehen-
sive view of the XSUM dataset. We use Spearman
correlation (Myers and Sirois, 2004; Zheng et al.,
2022) rather than Pearson correlation (Sedgwick,
2012; Xue, 2022). This is because the Spearman
correlation is calculated based on the ranks of the
data while the Pearson correlation is calculated via
the raw data values. Since our work wants to know
the impact on the performance rank of the different
uncertainty estimation methods. We use the Spear-
man correlation. From these figures, we can draw
the following conclusions.

It is evident that evaluating uncertainty estima-
tion models using different NLG metrics leads to
variations in the performance ranking of these mod-
els. This discrepancy arises because there are no
rows or columns in these figures where all elements
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NLG Metrics MSP MTE MCSE MD RDE P(True)
ROUGE-L 0.1300  0.1171 0.1257  0.0096 -0.0232  -0.1698
BARTSCORE 0.1657  0.2000 0.1789  0.2132  0.1891  -0.1828
SummaC -0.0659  -0.0580 -0.0642 -0.1556 -0.2557 0.0392
CTC 0.0448 -0.0112  0.0699 -0.0021 -0.0759 -0.3161
Spearman 0.0189  0.0516  0.0094  0.0569  0.0190 -0.2855
Kendall-Tau 0.0138  0.0437  0.0034 0.0495 0.0151 -0.2735
UniEval (Relevance) 0.4496 04654 04586 0.3709 0.1655 -0.8063
UniEval (Consistency) 0.5711 0.5589  0.5746  0.4069  0.2830 -0.7399
UniEval (Coherence) 0.7198  0.7069  0.7219  0.5884  0.2795 -1.0973
UniEval (Fluency) 0.3714  0.3008 0.3969 03526  0.2316  -0.5880
UniEval (Overall) 0.6020 0.5904 0.6113  0.4893 0.2567 -0.9452
wo-GPT-3.5 (Relevance) 0.3447  0.3852  0.3756  0.2945 -0.0065 -0.3841
wo-GPT-3.5 (Consistency) 0.0789  0.1104  0.0990 0.0993 0.0142 -0.0140
wo-GP-T3.5 (Coherence) -0.0197 -0.0238 -0.0012 -0.0316  0.0102 0.0612
wo-GPT-3.5 (Fluency) 0.1701 0.1997  0.1935 0.1850 -0.0118  -0.0961
wo-GPT-3.5 (Overall) 0.1249  0.1626  0.1442  0.1562  0.0138  -0.1296
wi-gt-GPT-3.5 (Relevance) -0.1070  -0.1089  -0.0933 -0.1349 -0.1222  -0.1304
wi-gt-GPT-3.5 (Consistency) -0.0985 -0.1148 -0.0832 -0.0625 -0.0538 -0.0531
wi-gt-GPT-3.5 (Coherence) -0.0546  -0.0504 -0.0270 -0.0813 -0.0471  -0.0909
wi-gt-GPT-3.5 (Fluency) -0.1158 -0.1192 -0.1139 -0.1233 -0.1168 -0.1173
wi-gt-GPT-3.5 (Overall) -0.0327 -0.0285 -0.0130 -0.0718 -0.0911  -0.0383
wi-in-GPT-3.5 (Relevance) -0.0105 -0.0084 -0.0035 -0.0576 -0.0280 -0.0266
wi-in-GPT-3.5 (Consistency) -0.0276  -0.0289 -0.0069 -0.0458 -0.0211 0.0216
wi-in-GPT-3.5 (Coherence) -0.0454  -0.0456 -0.0234 -0.0526 -0.0171 0.0429
wi-in-GPT-3.5 (Fluency) -0.1349  -0.1423 -0.1161 -0.1589 -0.1039 0.0210
wi-in-GPT-3.5 (Overall) -0.1067 -0.1069 -0.0861 -0.1170 -0.0915 -0.0361
wi-ingt-GPT-3.5 (Relevance) -0.0269 -0.0038 -0.0295 -0.0894 -0.1017 -0.0178
wi-ingt-GPT-3.5 (Consistency) | -0.0940 -0.0760 -0.0917 -0.1211 -0.0636  -0.0263
wi-ingt-GPT-3.5 (Coherence) -0.0587 -0.0155 -0.0530 -0.1187 -0.1089  -0.0441
wi-ingt-GPT-3.5 (Fluency) -0.1545 -0.1254 -0.1790 -0.1492 -0.1588  -0.0200
wi-ingt-GPT-3.5 (Overall) -0.0362 -0.0156 -0.0098 -0.0193 -0.0316 -0.0162
Col Mean 0.0844  0.0906  0.0957 0.0542 -0.0017 -0.2084

Table 5: Main results of the relationship between the uncertainty estimation methods and NLG metrics on XSUM
dataset using generation from Llama 2.
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NLG Metrics NumSets ECC LexSim EigV

ROUGE-L 0.0415  0.1071 0.2121  0.0964
SummaC 0.0919 -0.1259 -0.1362 -0.0994
CTC 0.0387  0.0999 0.0506  0.1132
Spearman 0.0326  0.0101 0.1344  0.0112
Kendall-Tau 0.0326  0.0102 0.1324  0.0114
UniEval (Relevance) 0.1131 -0.0728 -0.0165 -0.0747
UniEval (Consistency) 0.0559  0.0898 0.1260  0.1211
UniEval (Coherence) 0.0992  0.1668 0.2259  0.1754
UniEval (Fluency) -0.0252  -0.1101  -0.2024 -0.0921
UniEval (Overall) 0.0946 -0.0379  -0.0055 -0.0284
wo-GPT-3.5 (Relevance) 0.0714  -0.0908 0.1165 -0.1115
wo-GPT-3.5 (Consistency) 0.0977 -0.0382 0.0806  -0.0488
wo-GP-T3.5 (Coherence) 0.1004 -0.0981 0.0624  -0.1043
wo-GPT-3.5 (Fluency) 0.1217 -0.1114 0.0466  -0.1265
wo-GPT-3.5 (Overall) 0.1008  -0.0548 0.0785 -0.0734
wi-gt-GPT-3.5 (Relevance) 0.1465 -0.0595 0.1097  -0.0893
wi-gt-GPT-3.5 (Consistency) 0.1002 -0.0101 0.0344  -0.0330
wi-gt-GPT-3.5 (Coherence) 0.1418 -0.0267 0.0512 -0.0519
wi-gt-GPT-3.5 (Fluency) 0.1501  0.0117 0.1928  0.0091
wi-gt-GPT-3.5 (Overall) 0.1226  -0.0892 0.0206  -0.0953
wi-in-GPT-3.5 (Relevance) 0.0303  -0.0291 0.0783  -0.0334
wi-in-GPT-3.5 (Consistency) 0.0792  0.1707 0.2616  0.1626
wi-in-GPT-3.5 (Coherence) 0.1428 0.0940 0.2092  0.0840
wi-in-GPT-3.5 (Fluency) 0.0167  0.1683 0.0820  0.1765
wi-in-GPT-3.5 (Overall) 0.0774  -0.1700 0.0117 -0.1711
wi-ingt-GPT-3.5 (Relevance) 0.1462  -0.1226 0.0659 -0.1473
wi-ingt-GPT-3.5 (Consistency) 0.0677 -0.1344 0.0135 -0.1543
wi-ingt-GPT-3.5 (Coherence) 0.0395 -0.1203 0.0317 -0.1438
wi-ingt-GPT-3.5 (Fluency) 0.0971 -0.0075 0.1304 -0.0011
wi-ingt-GPT-3.5 (Overall) 0.1281 -0.0642 0.0760  -0.0918
Col Mean 0.0851 -0.0215 0.0758  -0.0270

Table 6: Main results of the relationship between the uncertainty estimation methods and NLG metrics on AESLC
dataset using generation from GPT-3.5.
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NLG Metrics NumSets ECC LexSim  EigV

ROUGE-L -0.0207  0.0867 0.0759  0.0565
SummaC 0.0445 -0.0485 -0.1196 -0.0297
CTC 0.0058  0.1267 0.0278  0.0956
Spearman -0.0045 -0.0721 -0.1082 -0.0781
Kendall-Tau -0.0046  -0.0664 -0.1084 -0.0716
UniEval (Relevance) 0.0468 -0.0740 -0.1099 -0.0728
UniEval (Consistency) -0.0325  0.3751 0.4828  0.3161
UniEval (Coherence) -0.0033 0.3327 0.4128 0.2822
UniEval (Fluency) 0.0573  0.2495 0.1347  0.2297
UniEval (Overall) 0.0259  0.1686 0.1814  0.1385
wo-GPT-3.5 (Relevance) 0.0714  -0.1213 0.0464 -0.1533
wo-GPT-3.5 (Consistency) 0.0266 -0.0478 -0.0526 -0.0624
wo-GP-T3.5 (Coherence) 0.0325 -0.0464 -0.0550 -0.0558
wo-GPT-3.5 (Fluency) 0.0105 -0.0094  -0.0039 -0.0272
wo-GPT-3.5 (Overall) -0.0007 -0.0300  -0.0094 -0.0379
wi-gt-GPT-3.5 (Relevance) -0.0598 -0.1062  -0.0832 -0.0932
wi-gt-GPT-3.5 (Consistency) -0.0066 -0.0486  -0.0582 -0.0516
wi-gt-GPT-3.5 (Coherence) -0.0918 -0.0589  -0.0727 -0.0541
wi-gt-GPT-3.5 (Fluency) -0.0402 -0.1248  -0.0733 -0.1125
wi-gt-GPT-3.5 (Overall) -0.0563 -0.0768  -0.0341 -0.0771
wi-in-GPT-3.5 (Relevance) 0.0122  -0.0074 -0.0050 -0.0112
wi-in-GPT-3.5 (Consistency) -0.0130 -0.0686  -0.0892 -0.0739
wi-in-GPT-3.5 (Coherence) -0.0295 -0.0117 -0.0832 -0.0214
wi-in-GPT-3.5 (Fluency) 0.0059 -0.1526  -0.1198 -0.1627
wi-in-GPT-3.5 (Overall) -0.0506 -0.1875  -0.1962 -0.1827
wi-ingt-GPT-3.5 (Relevance) -0.0152  -0.0612  -0.0431 -0.0502
wi-ingt-GPT-3.5 (Consistency) -0.0176  -0.0290  -0.0326 -0.0167
wi-ingt-GPT-3.5 (Coherence) -0.0870 -0.1265 -0.0924 -0.1268
wi-ingt-GPT-3.5 (Fluency) -0.1197 -0.0844  -0.0136  -0.0609
wi-ingt-GPT-3.5 (Overall) -0.0136  -0.1040  -0.1022  -0.0979
Col Mean -0.0109 -0.0142  -0.0101 -0.0221

Table 7: Main results of the relationship between the uncertainty estimation methods and NLG metrics on XSUM
dataset using generation from GPT-3.5.

NLG Metrics MSP MTE MCSE MD RDE T-TU T-RMI S-TU S-RMI
ROUGE-L 0.1763  -0.0385 0.1539 -0.0333 -0.0844 -0.0571 -0.0752 -0.0849  0.0577
BARTSCORE -0.0541  0.0314 0.0252  0.1228  0.0930 0.0525 -0.0867  0.0026  0.0590
SummaC 0.0106 -0.0024 0.0304 0.0215 -0.0719 -0.0247 -0.0422  0.0229  0.0267
CTC 0.1101 -0.2225 0.0569 -0.2217 -0.2708 -0.1256 -0.0538 -0.1675  0.0765
Spearman 0.0581  0.0108 0.1008  0.0358 -0.0096  0.0393 -0.0444 -0.0038  0.0472
Kendall-Tau 0.0659  0.0080 0.1043 0.0316 -0.0141  0.0345 -0.0443 -0.0077  0.0458
UniEval (Relevance) -0.0262  0.1157 0.0480 0.0851  0.0233  0.1165 0.1175  0.1388  0.1046
UniEval (Consistency) 0.3493  0.4330 0.2544  0.3288  0.2752  0.2014  0.0470  0.2281  0.1353
UniEval (Coherence) 0.4194  0.5342 0.2205 04139 03656  0.2693  0.0839  0.3005 0.0952
UniEval (Fluency) 0.1141  0.0538 0.0782 -0.0489 -0.0556  0.0228  0.1079  0.0917  0.0844
UniEval (Overall) 0.1508  0.2423  0.1274  0.1586  0.1071  0.1490  0.1154  0.1902  0.1172
wo-GPT-3.5 (Relevance) -0.0183  0.1433 0.0632 0.1613  0.0862 0.0948 -0.1168  0.0700  0.0527
wo-GPT-3.5 (Consistency) | 0.1177  0.1945 0.0912  0.1519  0.1255  0.0422 -0.0873  0.0435  0.0546
wo-GP-T3.5 (Coherence) 0.2006  0.2308 0.0798  0.1344  0.1176 ~ 0.0535 -0.0777  0.0568  0.0143
wo-GPT-3.5 (Fluency) 0.1277  0.2753  0.0995  0.2308  0.1792  0.0913 -0.0589  0.1319  0.0489
wo-GPT-3.5 (Overall) 0.0287  0.2327 0.0661  0.1784  0.1434  0.1107 -0.1695 0.0788  0.0688
Col Mean 0.1144  0.1402 0.1000  0.1094  0.0631  0.0669 -0.0241  0.0682  0.0681

Table 8: Main results of the relationship between the uncertainty estimation methods and NLG metrics on AESLC
dataset using generation from BART.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from BART
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Figure 3: Diagram of Spearman correlation between NLG metrics on AESLC dataset from the view of uncertainty
estimation methods used in Fig. 6. The generated summaries are from BART. For the GPT-3.5-based NLG metrics,
we only conduct wo-GPT-3.5 on the BART generation model setting.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from GPT-3.5 Loo
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Figure 4: Diagram of Spearman correlation between NLG metrics on AESLC dataset from the view of uncertainty
estimation methods used in Fig. 7. The generated summaries are from GPT-3.5. For the GPT-3.5-based NLG
metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from Llama 2
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Figure 5: Diagram of Spearman correlation between NLG metrics on AESLC dataset from the view of uncertainty
estimation methods used in Fig. 8. The generated summaries are from Llama 2. For the GPT-3.5-based NLG
metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between Uncertainty Estimation Methods on AESLC by Generation from BART
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Figure 6: Diagram of Spearman correlation between uncertainty estimation methods on AESLC dataset from the
view of NLG metrics used in Fig. 3. The generated summaries are from BART.
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Figure 7: Diagram of Spearman correlation between uncertainty estimation methods on AESLC dataset from the
view of NLG metrics used in Fig. 4. The generated summaries are from GPT-3.5.
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Figure 8: Diagram of Spearman correlation between uncertainty estimation methods on AESLC dataset from the
view of NLG metrics used in Fig. 5. The generated summaries are from Llama 2.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from BART
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Figure 9: Diagram of Spearman correlation between NLG metrics on XSUM dataset from the view of uncertainty
estimation methods used in Fig. 12. The generated summaries are from BART. For the GPT-3.5-based NLG metrics,
we only conduct wo-GPT-3.5 on the BART generation model setting.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from GPT-3.5
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Figure 10: Diagram of Spearman correlation between NLG metrics on XSUM dataset from the view of uncertainty
estimation methods used in Fig. 13. The generated summaries are from GPT-3.5. For the GPT-3.5-based NLG
metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from Llama 2
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Figure 11: Diagram of Spearman correlation between NLG metrics on XSUM dataset from the view of uncertainty
estimation methods used in Fig. 14. The generated summaries are from Llama 2. For the GPT-3.5-based NLG
metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between Uncertainty Estimation Methods on XSUM by Generation from BART
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Figure 12: Diagram of Spearman correlation between uncertainty estimation methods on XSUM dataset from the
view of NLG metrics used in Fig. 9. The generated summaries are from BART.
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Spearman Correlation Between Uncertainty Estimation Methods on XSUM by Generation from GPT-3.5 1o
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Figure 13: Diagram of Spearman correlation between uncertainty estimation methods on XSUM dataset from the
view of NLG metrics used in Fig. 10. The generated summaries are from GPT-3.5.
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Spearman Correlation Between Uncertainty Estimation Methods on XSUM by Generation from Llama 2 100
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Figure 14: Diagram of Spearman correlation between uncertainty estimation methods on XSUM dataset from the
view of NLG metrics used in Fig. 11. The generated summaries are from Llama 2.
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NLG Metrics MSP MTE MCSE MD RDE T-TU T-RMI S-TU S-RMI
ROUGE-L -0.0978  -0.1359  -0.0587 -0.0375 -0.0996 -0.0511 -0.0126 -0.0733  -0.0041
BARTSCORE -0.0558  0.0009  0.0752  0.1515 0.1324  0.0037 0.1136 -0.0457 -0.0040
SummaC 0.0760  0.0148  0.0696 -0.0004 -0.0542 -0.0432  0.0611 -0.0227 -0.0144
CTC -0.0486 -0.3754 -0.0001 -0.2301 -0.3298 -0.1879  0.0176  -0.2027  -0.0095
Spearman -0.2040  -0.1310 -0.1209  0.0028 -0.0424 -0.0579 -0.0500 -0.0895 -0.0048
Kendall-Tau -0.2013  -0.1321 -0.1206 -0.0005 -0.0452 -0.0586 -0.0511 -0.0906 -0.0048
UniEval (Relevance) -0.1475  -0.1092 -0.0562 -0.0126 -0.0966 -0.0858  0.0156 -0.1038 -0.0235
UniEval (Consistency) 0.7162  0.7064  0.6192  0.5025 0.5037 0.1936  0.1523  0.2284  0.0223
UniEval (Coherence) 0.6467  0.6474 05416 04556 04740  0.1358  0.1423  0.1790  0.0095
UniEval (Fluency) 0.0345 -0.1334  0.0338  0.0493  0.0469 -0.1619 0.1130 -0.2010  0.0375
UniEval (Overall) 0.2380  0.2421  0.2456  0.2264  0.1792  0.0076 ~ 0.0920  0.0113  -0.0033
wo-GPT-3.5 (Relevance) 0.0667  0.1933  0.0761  0.1921  0.1629  0.0292 -0.0060  0.0261  0.0081
wo-GPT-3.5 (Consistency) | 0.1220  0.1545  0.0544  0.0828  0.0777  0.0235 -0.0382  0.0299  0.0051
wo-GP-T3.5 (Coherence) 0.1436  0.2104  0.0479 0.1176  0.1313  0.0454 -0.0740  0.0527  0.0046
wo-GPT-3.5 (Fluency) 0.1924 02679  0.0675  0.1547  0.1815  0.0769 -0.0528  0.0816  0.0102
wo-GPT-3.5 (Overall) 0.1137  0.2039  0.0448 0.1446  0.1546  0.0848 -0.1038  0.0681  0.0115
Col Mean 0.0997  0.1015  0.0950  0.1124  0.0860 -0.0029  0.0199 -0.0095  0.0025

Table 9: Main results of the relationship between the uncertainty estimation methods and NLG metrics on XSUM

dataset using generation from BART.

are greater than 0.5. Thus, the reliability of eval-
uating uncertainty estimation models becomes a
concern.

Additionally, some evaluations of uncertainty es-
timation models using different NLG metrics may
result in different performance rankings. For in-
stance, in Figure 10, it is observed that the cor-
relation between ROUGE-L and wi-ingt-GPT-3.5
(overall) is -1, indicating a completely different
ranking.

However, some evaluations of uncertainty esti-
mation models using different NLG metrics could
result in the same performance ranks. For instance,
Figure 4 shows that the correlation between wi-
ingt-GPT-3.5 (Fluency) and UniEval (Relevance)
is 1, indicating identical ranks.

C.1.2 Analysis on NLG Relevance Dimension

Figures 15, 16, 17, 27, 28, and 29 show the
evaluation of UE-TS models from the relevance-
dimension NLG metrics.

Based on the BART generation model, Fig-
ure 15 shows strongly positive correlations among
ROUGE-L, Spearman, and Kendall-Tau. However,
the Unieval (Relevance) and wo-GPT-3.5 (Rele-
vance) show weak correlations with all other NLG
metrics in the relevance dimension.

Also, based on the BART generation model, Fig-
ure 27 shows strongly positive correlations among
ROUGE-L, Spearman, Kendall-Tau, and UniEval
(Relevance). However, the wo-GPT-3.5 (Rele-
vance) shows weak correlation with all other NLG
metrics in the relevance dimension.

Based on the GPT-3.5 generation model, Fig-
ure 16 shows strongly positive correlations among

Spearman, Kendall-Tau, UniEval (Relevance), and
all GPT-3.5-based NLG metrics in the relevance
dimension. However, Rouge-L shows weak corre-
lation with all other NLG metrics in the relevance
dimension. As for GPT-3.5-based NLG metrics,
except for wi-in-GPT-3.5, we see that all other
GPT-3.5-based models show identical performance
ranks with each other. This implies that the rele-
vance metric using GPT-3.5 is strongly related to
the target text source.

Also, based on the GPT-3.5 generation model,
Figure 28 shows a positive correlation among
Spearman, Kendall-Tau, UniEval (Relevance), and
all GPT-3.5-based NLG metrics in the relevance
dimension, except for ROUGE-L.

Based on the Llama-2 generation model, in Fig-
ure 17, UniEval (Relevance) shows a strongly posi-
tive correlation with all other NLG metrics in the
relevance dimension. This is because each ele-
ment in the row of UniEval (Relevance) is greater
than 0.5. Similarly, wo-GPT-3.5 (Relevance) also
shows a strongly positive correlation with all other
NLG metrics in the relevance dimension except
for ROUGE-L. Additionally, we found that wi-in-
GPT-3.5 shows weak correlation with other GPT-
3.5-based NLG metrics. This weak correlation
indicates that if we only provide the ground-truth
summaries for the relevance evaluation, the rele-
vance metrics may ignore many details.

Also, based on the Llama-2 generation model,
Figure 29 shows that both UniEval (Relevance) and
wo-GPT-3.5 (Relevance) show a positive correla-
tion with other methods. The other metrics do not
exhibit consistent positive or negative correlations
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with each other.

Besides, by comparing wo-GPT-3.5 (relevance)
and wi-GPT-3.5 (relevance), where the only differ-
ence lies in whether GPT-3.5 is given the concept
of relevance or not, their high positive correlation
indicates that GPT-3.5 incorporates the concept of
relevance. Consequently, the difference in provid-
ing the relevance concept to GPT-3.5 is not appar-
ent.

For the evaluation of UE-TS models using
relevance-dimension NLG metrics, we have the
following conclusions.

1. Generation models of the same type across dif-
ferent datasets could result in similar correlations
among various methods.

2. Spearman and Kendall-Tau usually exhibit posi-
tive correlations. Therefore, in future experiments,
choosing one of them is sufficient.

3. When employing LLMs as generation models,
UniEval (Relevance) and wo-GPT-3.5 (Relevance)
tend to exhibit positive correlations with most other
NLG metrics. Therefore, one of them could serve
as a representative NLG metric.

4. When utilizing LLMs as a type of relevance
NLG metric, the choice of target text source can
greatly impact the final conclusion. Specifically,
using ground-truth summaries versus using input
text as the target text source can result in different
performance rankings.

5. When using LLMs as a type of relevance NLG
metric, if both ground-truth summaries and input
text are employed together as the target text source,
the ground-truth summaries will dominate the met-
ric results.

6. GPT-3.5 knows the concept of relevance. Con-
sequently, the difference in providing the relevance
concept to GPT-3.5 is not apparent.

C.1.3 Analysis on NLG Consistency
Dimension

Figures 18, 19, 20, 30, 31, and 32 display the
evaluation results of UE-TS models based on the
consistency-dimension NLG metrics.

Specifically, based on BART generation, Fig-
ure 18 illustrates that UniEval (Consistency) and
wo-GPT-3.5 (Consistency) exhibit a strongly pos-
itive correlation. SummaC and CTC show a posi-
tive correlation as well. Additionally, wo-GPT-3.5
(Consistency) displays a strongly positive corre-
lation with BARTScore. However, there is no or
even a negative correlation between the group of

UniEval (Consistency) and wo-GPT-3.5 (Consis-
tency) and the group of SummaC and CTC.

Also, based on BART generation, Figure 30 illus-
trates that UniEval (Consistency) and wo-GPT-3.5
(Consistency) exhibit a strongly positive correla-
tion. SummaC and CTC show a positive correla-
tion as well. However, SummaC displays a positive
correlation with UniEval (Consistency) and wo-
GPT-3.5 (Consistency), whereas CTC does not.

Based on GPT-3.5 generation, in Figure 19, pos-
itive correlations are found in a group consisting of
CTC, UniEval (Consistency), and wi-in-GPT-3.5
(Consistency). Additionally, positive correlations
are observed in another group comprising Sum-
maC, wo-GPT-3.5 (Consistency), wi-gt-GPT-3.5
(Consistency), and wi-ingt-GPT-3.5 (Consistency).
However, these two groups display negative corre-
lations. Thus, different metrics in the NLG con-
sistency dimension can lead to different evaluation
performance rankings of UE-TS models.

Also, based on GPT-3.5 generation, Figure 31
depicts positive correlations between CTC and
UniEval (Consistency). Additional positive correla-
tions are observed in a group comprising SummaC
and all GPT-3.5-based NLG metrics. The only
exception is that wi-ingt-GPT-3.5 (Consistency)
and wo-ingt-GPT-3.5 (Consistency) exhibit nega-
tive correlations.

Based on Llama 2 generation, Figure 20 illus-
trates positive correlations in a group comprising
BARTScore and all GPT-3.5-based NLG metrics.
Additionally, positive correlations are found in a
group consisting of CTC and UniEval (Consis-
tency). However, negative correlations are ob-
served for both of these groups. Regarding Sum-
maC, it shows positive correlations with most of
the first group except for wi-in-GPT-3.5 (Consis-
tency) and negative correlations with the second
group.

Also, based on Llama 2 generation, Figure 31
shows strong positive correlations in a group com-
prising CTC, UniEval (Consistency), and wo-
GPT-3.5 (Consistency). Another set of strong
positive correlations is found in a group includ-
ing wi-gt-GPT-3.5, wi-in-GPT-3.5, and wi-ingt-
GPT-3.5 (Consistency). However, these two
groups exhibit negative correlations with each other.
BARTSCORE and SummacC display negative cor-
relations.

According to the above analysis, we can draw the
following conclusions regarding the evaluation of
UE-TS models using consistency-dimension NLG

16544



metrics.

1. Different metrics within the NLG consistency
dimension can result in varying evaluation perfor-
mance rankings of UE-TS models.

2. CTC tends to exhibit a positive correlation with
SummaC or UniEval (Consistency). Thus, when
faced with scenarios where we must choose be-
tween CTC, SummaC, or UniEval, we can opt for
CTC due to its positive correlations with the other
two in most cases.

3. For GPT-3.5-based NLG metrics, differences in
the target text source could lead to discrepancies
in some cases. Using ground-truth summaries as
the target text source will have a more dominated
impact compared to using input text as the target
text source.

4. For GPT-3.5-based NLG metrics, GPT-3.5 might
not fully comprehend the concept of consistency,
as indicated by the negative correlation between
wo-GPT-3.5 and wi-GPT-3.5 in Figure 34. How-
ever, the impact of understanding the concept of
consistency is not as pronounced as the impact of
using different target text sources.

5. For GPT-3.5-based NLG metrics, it iS recom-
mended to use wi-in-GPT-3.5 (Consistency) along
with one of wo-gt-GPT-3.5, wi-gt-GPT-3.5 (Con-
sistency), or wi-ingt-GPT-3.5.

C.1.4 Analysis on NLG Coherence Dimension

Figures 21, 22, 33 and 34 display the evalua-
tion results of UE-TS models based on coherence-
dimension NLG metrics. We do not illustrate cor-
relations for BART generation models in the coher-
ence dimension. This is because we only utilize
UniEval (coherence) and wo-GPT-3.5 (coherence)
for BART generations, and these two metrics may
not adequately represent the correlation.

Based on GPT-3.5 generation, Figure 21 in-
dicates that all GPT-3.5-based NLG metrics ex-
hibit a strongly positive correlation with each
other in terms of evaluating UE-TS models. How-
ever, UniEval (Coherence) demonstrates weak or
even negative correlation with these GPT-3.5-based
NLG metrics.

Also, based on GPT-3.5, Figure 33 demon-
strates that a group comprising wo-GPT-3.5 (Co-
herence) and wi-ingt-GPT-3.5 (Coherence) exhibits
a strongly positive correlation. Another strong pos-
itive correlation is observed in a group consisting
of wi-gt-GPT-3.5 (Coherence) and wi-in-GPT-3.5
(Coherence). However, these two groups show no
or even negative correlation with each other. Addi-

tionally, UniEval (Coherence) demonstrates weak
or even negative correlation with these GPT-3.5-
based NLG metrics.

Based on Llama 2 generation, Figure 22 illus-
trates that all GPT-3.5-based NLG metrics display
positive correlations. Among them, wi-gt-GPT-3.5
shows a strongly positive correlation with other
GPT-3.5-based NLG metrics except for wi-in-GPT-
3.5 (Coherence). However, UniEval (Coherence)
demonstrates weak or even negative correlation
with these GPT-3.5-based NLG metrics.

Also, based on Llama 2 generation, Figure 34 in-
dicates that all GPT-3.5-based NLG metrics exhibit
positive correlations. wo-GPT-3.5 (Coherence) and
wi-in-GPT-3.5 (Coherence) demonstrate a strongly
positive correlation of 1. However, wi-gt-GPT-3.5
shows a relatively weak positive correlation with
the other metrics. Regarding UniEval (Coherence),
it displays a strongly positive correlation with wi-
gt-GPT-3.5 (Coherence) but shows no or even nega-
tive correlation with the other three GPT-3.5-based
NLG metrics.

According to the above analysis, we can obtain
the following conclusions regarding the evaluation
of UE-TS models using coherence-dimension NLG
metrics:

1. It is difficult to determine which GPT-3.5-based
metric is better in the coherence dimension. How-
ever, based on the strongly positive correlation,
either wi-gt-GPT-3.5 or wi-in-GPT-3.5 could be a
good choice.

2. UniEval (Coherence) exhibits weak or negative
correlation with most of the GPT-3.5-based metrics.
Therefore, UniEval (Coherence) could serve as a
supplement to either wi-gt-GPT-3.5 or wi-in-GPT-
3.5.

3. Based on Figures 33 and 34 on XSUM datasets,
GPT-3.5 exhibits significant divergence between
wo-GPT-3.5 and wi-gt-GPT-3.5. This suggests that
GPT-3.5 itself might not fully grasp the concept
of coherence, and providing this concept could
improve evaluation.

C.1.5 Analysis on NLG Fluency Dimension

Figures 23, 24, 35, and 36 display the evaluation re-
sults of UE-TS models based on fluency-dimension
NLG metrics. We do not illustrate correlations for
BART generation models in the fluency dimension.
This is because we only utilize UniEval (fluency)
and wo-GPT-3.5 (fluency) for BART generations,
and these two metrics may not adequately represent
correlation.
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Using GPT-3.5 as a generation model, Figure 23
indicates that wi-in-GPT-3.5 (Fluency) has a nega-
tive correlation with wo-GPT-3.5, wi-gt-GPT-3.5,
and wi-ingt-GPT-3.5 (Fluency). UniEval (Fluency)
demonstrates weak or negative correlation with
these GPT-3.5-based NLG metrics.

Also, using GPT-3.5 for generation, Figure 35
illustrates that all the GPT-3.5-based NLG metrics
except wi-ingt-GPT-3.5 (Fluency) exhibit strongly
positive correlations. In contrast, these three GPT-
3.5-based NLG metrics show negative correlation
to UniEval (Fluency) and wi-ingt-GPT-3.5 (Flu-
ency).

Using Llama 2 as a generation model, Figure 24
demonstrates that all five metrics have positive cor-
relations. Among them, wi-gt-GPT-3.5, wi-in-GPT-
3.5, and wi-ingt-GPT-3.5 (Fluency) exhibit strongly
positive correlations.

Figure 36 illustrates that UniEval (Fluency) has
strongly positive correlations with wo-GPT-3.5
(Fluency) and wi-gt-GPT-3.5 (Fluency). However,
it exhibits strongly negative correlation with wi-in-
GPT-3.5 (Fluency) and wi-ingt-GPT-3.5 (Fluency).
Among the GPT-3.5-based NLG metrics, only wi-
gt-GPT-3.5 (Fluency) and wi-in-GPT-3.5 (Fluency)
show positive correlations, while the other correla-
tions are weak or negative.

Based on the above findings, we can conclude
the following observations regarding the fluency
dimension.

1. It is challenging to determine which NLG met-
rics consistently exhibit positive correlations with
others. However, based on the positive correla-
tions, we recommend wi-gt-GPT-3.5 (Fluency) and
wi-ingt-GPT-3.5 (Fluency) due to their correlation
patterns.

2. Because of the negative correlations between
UniEval (Fluency) and GPT-3.5-based NLG met-
rics, we also recommend using UniEval (Fluency)
as a supplement to a GPT-3.5-based NLG metric.
3. In the context of GPT-3.5-based NLG metrics,
the choice of target text source influences the per-
formance ranking of UE-TS models. Furthermore,
employing ground-truth summaries as the target
text source exerts a more significant impact com-
pared to using input text.

4. The same generation methods cannot achieve
similar correlations for fluency NLG dimension.
Consequently, correlations within fluency dimen-
sions are more closely tied to the dataset.

5. Due to the positive or negative correlations be-
tween wo-GPT-3.5 (Fluency) and wi-GPT-3.5 (Flu-

ency), it is difficult to determine whether GPT-3.5
itself understands the concept of fluency.

C.1.6 Analysis on NLG Overall Dimension

Figures 25, 26, 37, and 38 display the evaluation re-
sults of UE-TS models based on overall-dimension
NLG metrics. Correlations for BART generation
models in the overall dimension are not illustrated.
This is because we only utilize UniEval (overall)
and wo-GPT-3.5 (overall) for BART generations,
and these two metrics may not adequately represent
correlation.

Utilizing GPT-3.5 as the generation model, Fig-
ure 25 shows that all GPT-3.5-based NLG metrics
have identical performance rankings for UE-TS
models. Additionally, these GPT-3.5-based NLG
metrics exhibit a strongly positive correlation with
UniEval (Overall).

Also, utilizing GPT-3.5 as the generation model,
Figure 25 illustrates that wo-GPT-3.5 (Overall) has
positive correlations with the other three GPT-3.5-
based NLG metrics. Furthermore, strongly positive
correlations are found between wo-GPT-3.5 (Over-
all) and wi-gt-GPT-3.5 (Overall). Another strongly
positive correlation is observed between wi-in-
GPT-3.5 (Overall) and wi-ingt-GPT-3.5 (Overall).

Utilizing Llama 2 as the generation model, Fig-
ure 26 indicates that all GPT-3.5-based NLG met-
rics have strongly positive correlations. However,
UniEval (Overall) exhibits negative correlations
with these GPT-3.5-based NLG metrics.

Also, utilizing Llama 2 as the generation model,
Figure 38 shows that almost all five metrics have
positive correlations, with the exceptions being that
wi-in-GPT-3.5 (Overall) has a negative correlation
with UniEval (Overall) and wo-GPT-3.5 (Overall).

Based on the above findings, we can conclude
the following regarding the overall dimension.

1. When it comes to the GPT-3.5-based NLG met-
rics, given their positive correlations with other
metrics, it is recommended to use either wi-in-GPT-
3.5 (Overall) or wi-gt-GPT-3.5 (Overall).

2. The UniEval (Overall) exhibits high correlations
with other GPT-3.5-based methods in most cases
and negative correlations in a few instances. It
could serve as an optional supplementary tool for
GPT-3.5-based NLG metrics.

3. Due to the positive correlations between wo-
GPT-3.5 and wi-GPT-3.5 NLG metrics in most
cases, it suggests that GPT-3.5 itself grasps the
concept of overall.

4. Unlike previous NLG metric dimensions, it is
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difficult to determine which one dominates the eval-
uated performance ranks between using ground-
truth summaries and using input text.

C.2 Experimental Results Involving Human
Annotations

Besides the aforementioned experiments on
AESLC and XSUM, we are also interested in con-
ducting human-related experiments. We utilize the
TofuEval dataset (Tang et al., 2024), which pro-
vides human annotations across seven dimensions
as will be introduced later.

These experiments consist primarily of three

types:

* UE-HUM experiments: These experiments
involve using the human annotations as the
PR,rqcle and employing uncertainty estima-
tion metric scores as the PRypcertainty in
Eq. 1.

* NLG-HUM experiments: In these experi-
ments, the human annotations serve as the
PRyracle while the negative NLG metric
scores are utilized as the PRypcertainty in
Eq. 1. The negative NLG metric score is ob-
tained by multiplying the original NLG metric
scores by -1. We use a negative NLG metric
score because PRy pcertainty €Xpects a larger
value for lower quality, and the NLG metric
scores used in our work are positively corre-
lated with quality.

* UE-NLG experiments: These experiments
utilize NLG metric scores as the PR, qcle
and also employ uncertainty estimation metric
scores as the PRycertainty in Eq. 1.

The first two types are specifically tailored to
the human annotations provided in the TofuEval
dataset. The third type follows the same setup
as the experiments conducted on the AESLC and
XSUM datasets.

C.2.1 Seven Dimensions of Human
Annotations.

The seven dimensions of human annotation used in
TofuEval correspond to seven error types.

* Extrinsic Information (EI): The summary sen-
tence contains new information not grounded
in the source document.

* Mis-Referencing (MR): A property or an
event in the summary sentence can be found
in the source material, but are associated with
the wrong entity.

*» Stating Opinion As Fact (SOAF): The sum-
mary sentence entails a proposition that’s men-
tioned in the source material not as a fact, but
as someone’s opinion.

* Reasoning Error (RE): The summary sentence
makes one or more wrong inferences from
information in the source document.

* Tense/Modality Error (TME): The tense or
modal (e.g. can, may, must) used in
the summary sentence does not match the
tense/modality of the source document.

* Contradiction (CO): The summary sentence
contradicts the source material.

* Nuanced Meaning Shift (NMS): The sum-
mary sentence twists information from the
source material in a subtle way.

For the human annotation score for an error type
T, we calculate the PR qce as 1 — Ratio(T),
where Ratio(T") represents the ratio of the incor-
rect word count for error type 7' to the total word
count in a summary.

C.2.2 UE-HUM Experimental Results

Table 11 and Figure 40 show the UE-HUM exper-
imental results. From Table 11, we can draw the
following conclusions.
1. All uncertainty estimation methods used in our
work have positive PRRs for EIL
2. There is no uncertainty estimation method that
has positive PRRs in all dimensions.
3. The LexSim dimension achieves the highest per-
formance among the seven human annotation di-
mensions, exhibiting the largest mean value across
rows.

From Figure 40, we observe that ECC and EigV
perform similarly from the perspective of human
annotation.

C.2.3 NLG-HUM Experimental Results

Table 4 and Figure 41 show the NLG-HUM experi-
mental results.

Based on Table 4, the following conclusions can
be drawn.
1. It is challenging for any NLG metric to achieve a
positive PRR for all human annotation dimensions
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Spearman Correlation Between NLG Metrics on AESLC by Generation from BART (Relevance)
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Figure 15: Diagram of Spearman correlation in terms of relevance between NLG metrics on AESLC dataset from
the view of uncertainty estimation methods used in Fig. 6. The generated summaries are from BART. For the

GPT-3.5-based NLG metrics, we only conduct wo-GPT-3.5 on the BART generation model setting.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from GPT-3.5 (Relevance)
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Figure 16: Diagram of Spearman correlation in terms of relevance between NLG metrics on AESLC dataset from
the view of uncertainty estimation methods used in Fig. 7. The generated summaries are from GPT-3.5. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from Llama 2 (Relevance)
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Figure 17: Diagram of Spearman correlation in terms of relevance between NLG metrics on AESLC dataset from
the view of uncertainty estimation methods used in Fig. 8. The generated summaries are from Llama 2. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from BART (Consistency)
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Figure 18: Diagram of Spearman correlation in terms of consistency between NLG metrics on AESLC dataset

from the view of uncertainty estimation methods used in Fig. 6. The generated summaries are from BART. For the
GPT-3.5-based NLG metrics, we only conduct wo-GPT-3.5 on the BART generation model setting.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from GPT-3.5 (Consistency)
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Figure 19: Diagram of Spearman correlation in terms of consistency between NLG metrics on AESLC dataset from
the view of uncertainty estimation methods used in Fig. 7. The generated summaries are from GPT-3.5. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from Llama 2 (Consistency)
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Figure 20: Diagram of Spearman correlation in terms of consistency between NLG metrics on AESLC dataset from
the view of uncertainty estimation methods used in Fig. 8. The generated summaries are from Llama 2. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from GPT-3.5 (Coherence)
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Figure 21: Diagram of Spearman correlation in terms of coherence between NLG metrics on AESLC dataset from
the view of uncertainty estimation methods used in Fig. 7. The generated summaries are from GPT-3.5. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from Llama 2 (Coherence)
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Figure 22: Diagram of Spearman correlation in terms of coherence between NLG metrics on AESLC dataset from
the view of uncertainty estimation methods used in Fig. 8. The generated summaries are from Llama 2. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from GPT-3.5 (Fluency)
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Figure 23: Diagram of Spearman correlation in terms of fluency between NLG metrics on AESLC dataset from
the view of uncertainty estimation methods used in Fig. 7. The generated summaries are from GPT-3.5. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from Llama 2 (Fluency)
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Figure 24: Diagram of Spearman correlation in terms of fluency between NLG metrics on AESLC dataset from
the view of uncertainty estimation methods used in Fig. 8. The generated summaries are from Llama 2. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from GPT-3.5 (Overall)
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Figure 25: Diagram of Spearman correlation in terms of overall between NLG metrics on AESLC dataset from
the view of uncertainty estimation methods used in Fig. 7. The generated summaries are from GPT-3.5. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on AESLC by Generation from Llama 2 (Overall)
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Figure 26: Diagram of Spearman correlation in terms of overall between NLG metrics on AESLC dataset from
the view of uncertainty estimation methods used in Fig. 8. The generated summaries are from Llama 2. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from BART (Relevance)
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Figure 27: Diagram of Spearman correlation in terms of relevance between NLG metrics on XSUM dataset from
the view of uncertainty estimation methods used in Fig. 12. The generated summaries are from BART. For the

GPT-3.5-based NLG metrics, we only conduct wo-GPT-3.5 on the BART generation model setting.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from GPT-3.5 (Relevance)
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Figure 28: Diagram of Spearman correlation in terms of relevance between NLG metrics on XSUM dataset from
the view of uncertainty estimation methods used in Fig. 13. The generated summaries are from GPT-3.5. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Figure 29: Diagram of Spearman correlation in terms of relevance between NLG metrics on XSUM dataset from
the view of uncertainty estimation methods used in Fig. 14. The generated summaries are from Llama 2. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from BART (Consistency)
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Figure 30: Diagram of Spearman correlation in terms of consistency between NLG metrics on XSUM dataset from

the view of uncertainty estimation methods used in Fig. 12. The generated summaries are from BART. For the
GPT-3.5-based NLG metrics, we only conduct wo-GPT-3.5 on the BART generation model setting.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from GPT-3.5 (Consistency)
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Figure 31: Diagram of Spearman correlation in terms of consistency between NLG metrics on XSUM dataset from
the view of uncertainty estimation methods used in Fig. 13. The generated summaries are from GPT-3.5. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from Llama 2 (Consistency)
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Figure 32: Diagram of Spearman correlation in terms of consistency between NLG metrics on XSUM dataset from
the view of uncertainty estimation methods used in Fig. 14. The generated summaries are from Llama 2. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.

16565



Spearman Correlation Between NLG Metrics on XSUM by Generation from GPT-3.5 (Coherence)
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Figure 33: Diagram of Spearman correlation in terms of coherence between NLG metrics on XSUM dataset from
the view of uncertainty estimation methods used in Fig. 13. The generated summaries are from GPT-3.5. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from Llama 2 (Coherence)
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Figure 34: Diagram of Spearman correlation in terms of coherence between NLG metrics on XSUM dataset from
the view of uncertainty estimation methods used in Fig. 14. The generated summaries are from Llama 2. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.

16567



Spearman Correlation Between NLG Metrics on XSUM by Generation from GPT-3.5 (Fluency)
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Figure 35: Diagram of Spearman correlation in terms of fluency between NLG metrics on XSUM dataset from

the view of uncertainty estimation methods used in Fig. 13. The generated summaries are from GPT-3.5. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from Llama 2 (Fluency)
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Figure 36: Diagram of Spearman correlation in terms of fluency between NLG metrics on XSUM dataset from

the view of uncertainty estimation methods used in Fig. 14. The generated summaries are from Llama 2. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from GPT-3.5 (Overall)
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Figure 37: Diagram of Spearman correlation in terms of overall between NLG metrics on XSUM dataset from

the view of uncertainty estimation methods used in Fig. 13. The generated summaries are from GPT-3.5. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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Spearman Correlation Between NLG Metrics on XSUM by Generation from Llama 2 (Overall)
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Figure 38: Diagram of Spearman correlation in terms of overall between NLG metrics on XSUM dataset from
the view of uncertainty estimation methods used in Fig. 14. The generated summaries are from Llama 2. For the
GPT-3.5-based NLG metrics, we only draw wi-ingt-GPT-3.5 results to save space.
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NLG Metrics NumSets ECC LexSim  EigV

ROUGE-L -0.1869 0.0045  0.3268  0.0035
SummaC 0.1602 -0.1263  -0.1231  -0.0938
CTC -0.2152 0.095 0.419 0.0952
Spearman 0.1283 -0.0595 0.1782  -0.0114
Kendall-Tau 0.1287 -0.055 0.1783  -0.0116
UniEval (Relevance) -0.0173 -0.2415 -0.2378 -0.3188
UniEval (Consistency) 0.2134 -0.2464  -0.2447  -0.0808
UniEval (Coherence) -0.0798 -0.1396  -0.2953  -0.0963
UniEval (Fluency) 0.2574 -0.7312  -0.6689  -0.6715
UniEval (Overall) 0.0921 -0.3211  -0.3598  -0.2563
wi-ingt-GPT-3.5 (Relevance) 0.2014 -0.0067  0.2394  0.1356
wi-ingt-GPT-3.5 (Consistency) | -0.1509 0.3037 0.4858 0.4395
wi-ingt-GPT-3.5 (Coherence) 0.0309 0.1237  0.3326  0.2971
wi-ingt-GPT-3.5 (Fluency) -0.1544 02456  0.4483 04712
wi-ingt-GPT-3.5 (Overall) 0.1455 0.152 0.3106  0.3046
Col Mean 0.0369 -0.0669 0.066 0.0137

Table 10: Main results of the relationship between the uncertainty estimation methods and NLG metrics on TofuEval

dataset using generation from GPT-3.5.

Uncertainty Estimation Methods EI MR SOAF RE TME CO NMS Mean
NumSets 0.1929 0.0414 -0.1774 -0.3319 -0.2410 0.0287 -0.0487 | -0.0766
ECC 0.1619 -0.4640 -0.7079 0.2717 0.0072  -0.1679 -0.2993 | -0.1712
LexSim 03119 0.1317 0.5493 03579 02672 -0.1781 0.0264 | 0.2095
EigV 0.2887 -0.2198 -1.1169  0.1539 0.1343  -0.1724 -0.3462 | -0.1826

Table 11: Main results of the relationship between the uncertainty estimation methods and human annotations on

TofuEval dataset using generation from GPT-3.5.

because no row consistently shows positivity across
all dimensions.
2. UniEval (Coherence) shows a large positive
PRR (0.6794) with SOAF. However, it also shows
a negative PRR (-0.4737) with RE.
3. All NLG metrics show negative PRR values
in terms of row mean. This means that the NLG
metrics do not show good consistency with the
human annotation.

From Table 11, we can obtain below conclu-
sions.
1. The ROUGE-L and CTC exhibit similar perfor-
mance based on human annotation, while SummaC
demonstrates dissimilar performance compared to
these two.
2. The Spearman and Kendall-Tau perform the
same from the perspective of human annotation.
3. The five dimensions (relevance, consistency, co-
herence, fluency, overall) of UniEval perform weak
correlations among these five dimensions from the
perspective of human annotation. However, the
four dimensions (consistency, coherence, fluency,
overall) of wi-ingt-GPT-3.5 show positive correla-
tions from the perspective of human annotation.

C.2.4 UE-NLG Experimental Results

Table 10 and Figure 39 show the UE-NLG experi-
mental results.

From Table 4, we can conclude below.

1. It is hard for any uncertainty estimation method
to achieve positive PRR for all the NLG metric
methods.

2. LexSim performs the best among the NLG met-
rics, consistent with the UE-HUM experimental
results. Thus, NLG metrics remain useful for iden-
tifying the optimal uncertainty estimation method,
which may align with human annotation.

Based on Figures 11 and 39, we found that rank-
ings of certain uncertainty estimation methods dif-
fer between NLG metrics and human annotation.
For instance, NumSets shows a negative correla-
tion with EigV according to NLG metrics, while
a positive correlation is observed based on human
annotation. However, utilizing NLG metrics as an
oracle remains meaningful, as it sometimes yields
similar results to using human annotation as the
oracle.
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Figure 39: Diagram of Spearman correlation between uncertainty estimation on TofuEval dataset from the view of

NLG metrics. The generated summaries are from GPT-3.5.
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Figure 40: Diagram of Spearman correlation between uncertainty estimation on TofuEval dataset from the view of
human annotation. The generated summaries are from GPT-3.5.
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Figure 41: Diagram of Spearman correlation between NLG metrics on TofuEval dataset from the view of human
annotation. The generated summaries are from GPT-3.5.
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