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Abstract

Surprisal theory posits that the cognitive effort
required to comprehend a word is determined
by its contextual predictability, quantified as
surprisal. Traditionally, surprisal theory treats
words as distinct entities, overlooking any po-
tential similarity between them. Giulianelli
et al. (2023) address this limitation by intro-
ducing information value, a measure of pre-
dictability designed to account for similarities
between communicative units. Our work lever-
ages Ricotta and Szeidl’s (2006) diversity index
to extend surprisal into a metric that we term
similarity-adjusted surprisal, exposing a mathe-
matical relationship between surprisal and in-
formation value. Similarity-adjusted surprisal
aligns with information value when consider-
ing graded similarities and reduces to standard
surprisal when words are treated as distinct.
Experimental results with reading time data in-
dicate that similarity-adjusted surprisal adds
predictive power beyond standard surprisal for
certain datasets, suggesting it serves as a com-
plementary measure of comprehension effort.

1 Introduction

Surprisal theory (Hale, 2001) states that the effort
a reader must spend to comprehend a word is a
function of its contextual predictability, which is
typically quantified as its surprisal, or negative log-
probability. With numerous empirical (Smith and
Levy, 2008, 2013; Shain, 2019, 2021, inter alia)
and theoretical (Levy, 2008) studies supporting
its claims, surprisal theory is a widely-accepted
model of the effort required for sentence compre-
hension. Notably, surprisal theory treats words as
completely distinct from one another, disregard-
ing that they may express similar meanings. Moti-
vated by this shortcoming, Giulianelli et al. (2023)
proposed a new measure of comprehension effort:
information value. Similarly to surprisal, infor-
mation value quantifies the predictability of a lin-
guistic unit in context; unlike surprisal, however, it

accounts for communicative equivalences between
possible continuations. Giulianelli et al. find this
metric to be a significant predictor of utterance-
level reading times and acceptability judgments,
both independently and in addition to surprisal.

Similarly inspired, we investigate similarity-
adjusted surprisal as a potential measure of com-
prehension effort. This measure is a natural ex-
tension of Ricotta and Szeidl’s (2006) diversity
index—which itself is a generalization of Shan-
non’s entropy used to measure species biodiversity.
Given a choice of similarity function, similarity-
adjusted surprisal computes a word’s predictability
while considering its likeness to alternative continu-
ations. Through this measure, we connect informa-
tion value and standard surprisal, showing a math-
ematical relationship between these two metrics:
similarity-adjusted surprisal has a monotonically in-
creasing relationship with information value and re-
verts to standard surprisal when its similarity func-
tion regards different words as completely distinct.

In experiments with reading time data, we
explore the psycholinguistic predictive power of
similarity-adjusted surprisal with semantic, syn-
tactic and orthographic notions of word distance.
For some datasets, we see that—as with informa-
tion value—similarity-adjusted surprisal provides
significant predictive power above and beyond stan-
dard surprisal. This complementarity suggests that
there are aspects of incremental comprehension
effort that are not fully captured by the classic def-
initions used in surprisal theory. We also observe
that non-contextual notions of semantic distance
lead to better predictors than using contextual
notions of distance, which supports observations
that incremental comprehension effort is (at least
partially) driven by shallow semantic processing.

2 Background

This section presents surprisal and information
value, providing the relevant formal background
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for our similarity-adjusted surprisal. We will use V
to refer to the vocabulary, i.e., a finite, non-empty
set of words, and V∗ to refer to the set of all strings
formed by concatenating words in V . We denote
words as w ∈ V , and strings (sequences of words)
as w ∈ V∗. An index t, e.g., wt and w<t, is used
to mark positions within a string.

2.1 Surprisal Theory

According to surprisal theory, comprehending a
word wt ∈ V in its context w<t ∈ V∗ requires a
reader to update their beliefs about the intended
meaning of the sentence, performing probabilistic
inference over the space of possible meanings
(Hale, 2001; Levy, 2008). The cost of this
belief update is equal to the word’s surprisal, or
information content, whose formal definition is:1

h(wt)
def
= − log p(wt | w<t) (1)

If surprisal theory provides an accurate account
of sentence comprehension, then we should
find traces of this online inferential process
in humans’ behavioral responses to language
comprehension tasks. In particular, assuming that
a word’s processing cost is reflected in its reading
time (RT), a word’s RT should be an increasing
function of its surprisal (Smith and Levy, 2008).
A large body of empirical work has examined the
relationship between RT and surprisal, with results
supporting surprisal theory (Smith and Levy, 2013;
Wilcox et al., 2023; Shain et al., 2024, inter alia).
Given these established results, new predictors of
reading behavior, such as information value, would
benefit from grounding in surprisal theory.

2.2 Information Value

Giulianelli et al. (2023) recently introduced a new
measure to predict the cost associated with read-
ing: information value. Let Aw<t ∈P(V∗) be
a multiset of plausible alternative continuations
that a reader may expect to follow a given con-
text w<t.2 The information value of a continu-
ation w≥t ∈V∗ is defined as how different it is
from continuations in Aw<t . If w≥t is similar to
what a reader expects, i.e., to elements of Aw<t ,
then it does not convey much information, and
should thus require little effort to process. Ifw≥t

differs greatly from expected continuations, then

1See App. B for a derivation and discussion of the relation-
ship between h(wt) and processing cost.

2P(V∗) is the set of all multisets of elements in V∗.

it conveys more information and its processing
cost is higher. Formally, we write w≥t’s infor-
mation value as dw<t(w≥t,Aw<t), where dw<t :
V∗ × P(V∗) → R+ is a context-conditioned dis-
tance function.3

Following Giulianelli et al., we consider alterna-
tive sets Aw<t whose elements are sampled inde-
pendently from p(· | w<t) and distance functions
dw<t which apply element-wise to each instance in
the alternative set through dw<t : V∗ × V∗ → R+;
we then aggregate individual distances by taking
their mean. However, to make the comparison to
standard next-word surprisal more natural, we take
Aw<t to be composed of individual words rather
than full string continuations. We will thus use the
notation:

dw<t(w,Aw<t) =

∑
w′∈Aw<t

dw<t(w,w
′)

|Aw<t |
(2)

This is a Monte Carlo estimator of the expected dis-
tance of a word w from other next words that start
continuations of w<t (Giulianelli et al., 2024b).
We refer to it as next-word information value:

id(wt)
def
=

∑

w′∈V
dw<t(wt, w

′) p(w′ | w<t) (3)

3 Similarity-adjusted Surprisal Theory

To bridge the theoretical gap between surprisal and
information value, we wish to derive a notion of
per-word information content that accounts for sim-
ilarities between different plausible continuations,
rather than treating words as completely distinct
outcomes. To this end, we turn to diversity indices:
metrics developed in the field of biology to quan-
tify biodiversity.4 Analogous to our setting, when
quantifying biodiversity, it is desirable to have a
metric that takes into account that some species
are more closely related to each other (e.g., two
species in the same genus vs. in different genera).
We adapt one of these metrics to our context.

3.1 Similarity-adjusted Entropy and Surprisal

Let R be a categorical random variable that takes
on values r ∈ R. Further, let z : R×R→[0, 1]
be a similarity function; it is 0 when r and r′ are
completely dissimilar and 1 when they are equiva-
lent. Ricotta and Szeidl’s (2006) diversity index is

3This function may also be constant in w<t, for example, if
dw<t measures orthographic distance between different w≥t.

4For an overview, see Leinster and Cobbold (2012).
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then defined as:

Hz(R)
def
= −

∑

r∈R
p(r) log

∑

r′∈R
z(r, r′)p(r′) (4)

If we use an identity similarity function such
that z(r, r′)= 1 if r= r′ and 0 otherwise, then
Eq. (4) is equivalent to Shannon’s entropy
(Shannon, 1948). We thus refer to Eq. (4) as
similarity-adjusted entropy.

Bearing in mind entropy’s close mathematical re-
lationship to surprisal (i.e., entropy is the expected
value of surprisal), similarity-adjusted entropy can
be extended to a notion of surprisal that accounts
for similarities between classes. We define the
similarity-adjusted surprisal of outcome r as:

hz(r)
def
= − log

∑

r′∈R
z(r, r′) p(r′) (5)

Comparably to Eq. (4), when the identity similarity
function is used, then hz(r) = − log p(r) = h(r).
While a variant of similarity-adjusted surprisal has
been used for measuring semantic uncertainty in
neural machine translation (Cheng and Vlachos,
2024), its application in psycholinguistics has not
yet been explored.

3.2 Similarity-adjusted Surprisal and
Information Value

Now let zw<t : V × V → [0, 1] be a similarity
function that measures how similar two words are
in context w<t. By using zw<t in Eq. (5), we
arrive at a notion of similarity-adjusted surprisal
for a word in context.

Definition 1. The similarity-adjusted surprisal hz
of a word wt in context w<t is defined as:

hz(wt)
def
=− log

∑

w′∈V
zw<t(wt, w

′) p(w′ |w<t) (6)

Given this definition, we can now present the
main theoretical result of this paper.

Theorem 1. Let dw<t : V × V → [0, 1] and
zw<t(wt, w

′)=1− dw<t(wt, w
′). Under these set-

tings, next-word information value and similarity-
adjusted surprisal have a monotonic, strictly in-
creasing relationship.

Proof. Proof in App. A.

Note that this result trivially extends to information
value and similarity-adjusted surprisal measured
over finite strings w≥t ∈V∗ of arbitrary length.

Because standard surprisal is a special case of
similarity-adjusted surprisal, this result connects
surprisal and information value; Giulianelli et al.’s
findings can thus be seen as supporting an enriched
notion of surprisal theory. App. B.2 shows how to
use this relationship to derive a similarity-adjusted
definition of processing cost.

3.3 Related Theories in Psycholinguistics

Several prior works in psycholinguistics have
also examined variants of standard surprisal, e.g.,
decomposing (Roark et al., 2009; Li and Futrell,
2023), augmenting (Aurnhammer et al., 2021), or
revising it (Arehalli et al., 2022; Giulianelli et al.,
2023, 2024b,c). Some of these are motivated by the
belief that the language comprehension process can
be broken down into multiple distinct subtasks, for
which there are different processing mechanisms
(Kuperberg, 2016); they then associate variants of
surprisal with these different cognitive processes.
Roark et al. (2009), for instance, proposes that
surprisal can be decomposed into a syntactic and
a semantic component, each associated with its
own cognitive process. In contrast to some of these
works—for a subset of which we provide more
detailed descriptions in App. C—we do not pro-
pose a decomposition of or alternative to surprisal
theory. Rather, we view our work as offering a
revised mathematical definition of surprisal, but
still within the original surprisal theory framework.

4 Experimental Methodology

4.1 Data

We consider four datasets of naturalistic reading:
Brown (Smith and Levy, 2013), Dundee (Kennedy
et al., 2003), Natural Stories (Futrell et al., 2018),
and Provo (Luke and Christianson, 2018). To col-
lect these datasets, participants were administered
text passages to read, and the time they spent fixat-
ing on each word was recorded. More details are
provided in App. D. We organize these measure-
ments into data points consisting of ⟨xn, y

(i)
n ⟩ pairs,

where y
(i)
n ∈ R+ is participant i’s RT of word wn,

and xn ∈ Rd are word wn’s characteristics. These
characteristics—which we refer to as predictors—
consist of quantities such as a word’s surprisal or
unigram frequency. Following prior work (Wilcox
et al., 2020; Meister et al., 2021, inter alia), we av-
erage RTs across participants, resulting in a single
mean RT per word, ȳn. Our models are trained and
tested to predict these averages.
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4.2 Reading Time Regressors
Let fψ be a function that takes xn and predicts ȳn.
To avoid overlap in terminology with our discus-
sion of language models, we refer to fψ as a regres-
sor, and denote its parameters as ψ. A regressor
fψ can take different functional forms. In light
of prior work showing the surprisal–RT relation-
ship to be largely linear (Smith and Levy, 2008,
2013; Wilcox et al., 2023; Shain et al., 2024), we
restrict ourselves to linear fψ. Given a trained re-
gressor fψ and a new data point x, we can use
fψ to either predict ŷ = fψ(x) or to estimate
the probability of observing a specific ȳ given an
x: pψ(ȳ |x)= (ȳ− fψ(x))

2

σ2 , where σ2 is the regres-
sor’s variance estimated on the training set. The
log-likelihood L(fψ,D) of a dataset D under fψ
is then given by the (log of the) joint probability of
observing those data points according to fψ.

4.3 Predictors
In all of our experiments, predictors xn include two
baseline variables typically used in RT analyses:
word length (measured in characters) and unigram
frequency. To account for spillover effects, which
are caused by continued processing of previous
words (Just et al., 1982; Frank et al., 2013), we
include in xn these variables for the current word
wn, as well as for the three words preceding it.

For our information-theoretic predictors, we
use estimators. Our estimation of Eqs. (1), (2)
and (6) can be summarized as: i) we replace the
distribution p with a parameterized language model
pθ—specifically GPT-2 small—when computing
Eqs. (1), (3) and (6);5 ii) when it is too computation-
ally expensive to sum over the entire vocabulary—
which is required for exactly computing the
expectations in Eqs. (3) and (6)—we use a Monte
Carlo estimator (with 50 samples) for similarity-
adjusted surprisal and next-word information
value. More details on these information-theoretic
estimators, as well as on methods for estimating
unigram frequencies, are provided in App. D.

4.4 Similarity Functions
For both similarity-adjusted surprisal and informa-
tion value, we consider several similarity functions;
for each similarity function, we define an analogous
distance as dw<t(w,w

′)=1−zw<t(w,w
′). Details

about precise estimation procedures are in App. D.
5This is standard practice in psycholinguistics (Smith and

Levy, 2008; Goodkind and Bicknell, 2018; Wilcox et al., 2020,
inter alia).

Word Embedding Similarity. Let ϕ : V → Rd

be a word embedding function, which may or
not depend on context w<t. We compute the
similarity between w and w′ as the normalized
cosine similarity:

zw<t(w,w
′)=

1

2

(
ϕ(w) · ϕ(w′)

||ϕ(w)|| ||ϕ(w′)|| +1

)
(7)

When computed using word embeddings, cosine
similarity has proven itself a good metric of
semantic similarity (Erk, 2009; Pennington et al.,
2014). We again use GPT-2 small in all of our
experiments as ϕ to produce non-contextual and
contextual word embeddings.

Part-of-Speech Similarity. We use a measure
of part-of-speech (POS) similarity as a notion of
syntactic similarity:

zw<t(w,w
′)=

{
1, if POSw<t(w) = POSw<t(w

′)

0, otherwise
(8)

where POSw<t is a POS-tagging model. We use the
pos-fast model of the flair library.6

Orthographic Similarity. We further use a nor-
malized version of string edit (Levenshtein) dis-
tance to quantify orthographic similarity. Let
dL(w,w

′) be the edit distance between w and w′.
Our orthographic similarity function is then

zw<t(w,w
′)= 1− dL(w,w

′)
max{|w|, |w′|} (9)

where | · | measures string length in characters.

4.5 Evaluation
We quantify the predictive power of a predictor as
the change in log-likelihood (∆L) of held-out data
points Dtest between a regressor fψ1 that includes
this predictor and another, fψ2 , that does not:

∆L = L(fψ1 ,Dtest)− L(fψ2 ,Dtest) . (10)

This is a standard measure of predictive power in
psycholinguistics (Goodkind and Bicknell, 2018;
Wilcox et al., 2020). We estimate ∆L via 10-fold
cross-validation: we use 9 data folds at a time to es-
timate the parameters of fψ1 and fψ2 and compute
∆L on the 10th fold; we report mean ∆L across
folds. We run paired permutation tests with these
10-fold results to evaluate statistical significance.

6https://github.com/flairNLP/flair
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Similarity-adjusted surprisal Information value

Non-contextual Contextual POS Orthographic Non-contextual Contextual POS Orthographic

Brown -0.02 -0.04 1.83 0.46 -0.01 -0.04 0.07 0.21
Dundee 0.13∗∗∗ 0.00 0.35 0.24 0.14∗∗∗ 0.00 0.01 0.02
Natural Stories 0.50∗∗∗ 0.32∗ 0.57 -0.03 0.58∗∗∗ 0.32∗ 0.04 0.07
Provo -0.18∗∗∗ 0.04 0.86 -0.15 -0.19∗∗ 0.02 -0.01 -0.21

Table 1: ∆L (in 10−2 nats) over baseline with surprisal terms when adding a similarity-adjusted surprisal or
information value term for each of the current and previous 3 words. Monte Carlo (MC) estimation with 50 samples.

5 Results and Discussion

Predictive power of similarity-adjusted sur-
prisal. We evaluate the psycholinguistic predic-
tive power that similarity-adjusted surprisal and in-
formation value provide beyond standard surprisal.
To this end, we compute ∆L (Tab. 1) when adding
these predictors to a regressor that already includes
surprisal. In Natural Stories, we find similarity-
adjusted surprisal and information value provide
predictive power complementary to standard sur-
prisal when using embedding-based (both contex-
tual and non-contextual) similarity functions. In
Dundee, significant additional predictive power
only results from using non-contextual embedding
similarities. Meanwhile, in Provo and Brown,
similarity-adjusted surprisal and information value
do not add predictive power beyond surprisal; they
are significant predictors when evaluated against
a control baseline, but less so than surprisal (see
Tabs. 2 and 3 in App. E). In App. E, we also
present results when exponentiating our definition
of word pair similarity in Eq. (7) by an α such
that similarity-adjusted surprisal converges to stan-
dard surprisal as α → ∞; we find that similarity-
adjusted surprisal’s predictive power is not strongly
influenced by such choice.

The differences in predictive power of the two
similarity-adjusted measures follow other notable
trends across datasets. Predictive power is lowest
on Provo, where stimuli have an average of only
50 words each, followed by Brown (553 words);
it is highest for Natural Stories and Dundee, both
containing stimuli whose average lengths are above
1000 words. These results suggest equipping sur-
prisal with semantic measures of word predictabil-
ity is beneficial when the psycholinguistic measure-
ments at hand are collected for stimuli situated in
broader discourse contexts. Other factors, such as
the texts’ style or topic, may have also played a
role in these differences across datasets.

Broader implications. There is also an interpre-
tation of these results as corroborating recently pro-

posed theories of language comprehension. The
Natural Stories corpus contains low-frequency (al-
beit still grammatically correct) syntactic construc-
tions. Thus, in this corpus, we encounter continua-
tions that are less predictable from the context but
have high similarity with more predictable alter-
native continuations. The result that our semantic
variants of similarity-adjusted surprisal and infor-
mation value provide significant predictive power
over standard surprisal, particularly for this dataset,
can be taken as support for models of heuristic pro-
cessing (e.g., Li and Futrell, 2023; see App. C for
further discussion). Similarly, the overall higher
predictive power provided by non-contextual sim-
ilarity functions (when compared to contextual
ones) could be taken as evidence that incremen-
tal comprehension effort is more sensitive to forms
of shallow semantic processing (Barton and San-
ford, 1993; Daneman et al., 2007) than to deep
integration of contextualized word meaning. How-
ever, due to the known sensitivity of contextual
embeddings to word-unspecific sentential informa-
tion (Klafka and Ettinger, 2020; Erk and Chronis,
2022), further analysis with semantic similarity
functions is required to confirm this finding.

6 Conclusion

This work introduces similarity-adjusted surprisal:
a measure of contextual word predictability that
takes into account word similarities. By equipping
surprisal with the ability to account for words’ re-
lationships, we reconcile surprisal theory’s predic-
tions with those of information value and demon-
strate their mathematical relationship. Our ex-
perimental results on RT data indicate similarity-
adjusted surprisal has predictive power beyond that
of standard surprisal, thus validating and enriching
surprisal theory. Points for future research include
analyzing similarity functions that capture different
characteristics of word meaning, as well as measur-
ing the predictive power of similarity-adjusted sur-
prisal for other indices of processing difficulty, such
as N400 and other event-related brain potentials.
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Limitations

We do not provide a comprehensive assessment
of different design choices and experimental set-
tings, limiting the definitiveness with which we can
draw conclusions about the efficacy of similarity-
adjusted surprisal as a predictor of language com-
prehension. These different choices and settings de-
serve further exploration. The reading time datasets
that we employ are in English, and thus, we can
only draw conclusions about reading behavior in
the English language. Further, we only consider
two functions for computing word similarities. As
the functional form of the surprisal–reading time re-
lationship has proven to be quite important for the
psycholinguistic predictive power of surprisal, it is
conceivable that the choice of similarity function
could likewise have a large impact on the psycholin-
guistic predictive power of our diverse predictors.
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A Relationship between Information Value and Similarity-adjusted Surprisal

Theorem 1. Let dw<t : V ×V → [0, 1] and zw<t(wt, w
′) = 1 − dw<t(wt, w

′). Under these settings,
next-word information value and similarity-adjusted surprisal have a monotonic, strictly increasing
relationship.

id(wt)
∝
↗ hz(wt) (11)

Proof. Using the relationship dw<t(wt, w
′) = 1− zw<t(wt, w

′), simple algebraic manipulation shows
that:

id(wt) =
∑

w′∈V
p(w′ | w<t) dw<t(wt, w

′)

=
∑

w′∈V
p(w′ | w<t)

(
1− zw<t(wt, w

′)
)

= 1−
∑

w′∈V
p(w′ | w<t) zw<t(wt, w

′)

∝
↗ − log

∑

w′∈V
p(w′ | w<t) zw<t(wt, w

′)

= hz(wt | w<t) (12)

where
∝
↗ indicates a monotonic, strictly increasing relationship and follows from the fact that log is a

monotone, strictly increasing function.

B The Mathematical Relationship between Processing Costs and Surprisal

B.1 Equivalence between Surprisal and KL Divergence

A word’s surprisal is equivalent to the Kullback–Leibler (KL) divergence between two probability
distributions over a sentence’s potential meanings: one with and one without knowledge of that word
(Levy, 2008). Formally, let M be the space of potential sentence meanings, let m ∈ M be a meaning and
let p(m | w<t) be the probability of meaning m ∈ M conditioned on a prefix w<t. We can define the
cost of reading a word wt as the amount of energy spent to update this distribution. Assuming this energy
consumption is a function of the distance between the prior and posterior distributions over meanings
after observing wt, we can define cost according to the KL divergence between these two distributions, a
standard measure of the difference between distributions:

cost(wt)
def
= KL(p(m | w<t ◦ wt) || p(m | w<t))

=
∑

m∈M
p(m,w<t ◦ wt) log

p(m | w<t ◦ wt)

p(m | w<t)
. (13)

Under standard assumptions,7 we can show that this divergence is equivalent to word wt’s surprisal.

Theorem 2. Cost equals information content (result from Levy, 2008, reiterated here in the notation of
this paper). Under standard assumptions about p(m,w<t ◦ wt), we can show that:

cost(wt) = h(wt) . (14)

Proof. Let p(w<t ◦wt | m) be deterministic, i.e., there is only one sequencew<t ◦wt which can be used

7We assume, as in Levy (2008), that p(w<t ◦ wt | m) is deterministic, i.e., there is only one sequence w<t ◦ wt which can
be used to convey each meaning m. While perhaps unrealistic, we can still draw insights from this result.
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to convey each meaning m. From Bayes theorem, we then have that:

p(m | w<t ◦ wt) =

= 1 because deterministic︷ ︸︸ ︷
p(wt | m,w<t) p(m | w<t)

p(wt | w<t)
(15a)

=
p(m | w<t)

p(wt | w<t)
(15b)

We now use this equality to arrive at the desired result:

cost(wt) = KL(p(m | w<t ◦ wt) || p(m | w<t)) (16a)

=
∑

m∈M
p(m,w<t ◦ wt) log

p(m | w<t ◦ wt)

p(m | w<t)
(16b)

=
∑

m∈M
p(m,w<t ◦ wt) log

p(m | w<t)

p(wt | w<t) p(m | w<t)
(16c)

=
∑

m∈M
p(m,w<t ◦ wt) log

1

p(wt | w<t)
(16d)

= log
1

p(wt | w<t)
(16e)

= h(wt) (16f)

B.2 Similarity-adjusted Surprisal as a KL Divergence

In this section, we first define a number of similarity-aware distributions as:

pz(wt | w<t)
def
=

∑

w′∈V
zw<t(wt, w

′) p(w′ | w<t) expectation in similarity-adjusted surprisal (17a)

pz(wt | m,w<t)
def
=

∑

w′∈V
zw<t(wt, w

′) p(w′ | m,w<t) analogous to pz(wt | w<t) (17b)

pz(m | w<t)
def
= p(m | w<t) does not depend on wt (17c)

pz(m | w<t ◦ wt)
def
=

pz(wt | m,w<t) pz(m | w<t)

pz(wt | w<t)
Bayes-inspired definition (17d)

where Eq. (17d) is “Bayes-inspired” because pz is not necessarily a valid probability distribution (it
does not necessarily sum to 1 across its support) and so the equivalence given by Bayes theorem is not
guaranteed; rather it is an equivalence that we enforce in the definition of pz .

We now present a theorem linking similarity-adjusted surprisal and processing cost, under the definitions
above.

Theorem 3. Cost equals similarity-adjusted surprisal. Under standard assumptions7 about pz(m,w<t ◦
wt) and using the definitions in Eq. (17), we can show that:

costz(wt) = hz(wt) (18)
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Proof. First, we provide a helpful equivalence for pz(m | w<t ◦ wt):

pz(m | w<t ◦ w′) =
pz(w

′ | m,w<t) pz(m | w<t)

pz(w′ | w<t)
(19a)

=

(∑
w′∈V zw<t(wt, w

′) p(w′ | m,w<t)
)
p(m | w<t)

∑
w′∈V zw<t(wt, w′) p(w′ | w<t)

expand pz (19b)

=
zw<t(wt, wt)p(wt | m,w<t) p(m | w<t)∑

w′∈V zw<t(wt, w′) p(w′ | w<t)
deterministic p(w′ | m,w<t) (19c)

=
p(m | w<t)∑

w′∈V zw<t(wt, w′) p(w′ | w<t)
p(wt | m,w<t) = 1 (19d)

Given these equalities, we can follow the same logic as in Theorem 2 to show that processing cost in
the presence of similarity-aware distributions over words has an equivalence with similarity-adjusted
surprisal:

costz(wt | w<t) = KLz(p(m | w<t ◦ wt) || p(m | w<t)) (20a)

=
∑

m∈M
p(m | w<t ◦ wt) log

pz(m | w<t ◦ wt)

pz(m | w<t)
(20b)

=
∑

m∈M
p(m | w<t ◦ wt) log

p(m | w<t)(∑
w′∈V zw<t(wt, w′) p(w′ | w<t)

)
p(m | w<t)

(20c)

=
∑

m∈M
p(m | w<t ◦ wt) log

1∑
w′∈V zw<t(wt, w′) p(w′ | w<t)

(20d)

= log
1∑

w′∈V zw<t(wt, w′) p(w′ | w<t)
(20e)

= − log pz(wt | w<t) (20f)

= hz(wt) (20g)

where KLz is defined analogously to both standard KL and similarity-adjusted entropy: it implements the
same expectation as standard KL, but takes the log of distributions pz instead.

C Related Work in Psycholinguistics

In this section, we review some related work in more detail, and when possible connect it to similarity-
adjusted surprisal. Arehalli et al. (2022) investigate a word’s syntactic surprisal—i.e., the surprisal
associated with the syntactic structure implied by that word—as a predictor of reading comprehension
behavior. They define this value as:

− log
∑

w′∈V

∑

POS∈C
p(POS | w<t ◦ wt) p(POS | w<t ◦ w′)

︸ ︷︷ ︸
potential choice of zw<t (wt,w′)

p(w′ | w<t) (21)

where, in their case, POS ∈ C represents a combinatory categorial grammar (CCG Steedman, 1987)
supertag. We provide a more general measure of predictability here, as we can realize their notion of
syntactic surprisal in our similarity-adjusted surprisal framework by using a similarity function that
identifies equivalent syntactic classes.

More broadly speaking, many works have employed notions of semantic similarity in their models of
language comprehension (Roland et al., 2012; Frank and Willems, 2017; Giulianelli et al., 2023, 2024b,c;
Li and Futrell, 2023, inter alia). For example, Li and Futrell (2023) offers a decomposition of a word’s
surprisal into two quantities, where they specifically consider the word as perceived by a comprehender ωt:

h(ωt)
def
= − log p(ωt | ω<t) = E [− log p(wt | w<t)]︸ ︷︷ ︸

heuristic surprise

+E
[
log

p(wt | w<t)

p(ωt | ω<t)

]

︸ ︷︷ ︸
discrepancy signal

(22)
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Here, wt represents the ground truth word at time t, which they call a “heuristic word”. Similarly to our
semantic variant of similarity-adjusted surprisal, they use a notion of semantic distance to estimate the
latter quantity. Our works differ in several ways though, most notably in that we do not propose a new
model of language comprehension, but rather introduce an alternative definition of surprisal.

D Experimental Setup

Code for reproducing experimental results can be found at https://github.com/cimeister/
diverse-surprisal.

D.1 Data
We use four reading time datasets. Per-word reading time is measured according to one of two paradigms:
self-paced and eye-tracked reading. The self-paced reading corpora are the Natural Stories Corpus (Futrell
et al., 2018) and the Brown Corpus (Smith and Levy, 2013). The eye-tracking corpora are the Provo
Corpus (Luke and Christianson, 2018) and the Dundee Corpus (Kennedy et al., 2003). We refer to the
original works for further details on data collection.

Before computing our different word-level predictors, text from all corpora was pre-processed using
the Moses decoder8 tokenizer and punctuation normalizer. Additional pre-processing was performed by
the tokenizers for respective neural models. Capitalization was kept intact albeit we used the lowercase
version of words when querying for unigram frequency estimates. We estimate unigram frequencies
following Nikkarinen et al. (2021) on the WikiText 103 dataset.

D.2 Information-Theoretic Estimators
We estimate surprisal and information value9 using GPT-2 small (Radford et al., 2019);10 while not the
most accurate language model in terms of perplexity, prior work has shown GPT-2 small to have better
psycholinguistic predictive power than its larger counterparts (Oh and Schuler, 2023; Shain et al., 2024).
Note that GPT-2 small operates over subwords while reading time measurements are taken at the word
level. We discuss our approaches for accounting for this characteristic for each estimator separately.

Surprisal. We query our language model for next token probabilities; our surprisal estimate for a token
is then simply the negative log of this value. To compute word-level estimates of surprisal, we sum
these values across the tokens that constitute each word (as delineated by the reading time dataset). In
general, surprisal decomposes additively across subunits of a word, theoretically grounding this approach.
However, as Pimentel and Meister (2024) point out, the way that subword units demarcate the beginning
of a word complicates the computation of word-level surprisal estimates. They offer a simple fix for this
issue, which we do not incorporate here since extending it to information value and similarity-adjusted
surprisal is non-trivial. See also Oh and Schuler (2024) for a similar discussion, and Giulianelli et al.
(2024a) for further discussion on the role of tokenization in computational psycholinguistics, as well as
for a method to compute the surprisal of any character span from subword-level language models.

Embedding-based information value and similarity-adjusted surprisal estimators. We likewise
use GPT-2 small for our word embeddings. Transformer-based language models can provide word
embeddings for all of the (sub)words in their vocabulary. Thus, in this setting, we take V to be GPT-2
small’s subword vocabulary. We explore both contextual and non-contextual word embeddings in the
computation of Eq. (7). We use layer 0 for non-contextual and layer 12 (the last layer) for contextual
embeddings; we leave the exploration of the use of other embedding functions, e.g., other language
models, layers or aggregation across layers, to future work. In the case of contextual embeddings,
obtaining embeddings for each w ∈ V requires a separate query to the language model. Querying the
model |V| ≈ 50, 000 times for every context w<t would be very computationally intensive, so we instead
use a Monte Carlo estimator for these variants of information value and similarity-adjusted surprisal.

8http://www.statmt.org/moses/
9We use the codebase of Giulianelli et al. (2023) to compute information value. For variants of similarity-adjusted surprisal

and information value that require estimators, we use 50 samples in all experiments.
10We use the open-source version available on the transformers library (Wolf et al., 2020).
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Specifically, similarly to Giulianelli et al. (2024b), we sample next tokens (with replacement) according
to pθ(· | w<t). We query our language model for only the embeddings for these tokens, and use them
to make a Monte Carlo estimator of Eqs. (2) and (6).11 To create next-word information value and
similarity-adjusted surprisal estimates from these subword-level estimates, we sum across these values for
each of the tokens that constitute a word. Note that information value and similarity-adjusted surprisal do
not decompose across subwords. We ran experiments where predictors were set to the value of the first
subword that constituted a word and observed similar results; we omit these to reduce clutter.

POS and edit distance estimators. These estimators cannot be computed at the subword level. Thus,
we consider a full-word vocabulary. Because of the computational load that it would require to get
language model estimates for a comprehensive vocabulary, we instead use a Monte Carlo estimator.
Explicitly, we sample full-word continuations (with replacement) according to pθ(· | w<t), sampling
subwords until we reach either a white space marker or the end-of-sentence token. Note that this also
allows us to avoid the task of explicitly defining a full-word vocabulary. We then use these continuations
to build Monte Carlo estimators of Eqs. (2) and (6).

E Additional Experimental Results

E.1 From Similarity-adjusted to Standard Surprisal
In this experiment we equip zw<t with a temperature parameter α, exponentiating our definition of word
pair similarity in Eq. (7) by a given α. As α→∞, all zw<t(w,w

′) for w ̸= w′ go to 0; on the other
hand zw<t(w,w) remains at 1. Thus, similarity-adjusted surprisal converges to standard surprisal as
α → ∞. We observe how the psycholinguistic predictive power of similarity-adjusted surprisal changes
with α in Fig. 1. While varying α does not appear to have a significant effect on the predictive power of
similarity-adjusted surprisal, we see that, as expected, the ∆L of hzα converges to that of surprisal as
α→∞.
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Figure 1: The change in reading time dataset log-likelihoods as a function of the temperature parameter used with
the semantic-similarity function in similarity-adjusted surprisal computations. Each line corresponds to a different
set of predictors added to the regressor. Shaded regions indicate 95% confidence intervals, as computed using
standard bootstrapping techniques on our per-fold ∆L values.

11For non-contextual embeddings, we compute Eqs. (2) and (6) exactly, with GPT-2 small’s vocabulary as V .
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E.2 ∆L of Different Predictors

Surprisal Similarity-adjusted surprisal Information value

Non-contextual Contextual POS Orthographic Non-contextual Contextual POS Orthographic

Brown 4.15∗∗∗ 2.78∗∗∗ -0.02 2.22 1.29∗ 2.61∗∗∗ -0.02 0.33∗ 0.71∗

Dundee 1.60∗∗∗ 1.44∗∗∗ 0.01 0.69 0.64∗ 1.43∗∗∗ 0.01 0.26∗∗∗ 0.48∗∗∗

Natural Stories 3.15∗∗∗ 3.18∗∗∗ 0.31∗∗ 1.04∗ 0.79∗ 3.18∗∗∗ 0.30∗∗∗ 0.46∗∗∗ 0.88∗∗∗

Provo 2.58∗∗∗ 1.34∗∗∗ 0.05 1.49 0.82 1.14∗∗∗ 0.06 0.57 0.83

Table 2: ∆L (in 10−2 nats) on reading time data of regressors with different predictors over baseline regressors
(i.e., regressors with only baseline predictors). Variable values for current and previous 3 words are provided as
predictors. MC estimates of information value and similarity-adjusted surprisal use 50 samples per context.

Similarity-adjusted surprisal Information value

Non-contextual Contextual POS Orthographic Non-contextual Contextual POS Orthographic

Brown -1.37∗∗∗ -4.17∗∗∗ -1.94 -2.86∗∗∗ -1.54∗∗∗ -4.17∗∗∗ -3.82∗∗∗ -3.44∗∗∗

Dundee -0.16∗ -1.59∗∗∗ -0.91 -0.96∗∗∗ -0.17∗ -1.59∗∗∗ -1.34∗∗∗ -1.12∗∗∗

Natural Stories 0.03 -2.84∗∗∗ -2.11∗∗ -2.37∗∗∗ 0.03 -2.85∗∗∗ -2.69∗∗∗ -2.27∗∗∗

Provo -1.24∗∗ -2.54∗∗∗ -1.09 -1.76∗ -1.44∗∗∗ -2.52∗∗∗ -2.02∗∗ -1.75∗∗

Table 3: ∆L (in 10−2 nats) on reading time data of regressors with our different predictors of interest in comparison
to regressors with surprisal (i.e., replacing all surprisal terms for current and previous words with corresponding
similarity-adjusted surprisal/information value terms). MC estimates of information value and similarity-adjusted
surprisal use 50 samples per context.

Similarity-adjusted surprisal Information value

Non-contextual Contextual POS Orthographic Non-contextual Contextual POS Orthographic

Brown 0.01 -0.01 1.00 -0.03 0.02 -0.01 0.00 0.01
Dundee 0.12∗∗∗ -0.00 0.38 0.22∗∗ 0.14∗∗∗ -0.00 -0.00 0.00
Natural Stories 0.47∗∗∗ 0.27∗∗ 0.03 0.02 0.57∗∗∗ 0.29∗∗ -0.01 0.00
Provo -0.08∗∗∗ 0.01 -0.03 0.07 -0.07 -0.01 -0.03 -0.10∗∗

Table 4: ∆L (in 10−2 nats) over baseline with surprisal when adding a similarity-adjusted surprisal or information
value term for (only) the current word wt. Monte Carlo (MC) estimation with 50 samples.
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