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Abstract

The interest in linear complexity models for
large language models is on the rise, although
their scaling capacity remains uncertain. In
this study, we present the scaling laws for
linear complexity language models to estab-
lish a foundation for their scalability. Specif-
ically, we examine the scaling behaviors of
three efficient linear architectures. These in-
clude TNL (Qin et al., 2024c), a linear at-
tention model with data-independent decay;
HGRN?2 (Qin et al., 2024e), a linear RNN with
data-dependent decay; and cosFormer2 (Qin
et al., 2022b, 2024a), a linear attention model
without decay. We also include LLaMA as a
baseline architecture for comparison with soft-
max attention. These models were trained with
six variants, ranging from 70M to 7B param-
eters on a 300B-token corpus, and evaluated
with a total of 1,376 intermediate checkpoints
on various downstream tasks. These tasks in-
clude validation loss, commonsense reasoning,
and information retrieval and generation. The
study reveals that existing linear complexity
language models exhibit similar scaling capa-
bilities as conventional transformer-based mod-
els while also demonstrating superior linguistic
proficiency and knowledge retention.

1 Introduction

The prosperity of large language models (LLMs)
has necessitated the development of scaling
laws (Kaplan et al., 2020) to optimize the trade-
off between increasing model size and expanding
training data within finite computational resources.
Scaling laws empirically study the correlation be-
tween model performance and factors including the
number of parameters, training tokens, and FLOPs.
Previous works (Kaplan et al., 2020; Henighan
et al., 2020; Hoffmann et al., 2022; Clark et al.,
2022) have established power laws to describe
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these scaling trends. Experiments are typically
conducted on smaller models with relatively low
training costs. From these observations, regression
models are derived to guide the scaling of parame-
ters, data, and computational resources. Establish-
ing these scaling laws is crucial before expanding
language models to the scale of LLMs, ensuring
predictable results under controllable training costs.
Scaling laws have guided the success of many re-
cent LLMs, such as Chinchilla (Hoffmann et al.,
2022) and GPT-4 (OpanAl, 2023). It is notewor-
thy that existing scaling laws are predominantly
established for traditional softmax attention trans-
formers (Vaswani et al., 2017).

Linear complexity language mod-
els (Katharopoulos et al., 2020; Qin et al.,
2022b; Zheng et al., 2022; Wang et al., 2020;
Choromanski et al., 2021; Zheng et al., 2022,
2023; Hua et al., 2022; Liu et al., 2022; Qin et al.,
2023b, 2024c,d; Gu et al., 2021a, 2020, 2022;
Fu et al., 2022; Qin et al., 2023a; Fu et al., 2023;
Orvieto et al., 2023; Qin et al., 2023d, 2024e;
Yang et al., 2023; Gu and Dao, 2023; Dao and
Gu, 2024; Sun et al., 2023), have emerged as a
promising alternative to traditional transformers
in causal language modeling. However, the
scalability of these models remains uncertain,
which limits their applicability to large language
models. To address this concern, in this paper
we have developed pre-training scaling laws for
efficient large language models. Following the
approach outlined in (Hoffmann et al., 2022), we
have used the training loss as a regression target to
establish power law equations against FLOPs and
infer the optimal model size and dataset size under
constant computation budgets for linear complexity
models. Our study focuses on investigating three
efficient architectures, as detailed in Section 2:
TNL (Qin et al., 2024c), HGRN2 (Qin et al.,
2024e), and cosFormer2 (Qin et al., 2022b, 2023c,
2024a). Additionally, LLaMA (Touvron et al.,
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Figure 1: Training Curve Fitting for Four Architectures. In the master row, we present predicted training curves
for various architectures, with each subsequent row representing a different architecture. On the left, the training
curves for models ranging from 70M to 7B parameters are displayed. From these curves, we extract the envelope of
minimum loss per FLOP, using these data points to estimate the optimal model size (center) for a specified compute

budget, and the optimal number of training tokens (right).

2023Db) is used as a baseline to represent softmax
attention transformers. For a comprehensive
analysis, we compare the scaling behavior of
downstream task performance across different
architectures. As outlined in Section 3, each model
is evaluated in terms of linguistic proficiency,
knowledge retention, and information retrieval
and generation. Our findings reveal that linear
complexity models exhibit similar scaling trends
to conventional transformer-based models and
consistently outperform LLaMA in cross-domain
perplexity and average accuracy in commonsense
reasoning under the same FLOPs budget but
demonstrate weakness in retrieval tasks.
Our contributions are summarized as follows:
» We disclose scaling laws for linear complexity
language models, focusing on three different
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architectures. Reveling the training loss L,
model size N and dataset size D have power-
law relationships with computation budget C'.
Our experiments showcase the advantage of
linear complexity language models over tradi-
tional transformers on linguistic proficiency
while inferior performance in retrieval tasks.
We analyze the scaling trends for downstream
task performance and observe the correlation
of performance with computation budget.
For linear models, aspect ratio (model dimen-
sion / number of layers) and context length
affect model capacity. This is contradictory
to previous scaling laws, where model shape
makes a negligible impact.

For linear models, data-dependent decay is
beneficial in retrieval tasks and is not signifi-



cantly different from data-independent decay
in other tasks.

2 Preliminary

2.1 Causal language modeling

Causal language modeling forecasts the next word
in a sequence by analyzing prior words, commonly
used in GPT models (Radford et al., 2018). It
employs the cross-entropy loss function to assess
model accuracy by comparing the predicted and
actual word distributions—a lower score suggests
better performance. Transformers that use softmax-
based attention (Vaswani et al., 2017), are referred
to as vanilla transformers. In our experiments,
LLaMA (Touvron et al., 2023b,a) serves as the
exemplar for this category of transformers.

2.2 Linear complexity sequence models

In order to tackle the high time complexity of tra-
ditional transformers, researchers are currently in-
vestigating new linear complexity sequence model
architectures. These alternatives include linear
attention (Qin et al., 2021), state space mod-
els (SSMs) (Gu et al., 2021b), long convolu-
tion (Qin et al., 2023a), and linear RNN (Qin
et al., 2024f). According to Qin et al. (2024b),
SSMs can be considered as linear attention vari-
ants, and long convolution can be accurately trans-
formed into SSMs (Qin and Zhong, 2023). In this
study, TNL (Qin et al., 2023b, 2024c,d) and cos-
Former2 (Qin et al., 2024a) serve as representa-
tives of linear attention, while HGRN2 (Qin et al.,
2024e) is the chosen representative of linear RNN.
TNL uses data-independent decay to enhance Lin-
ear Attention in order to address the "dilution" prob-
lem. By employing these techniques, along with
Lightning Attention (Qin et al., 2024c), TNL out-
performs traditional softmax attention models in
both efficiency and accuracy.

HGRN?2 overcomes the limited expressiveness of
traditional HGRNs (Qin et al., 2024f) by employ-
ing a state expansion mechanism inspired by linear
attention, which enlarges the recurrent state size
without extra parameters. It also incorporates data-
dependent decay in its positional encoding compo-
nents. This innovation enables HGRN2 to achieve
superior performance in language modeling, image
classification, and Long Range Arena benchmarks,
demonstrating enhanced efficiency and accuracy
compared to both its predecessor and other contem-
porary models.

cosFormer2 (cos2) represents an advanced itera-
tion of the original cosFormer (Qin et al., 2022b)
model without decay, incorporating several signifi-
cant enhancements that optimize its performance
and functionality: /. cos2 adopts complex-based
LRPE positional encoding (Qin et al., 2023c) to
facilitate a per-channel cos reweighting mecha-
nism, an improvement over the uniform cos weight-
ing applied across all features in the original cos-
Former (Qin et al., 2022b). 2. cos2 enhances its
handling of relative positional information through
the integration of TPE (Qin et al., 2024a). 3. cos2
utilizes a low-rank output gate from TNL (Qin
et al., 2024d), contributing to more efficient data
processing. 4. cos2 employs normalization (Qin
et al., 2022a) for improved stability and perfor-
mance instead of using a denominator. These en-
hancements enable cos2, with its no-decay posi-
tional encoding, to match the performance of top
Transformer models like LLaMA.

2.3 Model size and FLOPs calculation

In calculating the model parameters /N and com-
pute budget C, previous studies have employed
varying levels of simplification. For clarity, we
denote model specifications as follows: [ (number
of layers), d (model dimension), and d (feed for-
ward layer dimension). Kaplan et al. (2020) only
accounts for the weights of linear layers (excluding
input and output embedding) as model parameters.
When dy = 4d, the total number of model pa-
rameters is computed as: N = 12/d%. The total
forward and backward FLOPs can be approximated
as: C' = 6/N. On the other hand, Hoffmann et al.
(2022) takes a more detailed approach by incor-
porating embedding parameters into the model pa-
rameter count and factoring in the computational
load of softmax operation, input and output em-
bedding in the FLOPS count. To underscore the
distinction between vanilla transformers and linear
complexity sequence models, as well as the vari-
ations among linear complexity sequence models,
we employ a detailed method for computing N and
C as outlined in Table 1.

3 Experimental setup

3.1 Corpus

The training dataset for this work comprises 300
billion tokens sampled from a self-collected and cu-
rated corpus of approximately 2 trillion tokens. The
data is bilingual, consisting of English and Chinese
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Table 1: Checklist of Model Parameters and FLOPs. Detailed calculations are deduced in Appendix A.1. Here
h is the number of attention heads. Compared to the full equations, we exclude embedding parameters and other
subleading terms in our calculation for better fitting results of the scaling law equations.

Architecture Parameter count FLOPs count
LLaMA 121d* 72bnld*(1+ & + 123)
TNL 121d? + 21d*/h 72bnld* (1 + 55 + 137)
HGRN2 121d* +1d 72bnld* (1 + 3 + 25)
cosFormer2 121d? 4 21d*/h + d* /h 72bnld*(1+ 5 + 2%)

texts in a 2:1 ratio. Sources of data span various
categories, including academic publications, books,
and selected web pages. The corpus was refined
using several cleaning strategies (Qin et al., 2023b,
2024d), such as rule-based filtering, deduplication,
and a proprietary self-cleaning scheme.

3.2 Training procedures

Our experiments were implemented using the
Metaseq training framework (Zhang et al., 2022)
built atop PyTorch (Paszke et al., 2019). The
LLaMA model was equipped with FlashAttention-
2 (Dao, 2023), whereas the TNL, cosFormer2
model incorporated Lightning Attention (Qin et al.,
2024c). HGRN2 employs Flash Linear Attention
(FLA) (Yang and Zhang, 2024). We conducted all
experiments on H100/H800 80G GPUs.

For all model architectures and training sequence
lengths, we maintained a consistent global batch
size of 4 million tokens. We utilized the Adam
optimizer, with a learning rate of 3e-4 and a weight
decay of 0.1. A fixed learning rate scheduler was
used for all experiments within constrained compu-
tation resources. We use tiktoken (Openai) as the
tokenizer, featuring a vocabulary size of 100,280.

3.3 Model configurations

We investigate four distinct model architectures:
LLaMA, TNL, cosFormer2, and HGRN?2, across a
spectrum of scales—70M, 160M, 410M, 1B, 3B,
and 7B. Each model is trained on a corpus of up to
300 billion tokens with a context length of 8192,
aligning with the methodology proposed by Hoff-
mann et al. (Hoffmann et al., 2022), where training
loss serves as a direct proxy for test loss.

In our continued exploration of linear complex-
ity models, we have extended the pre-training con-
text lengths for the 1B models to encompass 2048,
4096, and 16384. Additionally, we have introduced
variations in the hidden dimensions of the 1B mod-
els, testing sizes 1536, 1792, 2048, and 3072, to as-
sess the impact of these adjustments on pre-training

loss and subsequent performance.

Table 2: Specifications of Model Variants. We outlines
the specifications for various model variants, detailing
their hidden dimensions (Hidden) and the dimensions
of attention heads (H. Dim).

Size Layers Hidden Head H. Dim
70M 6 512 8 128
160M 12 768 8 128
410M 26 1024 8 128
1B 32 1536 16 128
3B 35 2560 20 128
7B 32 4096 32 128

3.4 Evaluation metrics

Perplexity is a key metric used to evaluate the word
prediction capabilities of causal language models.
We use training loss and validation perplexity as
evaluation metrics, with WIKITEXT-2 (Merity,
2016) and LAMBADA (Paperno et al., 2016) serv-
ing as benchmarks for comprehending complex,
informative text and assessing their ability in nar-
rative comprehension and contextual prediction,
respectively. Lower perplexity indicates better pre-
dictive performance, suggesting that the model can
more accurately capture language structure.
Knowledge retention Common sense reasoning
(CSR) measures a model’s ability to reason and
understand everyday scenarios, indicating its prac-
tical real-world applicability. We report BoolQ
(Clark et al., 2019), PIQA (Bisk et al., 2019),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2019), ARC
easy and challenge (Clark et al., 2018) and Open-
BookQA (Mihaylov et al., 2018). We report O-
shot results for all benchmarks using LM-Eval-
Harness (Gao et al., 2021). We do not use the
MMLU (Hendrycks et al., 2021) benchmark as it
is more suitable for instruction-tuned models.
Information retrieval and generation The Nee-
dle in A Haystack (NIAH) benchmark is designed
to evaluate the in-context retrieval capabilities of
LLMs. We extend NIAH to present two difficulty
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levels. In Easy mode, both the question and its cor-
responding answer (QA pair) are embedded within
a lengthy text, challenging the model to identify
and respond to the query by locating the QA pair.
This mode is particularly accessible for base mod-
els that have not undergone instruction tuning. In
contrast, the standard mode places only the answer
within the long context. Here, the model must com-
prehend the question, locate the relevant answer in
the text, and provide a response.

We quantify NIAH using three metrics: accuracy
at a specific context length, weighted average accu-
racy, and NIAH score, as detailed in Appendix B.1.
We use weighted average accuracy as our main
evaluation metric for NIAH. Previous work (Hsieh
et al., 2024) assigns weights to context lengths in a
linear scale. We assign weights for both depths and
context lengths using a geometric progression for
clearer distinction. We adopt wy, = wdoail_l for
depth and w,, = we,a’~! for context length, where
wgq, and w,, are the weights for the i-th step, ag4
and a. are constants greater than 1. These weights
form a map that modifies the average accuracy cal-
culation.

In addition to NIAH, our evaluation also includes
the SCROLLS benchmark (Shaham et al., 2022).
SCROLLS assesses the model’s abilities in infor-
mation retrieval and generation across three distinct
tasks: summarization, question answering, and nat-
ural language inference. We utilize the LM-Eval-
Harness (Gao et al., 2021) by configuring 0-shot,
greedy-search evaluations and truncation of pre-
training context length.

4 Scaling laws

The concept of scaling laws involves four key fac-
tors: loss L, specifically the cross-entropy loss in
a causal language modeling setting; model size [V,
which is determined by the number of model pa-
rameters; dataset size D, calculated as the number
of training tokens; and computation budget C, rep-
resented by the total FLOPs used for training. Ny
and D,,; are the optimal model size and dataset
size given a fixed computation budget.

Initially, we establish power law equations be-
tween L and C. In this analysis, we adopt the ap-
proach introduced by (Hoffmann et al., 2022), treat-
ing the training loss as an unbiased estimate of the
test loss. Subsequently, based on the fitted curve,
we ascertain the optimal loss for specific FLOPs,
enabling us to obtain coefficients for N, oc C¢

and D,y o C®. When modeling the scaling
trend of loss against factors such as N, D, and
C, the original scaling laws (Kaplan et al., 2020)
utilize the power function L(X) = (Xo/X)*X,
where X represents the factor of interest. Subse-
quent studies (Henighan et al., 2020; Clark et al.,
2022; Hoffmann et al., 2022; Gao et al., 2024)
employ a more general power-law plus constant
form, L(X) = e + (Xo/X)*X, to achieve im-
proved fitting. Here, the constant € is interpreted
as irreducible loss or the entropy of natural text
(Hoffmann et al., 2022). In our case, we have sim-
plified all forms of the power law and unified them
into L(X) = SxX*X, which allows for a more
intuitive comparison of the scaling capabilities of
different models based on coefficients ax and Sx.

4.1 Training loss

We aim to obtain the scaling laws of different mod-
els under the condition that only the model archi-
tectures are different. Therefore, we record the
training losses of all models at the same interval,
classify and fit them according to the power law
mentioned above, and finally obtain the relation be-
tween L and C, shown in the left column in Fig.1
and Table 3.

4.2 Optimal model size and dataset size

Given a fixed computation budget, we study how
to allocate it to model parameter size and dataset
size. Following (Hoffmann et al., 2022), we extract
the minimal loss for each FLOP and consider this
as the optimal loss for a given computation budget.
To find model scaling exponent a and data scaling
exponent b that satisfy N, oc C% and Dypp o<
C®, we use non-embedding parameters (Kaplan
et al., 2020) as our vocabulary size is large and
accounts for a large proportion of the parameters
of the small model. Based on the above content,
we fit all models to obtain the relationship between
C and N,y and D, which can be seen in the last
two columns of Fig.1 and Table 3.

4.3 Downstream tasks

Traditional scaling laws primarily focus on the rela-
tionship between computation power and training
loss, typically measured by cross-entropy. How-
ever, this measure alone does not fully capture
the capabilities of large language models (Kaplan
et al., 2020; Hoffmann et al., 2022). To address
this, we expand our investigation to include scaling
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Table 3: Summary of Scaling Laws: it illustrates the relationship between loss (L, left), the number of parameters
(Nopt, middle), and corpus size (D¢, right) with computation budget (C). It can be seen intuitively that under the
same computation budget, linear complexity models consume more parameters and tokens while obtain lower loss.

Arch | L(C) ‘ Nopt (C) | Dope (C)
LLaMA \ 3.7087(C —0-0798 | (1.82 x 10%)C07118 | (256 x 1010)(0-5102
TNL \ 3.5391C 00768 \ (2.74 x 10%)C-%47° | (4.43 x 1010)(0-4654
HGRN2 \ 3.4788(C ~0-0753 | (2.66 x 10%)C06427 | (.80 x 1010)(0-4500
cosFormer2 \ 3.5877C 00756 \ (2.65 x 10%)C0-6516 | (4.23 x 1010)(04529

laws that correlate computation power with valida-
tion perplexity and common sense reasoning (CSR)
scores in Fig. 2. Additionally, we evaluate the per-
formance of retrieval and generation capabilities
using benchmarks such as Needle in A Haystack
(NIAH) in Table 4 and SCROLLS in Table 4. Each
metric in these tasks provides a unique perspective
on the strengths and limitations of LLMs.
Validation perplexity Validation perplexity con-
sistently decreases across all architectures as the
number of model parameters increases, observed in
both the WIKITEXT-2 and LAMBADA datasets.
This trend underscores the scalability of linear
complexity sequence models compared to vanila
transformer models. When analyzing specific
parameter sizes, HGRN2 architecture shows the
best performance, closely followed by TNL. In
the WIKITEXT-2 dataset, cosFormer2 surpasses
LLaMA, while LLaMA performs better than cos-
Former2 on the LAMBADA dataset.

CSR score The CSR scores for all linear com-
plexity sequence models demonstrate scaling ca-
pabilities comparable to the transformer models.
Specifically, HGRN2 is the only model that sur-
passes LLaMA at the 70M parameter level. In
terms of 7B parameters, however, all linear com-
plexity sequence models outscore LLaMA, suggest-
ing that linear complexity sequence models exhibit
enhanced scaling capabilities as the number of pa-
rameters increases. Notably, HGRN2 and TNL
consistently outshine the other models. In contrast,
cosFormer2 shows fluctuating performance com-
pared to LLaMA.

Both CSR scores and validation perplexity high-
light the strong scaling potential of HGRN2,
TNL, and cosFormer?2 in addressing linguistic and
knowledge-based tasks in downstream tasks.
NIAH In evaluating the easy mode of the Nee-
dle in a Haystack (NIAH) task in 16K contexts,
different architectures perform differently. Mod-
els with parameter sizes below 160M struggle to

perform the tasks effectively. The vanilla trans-
former LLaMA maintains a success rate of about
50%. TNL begins to show results in NIAH only
after reaching 1B parameters, achieving a maxi-
mum success rate of about 10%. Both HGRN2 and
cosFormer? start to display scaling capabilities in
NIAH with over 410M parameters. Specifically,
cosFormer2 achieves a maximum retrieval success
rate of 25% in 4K context, while HGRN2 performs
slightly better with 30% in 4.8K context. Lin-
ear complexity sequence models like cosFormer2
and HGRN?2 tend to retrieve information from con-
texts shorter than their pre-training length of 8K. In
terms of performance, the order is LLaMA > cos-
Former2 = HGRN2 >> TNL. Additionally, these
linear complexity sequence models require large
parameter sizes to effectively handle NIAH tasks.

SCROLLS Similar to NIAH, all architectures be-
gin to effectively address the SCROLLS task start-
ing at minimal 410 million parameters. All mod-
els with linear complexity sequences display a
consistent scaling power comparable to LLaMA.
TNL also requires a large parameter size (1B) for
SCROLLS. The overall performance ranking is
LLaMA and cosFormer?2 at the top, followed by
HGRN2, and then TNL.

5 Discussion

5.1 Aspect ratio and model capacity

Under the same model parameters, we can tweak
the model architecture by adjusting the aspect ratio
(hidden dimension and layers) and the dimension
of attention heads. We analyze the aspect ratio for
a 1B parameter model in Table 5. Since we need
to fix the parameters, a higher hidden dimension
indicates fewer layers. For both LLaMA and cos-
Former?2, a hidden dimension below 2048 proves
beneficial for CSR and validation perplexity.

In tasks involving retrieval and generation,
LLaMA and cosFormer2 consistently show similar
results for CSR and validation perplexity. However,

16382



Table 4: Benchmark of Downstream Task: Common Sense Reasoning (CSR), Validation Perplexity, Needle
in A Haystack (easy mode) and SCROLLS. For CSR, Needle in A Haystack, and SCROLLS, higher scores
indicate better performance. For Validation Perplexity, lower scores are preferable. PS: parameter size (billion).
HS: HellaSwag. WG: WinoGrande. OBQA: OpenBookQA. WIKI: WIKITEXT-2. A\: LAMBADA. acc_n.:
acc_norm. We provide the average score for CSR, the weighted average accuracy for NIAH, and the average score
for SCROLLS. Detailed score breakdowns can be found in the "Experiments" section of the Appendix C.

Arch PS. | BoolQ PIQA HS WG ARC-E ARC-C OBQA CSR |WIKI X |NIAH SCORLLS
B acc acc acc_n.  acc acc acc_n. acc_n. avg?T | ppld ppl | wa T avg T
LLaMA  0.07 | 4648 58.87 27.82 4846 3998 2142 25.60 38.38| 82.7 2913 | 04 7.43
TNL 0.07 | 43.18 58.87 27.77 50.12 39.77 21.76 23.80 37.90| 77.0 369.1 | 0.6 6.13
HGRN2  0.07 | 56.57 59.19 28.05 52.01 38.64 2261 26.00 4044 | 73.0 270.1| 0.2 7.32
cos2 0.07 | 47.61 6094 28.12 49.72 3733 2218 23.60 38.50| 88.8 369.9 | 0.1 6.67
LLaMA  0.16 | 5294 63.66 30.67 51.78 4432 2329 2660 41.89| 51.1 69.9 6.0 8.37
TNL 0.16 | 53.82 63.82 31.22 5020 4592 2321 28.80 4243 | 449 71.1 7.5 7.77
HGRN2 0.16 | 5401 63.06 31.04 5241 4508 2338 27.00 4228 | 43.8 528 | 0.2 8.29
cos2 0.16 | 4547 6328 29.72 5241 4449 2253 2720 40.73| 49.0 838 1.3 8.71
LLaMA 041 54.04 67.19 3875 52.17 4924 2372 30.00 45.02| 29.8 25.1 | 523 10.51
TNL 041 | 60.31 66.65 3898 51.70 52.61 25.17 30.00 4649 | 28.0 233 | 14.2 7.55
HGRN2 041 | 60.86 67.74 4032 51.78 5421 2483 3120 47.28| 27.0 193 | 438 10.93
cos2 041 | 5740 6627 36.65 5059 51.81 2372 29.00 45.06| 303 30.3 9.6 9.06
LLaMA 1 5642 6997 47.04 5272 57.07 28.16 3260 49.14| 265 12.8 | 44.1 11.01
TNL 1 59.85 7149 48.70 5257 57.07 2773 3320 50.09| 21.7 122 | 28.0 9.65
HGRN2 1 59.17 71.65 49.52 5438 60.27 28.07 3340 5092 | 21.0 109 | 10.0 11.08
cos2 1 4428 70.73 4555 50.51 5522 2730 31.00 4637 | 212 155 | 10.9 10.88
LLaMA 3 | 6131 73.18 57.88 59.59 6393 3140 3400 54.47| 230 74 | 451 13.88
TNL 3 15676 7503 6087 6133 6549 33.02 3640 55.56| 164 6.6 11.1 12.26
HGRN2 3 | 5547 74.10 6148 58.64 6561 3447 3560 55.06| 15.6 6.5 17.9 15.43
cos2 3 15092 7427 5738 5730 6322 3140 3520 5281 16.0 84 | 258 12.75
LLaMA 7 | 5746 75.19 6439 61.88 6755 3541 3500 56.70| 152 5.9 59.7 14.57
TNL 7 | 6263 7622 6629 6148 6776 3823 3780 58.63| 141 55 20.5 10.74
HGRN2 7 | 6269 7650 6696 6140 69.02 3686 38.00 5878 | 13.8 5.2 30.8 13.46
cos2 7 16502 7633 6393 59.19 6696 36.43 37.60 5792 | 13.5 64 | 23.6 15.15

Table 5: Benchmark of Aspect Ratio and Model Capacity: it covers models with /B parameters each, featuring
an 8K pre-training context. Key metrics include CSR, Validation PPL, NIAH (easy mode), and SCROLLS. HS:
HellaSwag. WG: WinoGrande. OBQA: OpenBookQA. WIKI: WIKITEXT-2. A: LAMBADA. acc_n.: acc_norm.

Arch Dim L. |BoolQ PIQA HS WG ARC-E ARC-C OBQA CSR | WIKI A NIAH SCORLLS
acc acc acc_n. acc acc acc_n. acc_n. avgt|ppld ppl{|wa. T avg T

LLaMA 1536 32| 60.98 6991 46.74 54.85 5694 2850 30.00 49.70| 26.2 13.4 | 44.1 11.01
LLaMA 1792 24| 49.85 70.51 4729 5320 5737 28.16 3200 48.34| 19.8 134 | 54.2 12.45
LLaMA 2048 18| 5642 69.97 47.04 5272 57.07 28.16 3260 49.14| 265 12.8 | 45.0 12.20
LLaMA 3072 8 | 5544 69.53 4425 51.62 5278 2654 3020 47.19| 248 16.7 | 46.0 10.88
cos2 1536 32| 56.42 70.57 45.99 52.01 57.49 26.11 32.00 48.66| 21.3 153 | 109 10.88
cos2 1792 24| 61.83 70.67 46.04 51.70 56.69 27.39 3240 49.53| 21.0 14.0 | 8.8 10.31
cos2 2048 18| 44.28 70.73 45.55 5051 5522 2730 31.00 46.37| 21.2 155 | 123 10.75
cos2 3072 8 | 43.52 69.86 43.38 50.83 53.79 26.62 32.60 45.80| 234 183 | 6.5 9.85

Table 6: Benchmark of Pre-training Context Length: it involves CSR, Validation PPL, NIAH (easy mode), and
SCROLLS. All models tested have a parameter size of /B and a hidden dimension of /536. HS: HellaSwag. WG:
WinoGrande. OBQA: OpenBookQA. WIKI: WIKITEXT-2. A: LAMBADA. acc_n.: acc_norm.

Arch Len | BoolQ PIQA  HS WG ARC-E ARC-C OBQA CSR | WIKI A NIAH SCORLLS

acc acc acc_n. acc acc acc_n. acc_n. avg?t | ppld ppll|wa T avg T
TNL 2K | 61.96 72.03 4994 5438 57.58 2833 31.20 50.77 | 264 10.5 8.0 9.02
TNL 4K | 61.80 7231 49.88 5533 5791 29.10 3220 51.22| 239 107 | 12.1 11.79
TNL 8K | 5453 71.60 4994 5541 5850 29.01 3420 5045|206 11.7 | 28.0 9.65
TNL 16K | 49.05 71.06 49.51 5146 57.53 28.16 31.60 4834 20.6 113 | 142 8.74
HGRN2 2K | 6223 7225 50.68 5470 60.02 30.03 3340 5190 222 10.0 2.3 11.60
HGRN2 4K | 61.77 7095 5121 5359 60.19 3089 3120 5140 209 10.6 2.1 11.46

HGRN2 8K | 59.54 71.82 50.65 54.85 6040 29.61 3420 5158 | 203 10.7 | 10.0 11.08
HGRN2 16K | 54.92 72.03 50.37 5525 59.01 2892 3200 5036| 20.1 11.2 8.8 12.23

cos2 2K | 60.95 7035 4737 5343 56.44 2730 31.00 49.55| 22.7 12.0 6.8 10.93
cos2 4K | 55.66 70.08 47.05 5099 5535 27.13 33.00 4846 | 21.3 125 6.5 11.79
cos2 8K | 5642 70.57 4599 52.01 5749 26.11 3200 48.66| 21.3 153 | 10.9 10.88
cos2 16K | 62.51 69.86 44.61 5272 5425 2602 3220 4888 ]| 22.1 169 9.6 13.04
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Figure 2: Comparative performance across distinct benchmarks illustrating the scaling trends observed in
evaluation metrics. The figure highlights the progressive improvement in model performance as the complexity and
size of the models increase, underscoring the significance of scaling in enhancing benchmark outcomes.

a larger aspect ratio can lead to failures in these
tasks. Specifically, cosFormer2 with a 3072 dimen-
sion results in a collapse in NIAH and SCROLLS
evaluations. Models with linear complexity in
their sequences are more sensitive to aspect ratio
changes than the vanilla transformer models.

5.2 Pre-training context length

We further examined the impact of pre-training on
the performance of downstream tasks. Table 6 in-
dicates that CSR and validation perplexity for all
linear complexity sequence models remains unaf-
fected by pre-training context lengths of 2K, 4K,
and 8K. However, extending the context length to
16K slightly degrades performance.

When increasing the pre-training context length
from 8K to 16K, all linear complexity sequence
models fail to retrieve longer contexts in both
NIAH and SCROLLS tasks. In contrast, LLaMA’s
retrieval capabilities double when the pre-training
context length is increased to 16K from 8K. More-
over, shorter pre-training context lengths have a
detrimental effect on retrieval tasks for linear com-
plexity sequence models.

5.3 Decay types for linear complexity models

As outlined in our preliminary study, TNL,
HGRN?2, and cosFormer?2 utilize three distinct de-
cay strategies for linear complexity sequence mod-
els: data-independent decay, data-dependent de-
cay, and no decay. Analyzing Tables 4 and 6, we
find that cosFormer2, which employs a no-decay
linear attention mechanism, performs worse than
TNL (which uses data-independent decay) in terms
of CSR and validation perplexity. However, cos-
Former2 shows superior retrieval capabilities in
NIAH and SCROLLS tasks. Meanwhile, HGRN?2,
which uses data-dependent decay RNN, displays
performance on par with no-decay linear attention
in retrieval and generation tasks and matches the
performance of data-independent decay in CSR
and validation perplexity.

5.4 Retrieval capacity of linear models

Our experimental results suggest that linear com-
plexity models have limited capacity in retrieval
tasks. This is because linear models maintain a
fixed size of hidden space, which makes it difficult
to retain input information precisely. Then a natu-
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ral question arises: "Why does softmax attention
have this capability? Can we address this limitation
for linear models?"

To answer this question, let us consider a soft-
max attention:

O = Softmax(QKT /Vd)V. 1)
It can be rewritten into a linear recurrent form as:
s9 =0, s{ S s{fl + exp(qtkjr/\/g),

o J
of = (st /s})oj +(L—s{/s)vj, ()

otzoi,jzl,...,t.

Note that the linear recurrence form of Linear At-
tention is as follows:

kv, = 0,kv; = diag{\; }kv;_1 + ktv;r

3)
ot:kvtht,jzl,...,t.

The softmax attention can be interpreted as an
additive linear RNN (Qin et al., 2024a). At each
time step ¢, the hidden space is recomputed starting
from the initial time ¢y = 1, a process referred to
as "Going Through a Book (GTB)". This approach
allows the model to accurately retain input informa-
tion by revisiting previous information. For linear
models, there is no recomputation. Therefore, lin-
ear models struggle to accurately retain input data
without a GTB process.

6 Related work

Scaling laws in large language models aim for an
ideal balance between increasing the number of
parameters and enlarging the training corpus, given
limited computation resources (Kaplan et al., 2020;
Henighan et al., 2020; Hernandez et al., 2021; Hoff-
mann et al., 2022; Clark et al., 2022). The initial
scaling laws (Kaplan et al., 2020) use the test-time
cross-entropy loss as a regression target to inves-
tigate its power-law correlations with model size,
dataset size and training computation budget. Hoff-
mann et al. (2022) use three approaches to find the
optimal model size and dataset size given a fixed
computation budget. By 1) freezing model size and
varying number of training tokens, 2) fixing FLOPs
and changing model sizes and dataset sizes and 3)
directly solving a constrained optimization equa-
tion, they conclude that models and the training
corpus should be scaled equally when enlarging
computing resources. They use the revised scaling
law to train a compute-optimal model, Chinchilla,
that stands out across various benchmarks. Other

works extend scaling laws to multiple modalities
(Henighan et al., 2020), mixture of expert mod-
els (Clark et al., 2022) and reinforcement learning
(Hilton et al., 2023). Recently, Su et al. (2024);
Bi et al. (2024) studied the influence of additional
factors such as learning rate, context length, and
batch size on the scaling-law coefficients. (Isik
et al., 2024) studies scaling laws of downstream
task performance in a transfer learning setting for
the machine translation task.

7 Conclusion

Our comprehensive study has demonstrated that lin-
ear complexity language models, including TNL,
HGRN?2, and cosFormer2, exhibit competitive scal-
ing capabilities akin to transformer-based models
while also showcasing enhanced linguistic profi-
ciency and knowledge retention. With rigorous
training across a vast parameter range and extensive
evaluation of diverse tasks, our findings validate
these models as promising contenders for future
large-scale language model development.

Limitations

e We train all models on a fixed dataset, thus
overlooking the influence of data distribution
on scaling laws.

* For each model architecture, we only experi-
ment with six different model sizes, resulting
in fewer data points than previous works in
terms of fitting the loss-computation curve.

* We use fixed learning rate scheduler and batch
size across experiments.
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A Appendix

A.1 Model parameters and FLOPs

Here we provided detailed FLOPs and the number
of model parameters calculation for each model
architecture. Some operations are omitted for sim-
plicity, e.g. the FLOPs and parameters related to
positional encoding, normalization, activation func-
tions, and softmax of the final head, if applicable.
We parameterize models with the following nota-
tions:

¢ d: attention hidden dimension.

¢ h: number of heads in attention.

g: GLU hidden dimension. (In all scenarios,
we use g = 8/3d.)

* [: number of layers.

* n: input sequence length.

* v: vocabulary size.

* b: batch size.

* {: output gate bottleneck dimension.

* B lightning attention/flash linear attention
block size. (In all scenarios, we use B =
d/h.)

¢ e: Tpe hidden dimension.

Similar to (Kaplan et al., 2020; Hoffmann et al.,
2022), we use a factor of 2 to represent the
multiplication-accumulation in matrice products,
and a factor of 3 to include both the forward and
the backward pass. In the following discussion, we
assume f is the swish function.

A.1.1 Transformer-LLaMA
Equation Input embedding:

X = Lookup(X®, Wi,),

4
X© e R W;, € R¥*V,

Token mixer(s-th layer):

X = Norm(X*),

QY K, v = XOWE XOWE XOwE),
Oz@ = Softmax (QE”KESW/\/d/ih) VZ@,

0 = Concat[0!”,..., 0V |W( + X

X(s) c RnXd,WS)S> c Rdxd’

WO W W e R”YM =1, k.
5)

Channel mixer(s-th layer):

0" = Norm(0'?),
UO, v = 6OWE, W,

X = U o fVOWE,, +0, ©
O(s) c RnXd,

s s d s d
WEL )?WEJ ’ ER Xg?W;o)wn € Rgx :

Output embedding:

0= X(l+1)wouta

x (1+1) c R*¥ W, € RAXV. @

FLOPs
e Input embedding: [n] X [d,v] = 2ndv.
« Token mixer: 8nd? + 4n%d + 3n’h + 4nd.

— gkv projection:
[n,d] x [d,3d] = 3 x 2nd>.
— gk multiplication:
[h,n,d/h] x [h,d/h,n] = 2n?d.

— RoPE: 4nd.
— Softmax: exp, sum, dividle = 3n2h.
— (gk)v multiplication:

[h,n,n] x [h,d/h,n] = 2n?d.
— output projection:
[n,d] x [d,d] = 2nd>.

* Channel mixer: 6ndg + ng.

— u,v projection:
[n,d] x [d,g] = 4 x ndg.
— gating:
[n,9] © [n, 9] = ng.
— down projection:
[n,g] X [g,d] = 2 x ndg.
* Output embedding:

[n,d] x [d,v] = 2ndwv.

» Forward FLOPs: bl x (8nd? +4n2d+3n%h +
4dnd + 6ndg + ng) + 4ndv
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Table 7: Model Parameters and FLOPs. The listed numbers of parameters do not include the embedding

parameters.

. Parameters PFLOPs /
Configuration b n 1 d h g v (Million) Step
LLaMA-70M 480 8192 6 512 4 1536 100280 20.5 1.6
LLaMA-160M 480 8192 12 768 6 2048 100280 85.0 5.6
LLaMA-410M 480 8192 26 1024 8 2816 100280 334.1 18.0

LLaMA-1B 480 8192 32 1536 16 5632 100280 906.2 40.4
LLaMA-3B 480 8192 35 2560 20 6912 100280 2775.8 99.6
LLaMA-7B 480 8192 32 4096 32 11008 100280 6476.5 202.7
TNL-70M 480 8192 6 512 4 1536 100280 21.2 0.5
TNL-160M 480 8192 12 768 6 2048 100280 87.3 2.2
TNL-410M 480 8192 25 1024 8 2816 100280 327.7 7.9
TNL-1B 480 8192 32 1536 16 5632 100280 918.6 223
TNL-3B 480 8192 35 2560 20 6912 100280 2798.4 66.6
TNL-7B 480 8192 32 4096 32 11008 100280 6509.6 154.4
HGRN2-70M 480 8192 6 512 4 1536 100280 20.5 0.5
HGRN2-160M 480 8192 12 768 6 2048 100280 84.9 2.1
HGRN2-410M 480 8192 26 1024 8 2816 100280 334.0 8.0
HGRN2-1B 480 8192 32 1536 16 5632 100280 906.0 22.0
HGRN2-3B 480 8192 35 2560 20 6912 100280 2775.5 66.0
HGRN2-7B 480 8192 32 4096 32 11008 100280 6476.1 153.6
c0s2-70M 480 8192 6 512 4 1536 100280 21.3 0.5
cos2-160M 480 8192 12 768 6 2048 100280 87.5 23
co0s2-410M 480 8192 25 1024 8 2816 100280 328.0 8.1
cos2-1B 480 8192 32 1536 16 5632 100280 919.1 22.7
cos2-3B 480 8192 35 2560 20 6912 100280 2799.0 67.4
cos2-7B 480 8192 32 4096 32 11008 100280 6511.0 155.6
» Total training FLOPS: bl x (24nd? + 12n2d + Equation Input embedding:
9n2h + 18ndg + 3ng) + 12ndv
o . X = Lookup(X”, W;,
* Substituting g = 8/3d yields: oolup(X, ) ®)

bl(72nd? + 12n%d + 9n>h 4 20nd) + 12ndv

n 5 h
=72nld* (14 — + — + ==
" ( +6d+18d+8d2>
Non-embedding term
+  12ndv

Embedding term

Parameters

* Input & output embedding (shared weights):
dv.

+ Token mixer: 4d?.

e Channel mixer: 3dg.

» Total parameters: 4ld? + 3ldg + dv.

* Substituting g = 8/3d yields: 12{d? + dwv.

A.1.2 Linear Attention - TNL (data
independent decay)

For TNL, we use 0 < \; < 1 as the decay of head

¢ and use LA as the abbreviation for Lightning

Attention.

X e R", W;,, € R™*".
Token mixer(s-th layer):

X = Norm(X(S)),
Q¥ K v©®

= f(X(S)Wéf)%f(X(S>W;(fi)),X(S)W$),
G = Sigmoid (XW(S)

W),

0f” =LA (Q K, VI A,

0 = Norm (Concaut[OgS)7 . Oﬁ]) oG 4 xX®)
X e R

W e RN W) R W ¢ RIX

gdown

W W W e RV =1,k
€]
Channel mixer(s-th layer):
0 = Norm(0?),
U®. vE = 0OWE oW,
X+ [U(S) ®V<S)]W¢(i?wn + 0, (10)

O(s) c RnXd,
W W e R W)

down

€ RI*Y,
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Output embedding:

0 =x"w,,,

’ (11)
X(l+1) e RnXdywout c Rdxv.
FLOPs
* Input embedding: [n] X [d,v] = 2ndv.

¢ Token Mixer:
2 2
C = 8nd2+%+%+4an+th+
dntd + 2nd.

— gkv projection:
[n,d] x [d,3d] = 3 x 2nd>.
— lightning attention intra block:
repeat % times = 4B%d + B%h.

— lightning attention inter block:

2Bd?
=

n .
repeat B times —

— kv update: repeat

2Bd*>  d?

%times:> A +h.

— attention output update:
repeat % times — Bd.
— output gate:
[n,d] x [d,t], [n,t] x [t,d] = 4ntd.
— gating:
[n,d] ® [n,d] = nd.
— output projection:
[n,d] x [d,d] = 2nd>.

* Channel Mixer: 6ndg + ng.

— u,v projection:
[n,d] x [d,g] = 4 x ndg.
— gating:
[n,9] © [n, 9] = ng.
— down projection:

[n,g] X [9,d] = 2 x ndg.

¢ Output embedding: [n,d] X [d,v] = 2ndv.
* Forward FLOPs: [ x (C'+6ndg+ng)+4ndv.

e Total training FLOPs: bl(3C+18ndg+3ng)+
12bndwv.

* Substituting g = 8/3d, B =t = d/h yields:

2
C = 8nd? + 12% + 4nd,
FLOPs

d2
= bl (72nd2 + 36# + 20nd> + 12ndv

= 72bnld? (1 + S + 5)

Non-embedding term

+  12ndv

Embedding term

Parameters

* Input & output embedding (shared weights):
dv.

» Token Mixer: 4d? + 2dt.
* Channel Mixer: 3dg.
» Total parameters: 41d> + 2ldt + 3ldg + dv.

e Substituting ¢ = 8/3d,t =
121d? + 21d? /h + dv.

d/h yields:

A.1.3 Linear RNN - HGRN2 (data dependent
decay)

We use FLA as the abbreviation for Flash Linear
Attention.
Equation Input embedding:

XM = Lookup(X?, W,,,),

(12)
X e R", W;, € R,

Lower bound:

LR; = Softmax(LR;, dim = 0),
er(»s) = Cumsum(LR;, dim = 0)[s],
LR, € REX4h i =1, .. h.

16391



Token mixer(s-th layer):

X = Norm(X),

0g""), Fg'™, HE — X“’Wg‘;{.,)‘(‘“ijji,f((s)vvg?,
Fg(” = Lr{” + (1 - Lr{”)(Sigmoid (Fg;”)),

0 = FLA (Og,ﬁ”, Fg'” H® 1 - Fg§s>) ,

0 = Norm (Concat[Ogs), ce OELS)}) + X

X(s) c IRnXd7
Wéii)own € Rdxt’wgz)p c Rth,W(()s) c Rdxd’
W WS Wi e RV i=1,.. k.

13)
Channel mixer(s-th layer):
0 = Norm(0¥),
U®, vE — 0w 0OWE,
X6 — [U© o VETWE 4 o),

down

(14)
O(s) c Rnxd
W W e R W)

down

e R
Output embedding:

0 = XHOW, ...
XD € R Wy € RY. (4

FLOPs

* Input embedding: [n] x [d,v] = 2ndv.

* Lower bound: 4ld.

e Token Mixer: C = 8nd? + % + %d; +
d4nBd + nBh + 5nd.

— hidden state projection:
[n,d] x [d,3d] = 3 x 2nd>.

— forget gate compute: 4nd.
— fla intra block:

repeat % times — 4B%d + B?h.

— fla inter block:

2Bd?

n .
repeat — times —
peat 5 h

— state update: repeat

2Bd? dj

n T

no
— times —
B

— attention output update:

n .
repeatgtlmes = Bd.
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— output projection:

[n,d] x [d,d] = 2nd>.

 Channel Mixer: 6ndg + ng.

— u,v projection:
[n,d] x [d,g] = 4 x ndg.
— gating:
[n,9] © [n, 9] = ng.
— down projection:
[n,g] X [g,d] = 2 % ndyg.
* Output embedding: [n,d] x [d,v] = 2ndv.

 Forward FLOPs: | x (C+6ndg+ng)+4ndv+
4dl.

¢ Total training FLOPs: bl(3C+18ndg+3ng)+
12bndv + 12dl.

* Substituting g = 8/3d, B = d/h. yields:

8nd?

C = 8nd® +
FLOPs

+ Tnd,

2

A + 29nd>

+ 12ndv + 12dl

24
—bl <72nd2 | 24nd

129
+3h+72d>+12dl

Non-embedding term

12ndv
—

Embedding term

= 72bnld> (1

+

Parameters

e Lower bound: [ld.

* Input & output embedding (shared weights):
dv.

* Token Mixer: 4d?.
* Channel Mixer: 3dg.
» Total parameters: 4ld> + 3ldg + dv + ld.

* Substituting g = 8/3d yields: 121d*+dv+Id.



A.1.4 Linear Attention - cosFormer2 — Lrpe: 4nd.

For cosFormer2, we use §; € R%" as the Lrpe — lightning attention intra block:
parameter of head ¢ and use LA as the abbreviation
for Lightning Attention. repeat 2 times = 6B%d + B2h.
Equation Input embedding: B
X = Lookup(X©, W) — lightning attention inter block:
) ) (16)
X(O) Rn W'Ln Rdxv‘
e Wi e n . 4Bd?
Tpe: repeat 5 times — o
XM = Tpe(XM).
) — kv update: repeat
Token mixer(s-th layer):
(s s 4Bd*  2d?
X = Norm(X¥), ™ fimes —> +—.
QY KM VI = f(XOW), f(XOWE), XKW, h h
Q!* = Concat[cos(8)QY, sin(6°)Q!™], — attention output update:

K'*) = Concat[cos(6"))K* sin(6¢) K],

no.
G = Sigmoid (XWM W repeat B times = Bd.

gdown QuP) )

(s) _ &) 1k )
0.7 =LA (Qi KLV )’ — output gate:

0 = Norm (Concat[Ogs)7 cey O?]) ®G® 4 X6
[n,d] x [d,t], [n,t] x [t,d] = 4ntd.

X(.s) c RnXd,
(s) dxt (s) txd (s) dxd A
W iown ERT, Woyp e RS W7 € RTTY, — gating:
W W W e R =1, k.
. a7 [n,d] ® [n,d] = nd.
Channel mixer(s-th layer):
0*) = Norm(0™®), — output projection:

U(S>,V(S) _ (_)(S)WQ(LS), (_)(S)W,(US),
[n,d] x [d,d] = 2nd>.

X+ [U(S) o) V(S>]W£lso)wn + O(S)7 (18)
(s) nxd .
O™ e R", * Channel Mixer: 6ndg + ng.
W W e R WE) e RI
— u,v projection:
Output embedding:
0 =Xw, .. [n,d] x [d,g] = 4 x ndg.
X(l+l) c Rnxd Wout c Rdxv' (19) .
’ — gating:
FLOPs
[n, 9] © [n,g] = ng.
¢ Input embedding: [n] x [d,v] = 2ndv.
« Tpe: 4nde. — down projection:

— Up projection: [n,d] x [d,e] = 2nde.
— Recurrence: nde.

[n,g] X [g,d] = 2 X ndyg.

— Down projection: [n, d,e] == nde. * Output embedding: [n,d] x [d,v] = 2ndv.
- — 2 | 8nd® | 2nd?
* Token Mixer: €' = 8nd” + 5= + g~ + * Forward FLOPs: I x (C+6ndg-+ng)+4ndv+
6nBd + nBh + 4ntd + 2nd. Ande.

— gkv projection:
» Total training FLOPs: bl(3C'+18ndg+3ng)+

[n,d] x [d,3d] = 3 x 2nd>. 12bndv + 12bnde.
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Table 8: Supplemental Benchmark of Downstream Task of Mambal and Mamba2: Common Sense Reasoning
(CSR) and Validation Perplexity. For CSR, higher scores indicate better performance. For Validation Perplexity,
lower scores are preferable. PS: parameter size (billion). HS: HellaSwag. WG: WinoGrande. OBQA: OpenBookQA.
WIKI: WIKITEXT-2. acc_n.: acc_norm. We provide the average score for CSR.

Arch PS. BoolQ  PIQA HS WG ARC-E  ARC-C  OBQA CSR WIKI
B acc acc acc_n. acc acc acc_n. acc_n. avg T ppl.d
Mambal 0.41 60.21 67.85 40.75 51.93 52.99 24.83 31.40 47.14 27.0
Mamba2 0.41 52.75 68.50 41.27 53.04 53.28 25.77 31.80 46.63 24.0
Mambal 1 60.73 71.49 50.08 54.46 58.67 29.35 30.80 50.8 20.1
Mamba?2 1 62.14 71.98 50.98 55.17 58.21 27.39 34.80 51.52 19.4
Mambal 3 60.46 74.81 61.72 60.22 65.19 35.49 35.00 56.13 15.1
Mamba2 3 59.48 75.19 62.12 59.75 65.57 34.30 36.40 56.12 14.3

* Substituting g = 8/3d, B = e = d/h yields:

2
C = 8nd? + 18% + 5nd,

FLOPs
54nd?

=bl <72nd2 + + 23nd)

12bnd?
+ 12ndy + 22074

3 23
=720nld? 1+ — + ——
72bnld ( +4h+72d)+

12bnd?
h

Non-embedding term

+  12ndy
——
Embedding term

Parameters

* Input & output embedding (shared weights):

dv.
e Tpe: de.
 Token Mixer: 4d? + 2dt.

* Channel Mixer: 3dg.

» Total parameters: 41d>+2ldt+3ldg+dv+de.

* Substituting g = 8/3d,t = e = d/h yields:

121d? + 21d*/h + dv + d*/h.

B Evaluations

B.1 Metrics of Needle in A Haystack

We use four types metrics in NIAH evaluation:
Accuracy at a context length. This averages

the retrieval accuracy at a chosen context length

across all depth steps (acc@seq_len in Table 12).

Accuracy less or equal to a context length.

This metric calculates the mean accuracy over a
range of context lengths, across all depth steps

(acc<seq_len in Table 12). The total averaged ac-
curacy is the accuracy less or equal to the maximum
context length, which is 16k in all our experiments.

Weighted average accuracy. To further repre-
sent the levels of complexity for retrieving a needle
in different depths and context lengths, we assign
weights to each depth and context length. We as-
sume larger weights for deeper and longer texts.
We use geometric progression as a weight func-
tion for both aspects. Specifically, the weights are
calculated as: wq, = wdoadifl, We; = wcoacifl,
where wy, (w,;) is the weight for i-th depth step
(context length), ag (cr.) is a constant greater than
1. Using the outer product, we obtain a weight map
for all depth-length combinations. The weight map
is applied when calcualting the average accuracy
(weighted avg acc in Table 12).

NIAH score. Through our experiments, we ob-
serve cases when two models achieve the same
average accuracy but display different patterns in
the NIAH heatmap. Using weighted average can
assist in this situation. To better evaluate the model
ability in such cases, we develop a penalty mech-
anism. We first binarize the NIAH score array for
success and failure, which is originally ranged from
1 to 10 using a threshold. Then for each context
length, we penalize the situations when models do
not consistently succeed or fail in retrieving the
needle across different depths. For each column
of the score array, we find the longest continuous
sequence of 1s (success). If the sequence does not
exist, the largest penalty is assigned (p = 0); If
the sequence length equals the number of depth
steps, no penalty is assigned (p = 1); Otherwise,
we count the number n of continuous segments
of either 1s (success) or Os (failure), and assign
penalty as p = 2(1=)/2_ Combining weighted av-
erage and penalty, we have the NIAH score (niah
score in Table 12).
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Table 9: SCROLLS Benchmark Overview. P.S.:

’-” indicates a failure in the specified task.

Parameter Size. R.1/R.2/R.L: rouge-1/rouge-2/rouge-1. The term

Arch PS. GovReport SummScreenfd QmSum Qasper NarrativeQA Quality ContractNLI|SCROLLS
(Billion)| (R.1I/R2/RL) (R.I/R2/RL) (R.1I/R2/RL) (F1) (F1) (EM) (EM) (Avg)
LLaMA 0.07 | 6.49/1.46/5.07 8.52/0.96/7.05 5.13/0.79/4.58 10.45 4.70 26.46 14.95 7.43
TNL 0.07 2.64/0.8/2.27  6.08/0.49/4.95 2.51/0.59/2.22  8.00 4.06 27.18 17.94 6.13
HGRN2 0.07 | 10.88/2.09/8.19 7.13/0.58/5.98 7.14/1.02/6.38  7.08 3.34 26.70 9.45 7.32
cos2 0.07 | 6.21/1.36/5.08 6.43/0.66/5.59 4.98/0.58/4.36  8.27 3.04 27.47 12.63 6.67
LLaMA 0.16 5.5/2.15/4.44 10.91/1.24/8.45 17.98/1.46/7.37 9.10 8.93 26.75 14.56 8.37
TNL 0.16 - 9.88/1.21/8.09  3.36/0.82/2.76  8.19 6.39 27.90 9.06 7.77
HGRN2 0.16 |13.69/2.71/10.1 6.61/0.5/6.02  7.33/0.99/6.61 8.24 7.18 25.55 10.90 8.29
cos2 0.16 | 7.01/1.89/5.44  8.07/0.9/6.85  9.28/1.52/8.14 8.33 5.66 26.41 10.70 7.71
LLaMA 041 8.21/3.54/6.21 11.31/1.56/8.65 10.66/2.07/9.42 17.82 15.39 27.95 13.89 10.51
TNL 0.41 2.96/1.12/2.54 10.54/1.15/7.95 6.34/1.33/5.08 11.41 9.87 27.61 10.32 7.55
HGRN2 0.41 |15.33/3.54/10.91 7.35/0.76/6.17  8.32/1.22/7.4 12.36 10.87 26.37 31.53 10.93
cos2 0.41 6.11/2.51/4.87 12.02/1.83/9.41 10.25/2.19/8.62 14.04 9.60 27.23 9.06 9.06
LLaMA 1 12.91/3.06/9.38 9.47/0.84/7.72  10.93/2.24/9.43 22.77 16.03 28.43 9.93 11.01
TNL 1 5.86/2.02/4.74  9.39/1.34/7.32  5.81/1.43/4.8 14.23 13.83 28.19 26.52 9.65
HGRN2 1 14.86/4.21/10.45 11.4/1.44/9.16  10.9/2.28/9.68 16.21 15.09 27.76 10.61 11.08
cos2 1 7.97/3.51/6.15 12.25/1.95/9.38 11.91/2.7/9.96 16.94 13.93 27.76 17.07 10.88
LLaMA 3 11.16/4.88/8.14  11.89/1.9/9.3 16.08/4.25/12.87 28.57 20.77 30.44 20.15 13.88
TNL 3 - 9.65/1.56/7.17 11.37/2.97/9.14 21.20 17.70 28.95 12.92 12.26
HGRN2 3 21.7/6.62/14.09 14.55/2.13/10.79 12.48/2.69/10.58 25.41 18.75 28.86 31.92 15.43
cos2 3 14.69/5.37/9.98 11.33/1.74/8.77 15.38/3.53/12.68 25.10 18.05 29.72 9.35 12.75
LLaMA 7 17.4/7.33/11.43 12.92/1.75/9.95 14.59/3.7/11.8 32.35 22.31 33.84 10.03 14.57
TNL 7 5.36/2.29/4.41 11.17/1.72/8.46 12.02/3.1/9.46 24.12 19.24 29.15 9.16 10.74
HGRN2 7 14.93/5.21/10.16 15.43/2.4/11.1 14.3/2.97/11.78 27.07 19.60 30.06 10.03 13.46
cos2 7 19.97/7.36/12.92 14.31/2.4/10.57 13.72/3.27/11.34 23.94 18.70 30.73 27.68 15.15

C Experiments

C.1 Downstream tasks

We conduct a thorough evaluation of downstream
tasks for Mambal and Mamba2 in Table 8. Both
models were trained using the same dataset, and our
assessment includes metrics such as validation per-
plexity and common sense reasoning (CSR) scores.

C.2 SCROLLS

We assess models such as LLaMA, TNL, HGRN2,
and cosFormer?2 using the SCROLLS benchmark,
focusing on different parameter sizes (refer to Ta-
ble 9), aspect ratios (see Table 10), and context
lengths (consult Table 11).

The table 9 provides a detailed comparison of
various models such as LLaMA, TNL, HGRN2,
and cosFormer2 across multiple metrics on the
SCROLLS benchmark. It outlines the performance
of these models based on parameter size (ranging
from 0.07 to 7 billion), as detailed in each row. Ta-
ble 9 highlights that across all linear complexity
sequence models and LLaMA, there is a general
improvement in performance with increasing pa-
rameter sizes. Models exhibit varying sensitivity to
parameter size across tasks; for example, LLaMA’s

NarrativeQA F1 score jumps from 4.70 to 22.31 as
parameters increase. At higher sizes, HGRN2 tends
to outperform TNL consistently, highlighting its
superior scaling capability. Additionally, models
show task-specific strengths, with cos2 excelling in
ContractNLI at 7 billion parameters, showcasing
its effectiveness with legal texts.

C.3 NIAH analysis

The Needle in A Haystack (NIAH) evaluates lan-
guage models in two modes: Easy Mode, where
both the question and answer are embedded in
a text for straightforward retrieval, and Standard
Mode, where only the answer is embedded, re-
quiring the model to comprehend the question and
locate the answer, thereby adding complexity. In
table 12, 13 and 14, the upper sub-table displays
the NIAH benchmark results in easy mode, while
the lower sub-table shows the results in standard
mode.

Overall, LLaMA consistently outperforms other
linear complexity sequence models in a variety
of conditions, excelling in both retrieval-only
and comprehension-inclusive tasks. Additionally,
HGRN?2 and cosFormer?2 also demonstrate strong
scaling capabilities, particularly in easy mode.
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Table 10: SCROLLS Benchmark by Aspect Ratio. The term ’-’ indicates a failure in the specified task.

Arch Dim GovReport SummScreenfd QmSum Qasper NarrativeQA Quality ContractNLI | SCROLLS
(R.1/R2/RL) ((R.1/R2/RL) (R.I/R2/RL) (F1) (F1) (EM) (EM) (Avg)
LLaMA 1536| 12.91/3.06/9.38 9.47/0.84/7.72 10.93/2.24/9.43 22.77 16.03 28.43 9.93 11.01
LLaMA 1792| 14.68/6.0/10.03 11.5/1.63/9.03  9.72/2.18/8.45 23.02 16.68 27.85 21.02 12.45
LLaMA 2048 | 7.62/3.59/5.89 11.07/1.61/8.5 14.49/3.51/11.85 19.06 16.62 27.85 26.90 12.20
LLaMA 3072|17.04/5.78/11.41 9.16/1.29/7.35 5.79/0.98/4.96 17.89 12.12 28.00 19.67 10.88
cos2 1536| 7.97/3.51/6.15 12.25/1.95/9.38 11.91/2.7/9.96 16.94 13.93 27.76 17.07 10.88
cos2 1792| 6.1/2.52/4.88 11.06/1.49/8.41 12.46/2.87/10.24 17.80 13.90 27.76 14.56 10.31
cos2 2048 | 7.63/3.22/5.89 12.94/1.71/9.84 11.35/2.33/9.69 17.68 13.39 27.76 16.30 10.75
cos2 3072| 9.22/2.85/7.01 9.03/1.05/7.45 12.96/2.99/10.96 13.89 12.16 27.47 11.09 9.85

Table 11: SCROLLS Benchmark by Pre-training Context Length. The term ’-’ indicates a failure in the specified

task.

Arch  Len GovReport SummScreenfd QmSum Qasper NarrativeQA Quality ContractNLI| SCROLLS
(R.1/R2/RL) (R.1/R2/RL) (R.I/R2/RL) (F1) (F1) (EM) (EM) (Avg)
TNL 2k | 5.72/2.23/4.6  7.37/1.0/5.42  5.88/1.24/477 13.34 14.42 28.24 23.14 9.02
TNL 4k | 7.61/2.8/596 13.01/1.98/9.76 10.87/2.97/9.07 19.45 14.89 27.18 27.77 11.79
TNL 8k | 5.86/2.02/4.74 9.39/1.34/7.32  5.81/1.43/4.8 14.23 13.83 28.19 26.52 9.65
TNL 16k | 4.54/1.66/3.67 9.41/0.96/7.4  7.12/1.61/5.79 16.61 13.68 28.09 13.11 8.74
HGRN2 2k | 15.25/4.18/10.5 10.58/1.23/8.77 11.19/2.0/9.54 18.46 13.60 27.71 17.74 11.60
HGRN2 4k |14.97/4.69/10.27 10.08/1.26/8.38 11.39/2.26/9.65 17.43 15.05 26.27 17.26 11.46
HGRN2 8k [14.86/4.21/10.45 11.4/1.44/9.16 10.9/2.28/9.68 16.21 15.09 27.76 10.61 11.08
HGRN2 16k | 21.7/5.67/14.25 11.25/1.25/9.07 11.69/2.43/10.07 20.70 15.01 26.80 9.06 12.23
cos2 2k | 9.08/2.95/6.79 10.43/1.15/8.3 13.06/2.88/10.67 15.18 13.70 27.90 19.96 10.93
cos2 4k | 10.56/3.83/7.64 12.38/1.96/9.51 12.6/2.75/10.86 17.32 13.59 28.38 21.89 11.79
cos2 8k | 7.97/3.51/6.15 12.25/1.95/9.38 11.91/2.7/9.96 16.94 13.93 27.76 17.07 10.88
cos2 16k | 17.92/5.71/12.17 - 11.43/2.31/9.91 21.00 12.66 26.51 10.80 13.04

TNL shows a more varied performance, perform-
ing decently in some contexts but not as uniformly
strong as other models.

Across all architectures, performances are gen-
erally higher in the easy mode compared to the
standard mode, which includes both retrieval and
comprehension components. This suggests that the
addition of comprehension tasks adds significant
complexity and challenge.

The NIAH score, indicating efficiency in manag-
ing sparse or relevant information, is consistently
highest for LLaMA, especially at larger context
scales in easy mode. Both weighted average accu-
racy and average accuracy tend to follow similar
trends, suggesting these metrics might be adjusted
based on task difficulty or importance across vari-
ous context scales.

C.4 NIAH heatmaps by easy mode

The figures below provide a heatmap visualization
of NIAH in easy mode.

C.5 NIAH heatmap by standard mode

The figures below provide a heatmap visualization
of NIAH in standard mode.
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Table 12: Benchmark of Needle In A Haystack: it presents accuracy metrics at four context scales: 2K, 4K, 8K,
and 16K. Accuracies below the 4K and 8K thresholds are presented in the middle columns. Both average accuracy
and weighted average accuracy are detailed, along with the NIAH score, in the rightmost columns.

Arch PS. Acc Acc Acc Acc Acc Acc Acc Weighted NIAH
B @2k @4k @8k Q@l6k <4k <8k avg avg acc score
Easy Mode (Retrieval Only)

LLaMA 0.07 32 1.3 0.0 0.0 1.0 0.7 0.4 0.4 0.2
TNL 0.07 0.0 1.3 0.6 0.6 0.4 0.7 0.5 0.6 0.0
HGRN2 0.07 0.0 0.0 0.0 0.0 0.0 0.3 0.2 0.2 0.0
cos2 0.07 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1
LLaMA 0.16 7.3 0.6 0.0 0.0 13.7 11.7 6.0 6.0 1.8
TNL 0.16 2.5 35 24.4 4.4 5.6 10.1 7.3 7.5 1.7
HGRN2 0.16 0.6 0.0 0.0 0.0 1.1 0.7 0.3 0.3 0.0
cos2 0.16 0.0 54 0.0 0.0 2.5 2.1 1.2 1.3 0.9
LLaMA 0.41 100.0 97.1 97.8 0.0 99.3 99.5 56.4 52.3 455
TNL 0.41 27.9 5.7 3.8 10.2 18.1 154 13.8 14.2 2.8
HGRN2 0.41 8.6 6.3 1.3 0.0 17.0 9.3 49 4.8 1.4
cos2 0.41 37.1 114 2.9 0.0 25.5 18.5 9.7 9.6 2.1
LLaMA 1 100.0 714 73.3 0.0 92.5 90.9 47.8 441 28.1
TNL 1 435 8.9 21.3 8.6 30.8 28.7 27.6 28.0 2.7
HGRN2 1 17.1 5.7 29 35 18.3 13.4 9.7 10.0 3.6
cos2 1 54.9 5.7 29 0.0 37.8 22.7 11.5 10.9 2.0
LLaMA 3 97.1 100.0 82.9 0.6 95.4 93.9 48.8 45.1 29.9
TNL 3 0.0 26.0 32 9.5 9.7 12.9 10.4 11.1 23
HGRN2 3 58.4 114 29 7.3 46.4 28.9 18.0 17.9 42
cos2 3 97.1 343 8.6 0.0 86.8 54.7 27.8 25.8 14.3
LLaMA 7 100.0 100.0 87.0 0.0 100.0 98.4 62.9 59.7 447
TNL 7 43.5 14.3 12.4 18.1 38.8 26.8 20.2 20.5 7.8
HGRN2 7 100.0 28.6 14.6 11.4 83.8 50.1 313 30.8 17.1
cos2 7 97.1 37.1 8.6 0.0 78.6 48.0 25.1 23.6 11.6

Standard Mode (Retrieval and Comprehension)

LLaMA 0.07 1.9 0.0 0.6 0.0 0.6 0.3 0.2 0.2 0.1
TNL 0.07 0.0 0.6 0.0 0.0 0.3 04 0.5 0.5 0.1
HGRN2 0.07 0.0 0.6 0.0 0.0 0.4 0.3 0.2 0.2 0.1
cos2 0.07 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.0
LLaMA 0.16 1.9 0.6 114 0.0 11.8 7.9 4.0 3.6 0.7
TNL 0.16 1.3 7.0 23.5 0.0 52 7.0 6.3 6.4 1.3
HGRN2 0.16 0.0 0.0 0.0 0.0 0.8 0.4 0.2 0.2 0.0
cos2 0.16 0.0 0.0 0.0 0.0 0.7 04 0.2 0.2 0.1
LLaMA 0.41 100.0 100.0 92.7 0.0 100.0 99.6 554 514 43.5
TNL 0.41 12.4 5.1 5.7 8.9 12.8 12.0 10.3 10.4 1.3
HGRN2 0.41 0.0 0.0 0.0 0.0 8.3 42 23 2.1 0.4
cos2 0.41 0.0 8.6 3.5 0.0 3.7 3.3 1.8 1.9 1.1
LLaMA 1 100.0 82.9 47.6 0.0 97.9 83.7 43.2 40.1 244
TNL 1 8.3 7.0 34.6 222 20.9 229 23.6 24.0 1.2
HGRN2 1 12.7 5.7 14.6 0.0 15.9 11.6 7.5 74 1.8
cos2 1 76.8 5.7 2.9 0.0 24.3 13.6 7.0 6.6 2.0
LLaMA 3 99.4 100.0 42.9 0.0 98.3 85.5 43.4 40.1 20.0
TNL 3 2.9 17.1 29 44.8 8.7 11.6 10.3 10.8 3.1
HGRN2 3 54.0 5.7 29 8.9 322 18.0 12.7 12.7 3.1
cos2 3 54.9 9.2 8.6 0.0 38.7 24.1 12.8 12.5 4.7
LLaMA 7 100.0 100.0 854 0.0 100.0 96.2 58.6 554 45.5
TNL 7 28.9 13.7 19.7 44.1 294 21.8 18.8 19.4 6.3
HGRN2 7 65.4 5.7 5.1 4.1 48.5 28.6 18.4 18.3 7.5
cos2 7 74.3 5.7 11.4 0.0 51.6 31.0 16.8 16.0 7.6
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Table 13: Benchmark of Needle In A Haystack by Aspect Ratio

Arch Dim Acc Acc Acc Acc Acc Acc Acc Weighted NIAH
@2k @4k @8k @16k <4k <8k avg avg acc score
Easy Mode (Retrieval Only)
LLaMA 1536 100.0 71.4 73.3 0.0 92.5 90.9 47.8 44.1 28.1
LLaMA 1792 100.0 100.0 82.9 0.0 100.0 96.8 574 54.2 45.0
LLaMA 2048 100.0 100.0 62.9 0.0 100.0 92.9 48.7 45.0 39.2
LLaMA 3072 100.0 100.0 94.3 0.3 92.5 95.6 49.8 46.0 38.1
cos2 1536 54.9 5.7 2.9 0.0 37.8 22.7 11.5 10.9 2.0
cos2 1792 20.0 5.7 5.7 0.0 31.8 18.2 9.2 8.8 3.6
cos2 2048 82.9 5.7 2.9 0.0 49.6 26.4 13.4 12.3 4.7
cos2 3072 1.0 5.7 2.9 0.0 21.7 13.6 6.9 6.5 1.6
Standard Mode (Retrieval and Comprehension)
LLaMA 1536 100.0 82.9 47.6 0.0 97.9 83.7 432 40.1 244
LLaMA 1792 100.0 100.0 57.1 0.0 100.0 92.3 51.5 48.3 38.8
LLaMA 2048 100.0 100.0 57.1 0.6 100.0 90.8 48.3 449 38.3
LLaMA 3072 97.1 100.0 74.3 0.0 97.2 92.3 47.1 433 26.5
cos2 1536 76.8 5.7 2.9 0.0 243 13.6 7.0 6.6 2.0
cos2 1792 5.7 35 1.9 0.0 11.5 6.9 3.8 39 2.0
cos2 2048 24.8 5.7 2.9 0.0 25.0 13.3 6.8 6.4 4.1
cos2 3072 0.3 2.9 0.0 0.0 5.9 3.9 2.0 2.0 1.0
Table 14: Benchmark of Needle In A Haystack by Pre-training Context Length
Arch Len Acc Acc Acc Acc Acc Acc Acc Weighted NIAH
@2k @4k @8k @16k <4k <8k avg avg acc score
Easy Mode (Retrieval Only)
TNL 2k 58.1 7.3 2.9 4.8 31.0 15.5 8.7 8.0 1.6
TNL 4k 25.7 17.1 2.9 11.1 239 15.4 11.6 12.1 42
TNL 8k 435 8.9 21.3 8.6 30.8 28.7 27.6 28.0 2.7
TNL 16k 43.2 13.3 16.8 4.4 214 16.5 13.7 14.2 2.7
HGRN2 2k 0.0 2.9 35 0.0 1.1 2.9 2.1 23 1.0
HGRN2 4k 57 2.9 1.3 0.6 4.0 33 2.1 2.1 0.8
HGRN2 8k 17.1 5.7 2.9 35 18.3 13.4 9.7 10.0 3.6
HGRN2 16k 20.0 8.3 11.1 3.8 23.0 13.0 8.7 8.8 32
cos2 2k 62.9 0.0 0.0 0.0 342 16.1 7.8 6.8 2.1
cos2 4k 65.4 10.5 0.0 0.0 30.3 14.8 7.2 6.5 1.7
cos2 8k 54.9 5.7 2.9 0.0 37.8 22.7 11.5 10.9 2.0
cos2 16k 17.1 2.9 2.9 0.0 229 14.2 9.4 9.6 39
Standard Mode (Retrieval and Comprehension)
TNL 2k 14.0 3.5 3.8 17.5 16.3 9.0 6.4 6.5 2.0
TNL 4k 5.7 10.2 35 12.1 11.4 8.5 7.9 8.4 2.7
TNL 8k 8.3 7.0 34.6 222 20.9 229 23.6 24.0 1.2
TNL 16k 10.2 12.1 16.5 9.2 17.7 14.5 11.3 11.3 14
HGRN2 2k 0.6 0.0 35 0.0 0.7 1.6 1.3 14 0.6
HGRN2 4k 32 1.3 1.3 0.0 4.6 3.6 2.0 1.8 0.2
HGRN2 8k 12.7 5.7 14.6 0.0 15.9 11.6 7.5 7.4 1.8
HGRN2 16k 54 9.2 0.6 17.5 11.3 6.5 4.7 4.7 1.1
cos2 2k 37.5 0.0 0.0 0.0 21.9 10.3 5.0 4.4 0.4
cos2 4k 343 5.7 0.0 0.0 214 10.2 5.0 4.5 1.5
cos2 8k 76.8 57 2.9 0.0 24.3 13.6 7.0 6.6 2.0
cos2 16k 5.7 2.9 2.9 0.0 4.6 35 2.8 3.0 1.6
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Needle In A HayStack - standard mode - cosFormer2 1b 2048dim 8k
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Needle In A HayStack - standard mode - cosFormer2 3b
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