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Abstract

Translating text that contains entity names is a
challenging task, as cultural-related references
can vary significantly across languages. These
variations may also be caused by transcre-
ation, an adaptation process that entails more
than transliteration and word-for-word trans-
lation. In this paper, we address the problem
of cross-cultural translation on two fronts: (i)
we introduce XC-Translate, the first large-scale,
manually-created benchmark for machine trans-
lation that focuses on text that contains po-
tentially culturally-nuanced entity names, and
(ii) we propose KG-MT, a novel end-to-end
method to integrate information from a mul-
tilingual knowledge graph into a neural ma-
chine translation model by leveraging a dense
retrieval mechanism. Our experiments and
analyses show that current machine translation
systems and large language models still strug-
gle to translate texts containing entity names,
whereas KG-MT outperforms state-of-the-art
approaches by a large margin, obtaining a 129%
and 62% relative improvement compared to
NLLB-200 and GPT-4, respectively.

1 Introduction

The emergence of multilingual large language mod-
els (LLMs) and the wide availability of massive
multilingual datasets have significantly advanced
the field of Machine Translation (MT). These de-
velopments have led to MT systems that not only
perform exceptionally well in high-resource lan-
guages but also support a growing number of low-
resource languages (Fan et al., 2021; Tang et al.,
2021; Costa-jussà et al., 2022; Kudugunta et al.,

* Work carried out partially while at Apple. These authors
contributed equally.

2023, inter alia). Nevertheless, the research com-
munity still faces several unresolved challenges in
MT. Among these, the translation of text that con-
tains entities is still a hard task, especially with
some categories of entities, e.g., movies, books,
food, locations, and sometimes even people, to
name a few. Indeed, word-for-word, or literal,
translations of their names may not be suitable due
to cultural-specific references, which can vary de-
pending on social, geographical, historical, and po-
litical contexts, among other factors (Hershcovich
et al., 2022). Therefore, the challenge lies in accu-
rately identifying when and how to translate entities
whose names are significantly different across lan-
guages. This step is crucial, as relying on literal
translations may not convey the intended meaning,
risking the effectiveness of the entire translation
process (Gaballo, 2012; Díaz-Millón and Olvera-
Lobo, 2023). For example, if we were to trans-
late word-for-word “Qual è la trama de Il Giovane
Holden?” from Italian to English, we would obtain
“What is the plot of The Young Holden?”, which is
grammatically correct but semantically incorrect.
The correct translation “What is the plot of The
Catcher in the Rye?” requires not only fluency
in both the source and target languages but also
knowledge of the cultural contexts involved.

In this paper, we address the problem of cross-
cultural translation on two fronts: resources and
methods. More specifically, our contributions can
be summarized as follows:

• We introduce XC-Translate, the first large-
scale, manually-created benchmark for cross-
cultural translation across 10 language pairs
of text containing entity names;

16343



• We demonstrate that XC-Translate exposes
the limitations of current MT models and
LLMs in translating text with entity names
that can vary across languages and cultures;

• We propose KG-MT, a novel MT system
equipped with retrieval-augmented generation
from multilingual knowledge graphs;

• We evaluate KG-MT on XC-Translate and
show that it outperforms state-of-the-art ap-
proaches by a large margin, while also requir-
ing minimal supervision and computational
resources compared to data augmentation ap-
proaches.

We hope our work will encourage further research
in the field of cross-cultural translation, leading to
more investigations on the gaps of current methods
in capturing cultural nuances beyond differences in
entity names. To this end, we release XC-Translate
at https://github.com/apple/ml-kg-mt.

2 Related Work

MT is a long-standing research topic in NLP. In this
section, we briefly review the literature on recent
advancements in MT, with a focus on studies that
investigate entity names in relation to MT.

Machine Translation. The field of MT has
made a significant step forward with the emer-
gence of multilingual language models, such as
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020), and massive multilingual cor-
pora, such as OSCAR (Ortiz Suárez et al., 2019)
and MADLAD-400 (Kudugunta et al., 2023). Not
only have these developments led to robust bilin-
gual MT systems, such as OPUS-MT (Tiedemann
et al., 2023), but also to multilingual MT systems
that can translate to and from multiple languages
with a single model, such as mBART-50 (Liu et al.,
2020), M2M-100 (Fan et al., 2021), and NLLB-
200 (Costa-jussà et al., 2022). Therefore, we build
KG-MT on top of these multilingual MT systems –
which are openly available and widely used in the
research community – while also comparing our
results with state-of-the-art LLMs, such as GPT-
3.5 and GPT-4, which have been shown to achieve
competitive performance in general-purpose MT
evaluations (Wang et al., 2023).

External Knowledge in Machine Translation.
Previous studies have already introduced methods

to improve MT system via retrieval-augmentation
or constrained-generation (Zhang et al., 2018;
Bulte and Tezcan, 2019; Campolungo et al., 2022;
Iyer et al., 2023). Notably, Zhang et al. (2018) pro-
posed retrieval-augmentation to improve the trans-
lation of low-frequency words at inference time,
while Bulte and Tezcan (2019) demonstrated the
benefits of retrieving fuzzy matches to augment a
dataset at training time. More recently, Campol-
ungo et al. (2022) and Iyer et al. (2023) investi-
gated the use of lexical constraints derived from
external knowledge sources, e.g., dictionaries like
WordNet, to improve the translation of senses in
the long tail of the distribution. Although guiding
or constraining the translation process has been
shown to be an effective direction towards improv-
ing the translation quality of MT systems, the area
at the intersection of retrieval-augmented genera-
tion and retrieval from large knowledge sources
with millions of elements, such as Wikidata, is still
understudied, to the best of our knowledge.

Entity names in Machine Translation. Earlier
investigations have long recognized and begun to
address the challenges associated with translating
texts that contain entity names (Knight and Graehl,
1998; Al-Onaizan and Knight, 2002a,b). However,
there are three important aspects that have yet to
be fully explored in the literature. First, the focus
has predominantly been on the transliteration of
entity names, i.e., adapting an entity name from
the script of one language to another (Sadamitsu
et al., 2016; Ugawa et al., 2018; Zeng et al., 2023).
Although transliteration is crucial for languages
with different scripts, like English and Chinese,
it does not necessarily account for the transcre-
ation of entity names between languages using
the same script, like English and Italian (Gaballo,
2012; Díaz-Millón and Olvera-Lobo, 2023). Sec-
ond, the depth of existing investigations has been
constrained significantly by the absence of large-
scale and high-quality benchmarks designed to
highlight the challenges of cross-cultural transla-
tion (Zeng et al., 2023). Lastly, current approaches
have mainly relied on training MT models by syn-
thetically augmenting the training datasets to cover
more entity names (Liu et al., 2021; Hu et al., 2022;
Sälevä and Lignos, 2022). However, data augmen-
tation strategies, despite their effectiveness, often
lead to a substantial increase of the training dataset
size and the computational resources needed for
training, especially when the entities to cover are
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Figure 1: Overview of KG-MT, which leverages a knowledge retriever, i.e., a dense retrieval mechanism to retrieve
the most relevant entities from a multilingual knowledge graph (see Section 3.1), to improve the translation. The
retrieved entities are then integrated into the MT system in two ways: explicit knowledge integration, where the
entity names are explicitly added to the source text (see Section 3.2), and implicit knowledge integration, where the
entity embeddings are fused with the encoder hidden states (see Section 3.3).

in the millions. Furthermore, they also require fre-
quent retraining to incorporate names of emerging
entities (e.g., new movies, books, shops, restau-
rants, and products) and update entities whose
name has changed (e.g., new aliases, nicknames,
and stage names).

Our work addresses the foregoing three aspects
by introducing XC-Translate, the first large-scale,
manually-created benchmark for cross-cultural
translation of text containing entity names, and
by proposing KG-MT, a novel MT system that au-
tomatically retrieves the most relevant entity names
from a multilingual knowledge graph and integrates
them into the translation process on the fly, instead
of memorizing every possible entity name transla-
tion for each source-target language pair through
synthetic data augmentation.

3 Enhancing Machine Translation using
Multilingual Knowledge Graphs

In contrast with augmentation strategies based on
synthetic data that aim to maximize entity cover-
age at model training time, our hypothesis is that
MT systems do not need to memorize every pos-
sible entity name transliteration and transcreation

for each source-target language pair to correctly
translate a text that contains entities. Instead, the
core idea that motivates our work is to leverage an
external knowledge source to first retrieve the most
relevant entities for an input text, and then gener-
ate the translation by incorporating the retrieved
entity names in the target language. In fact, multi-
lingual knowledge graphs, such as DBPedia (Auer
et al., 2007), BabelNet (Navigli and Ponzetto, 2012;
Navigli et al., 2021), and Wikidata (Vrandečić and
Krötzsch, 2014), provide a wealth of lexical and
factual knowledge about millions of entities in
many languages, including their names, aliases,
and descriptions (Kaffee et al., 2023; Conia et al.,
2023). Not only that, but such knowledge is also
easier to edit and is frequently updated to reflect
the latest changes in the real world. By leveraging
a multilingual knowledge graph, the focus of our
approach shifts from memorizing entity names to
learning when and how to retrieve the most rele-
vant entities for a given input text and integrate
their names in the target language in an end-to-end
fashion.

Our method, KG-MT, features two main com-
ponents: (i) a knowledge retriever, which retrieves
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the most relevant entities about the source text
from a knowledge graph (Section 3.1), and (ii)
a knowledge-enhanced translator that generates
the target text by incorporating the retrieved entity
names (Section 3.2). To better model the interac-
tions between the retrieved entities and the trans-
lation, we also introduce a method to fuse the rep-
resentations of the two components (Section 3.3).
Figure 1 provides an overview of KG-MT, which
we describe in detail in the following sections.

3.1 Retrieving Relevant Entities from
Multilingual Knowledge Graphs

Given a source text t = ⟨w1, . . . , wn⟩ in a source
language ls, the objective of our knowledge re-
triever is to retrieve the top-k most relevant en-
tities Et = {e1, . . . , ek} from a knowledge graph
G = E × R × E , where E is the set of entities
and R is the set of relations in the multilingual
knowledge graph.1 We represent each entity ei as
a tuple ei = ⟨ni, di⟩, where ni is the primary name
of the entity and di is its description. Including
the description of an entity allows us to distinguish
between homonyms, i.e., entities with the same
name.

We define the relevance score s(ei, t) of an en-
tity ei with respect to the source text t as the cosine
similarity between the entity and the source text:

s(ei, t) =
ei · t

∥ei∥∥t∥
, (1)

where ei is the embedding of the entity ei. We
then retrieve the top-k most relevant entities for the
source text t as follows:

Et = topk ({ei ∈ E | s(ei, t)}) . (2)

The embedding ei of an entity ei is obtained
from an encoder (Izacard et al., 2021), which we
train contrastively to maximize the likelihood of re-
trieving a relevant entity e+ and minimize the like-
lihood of retrieving an irrelevant entity e− given t
as the input query:

L = − log
exp(e+ · t)

exp(e+ · t) +∑n
i=1 exp(e

−
i · t) (3)

where e+ is the embedding of a relevant entity e+

and e− is the embedding of an irrelevant entity e−.
1We use Wikidata as our reference multilingual knowl-

edge graph in this work; however, our method is not limited
to a specific knowledge graph and can be extended to other
knowledge graphs with similar structure, such as BabelNet.

Importantly, we also introduce a sampling strategy
to mine hard negative examples, i.e., instead of
randomly sampling in-batch negatives (Botha et al.,
2020), we select n homonymous entities that have
the same name as the relevant entity e+ but are not
relevant to the source text t.

3.2 Integrating Explicit Knowledge into a
Machine Translation Model

Given the source text t = ⟨w1, . . . , wn⟩ in a
source language ls and the entities Et retrieved
by our knowledge retriever, the objective of our
knowledge-enhanced translator is to generate the
target text t′ = ⟨w′

1, . . . , w
′
m⟩ in a target language

lt by incorporating the entity names of Et into the
translation process. Therefore, instead of directly
generating the target text t′ from the source text
t, we first build a knowledge-enhanced source text
t+KG as follows:

t+KG = ⟨w1, . . . , wn,

[KG], ns
1 → nt

1, . . . , n
s
k → nt

k⟩, (4)

where [KG] is a special token that indicates the
start of the entity name translations, ns

i is the name
of the entity ei in the source language ls and nt

i is
the name of the entity ei in the target language lt, as
provided by the multilingual knowledge graph. We
then feed the knowledge-enhanced source text t+KG

to a standard sequence-to-sequence MT model to
generate the target text t′, in a similar vein to past
work on guiding MT systems (Zhang et al., 2018;
Bulte and Tezcan, 2019). Given the format of t+KG,
the MT model is fine-tuned to learn how to generate
the target text t′ by also attending to the translation
of the entity names nt

i. We refer to this method as
explicit knowledge integration, as the translations
of the relevant entities are explicitly provided in
the input to the MT model.

3.3 Integrating Implicit Knowledge into a
Machine Translation Model

Although the knowledge-enhanced translator can
generate the target text t′ by incorporating the en-
tity names of Et, it does not take advantage of the
representations of the retrieved entities ei learned
by the knowledge retriever. To overcome this limi-
tation, we also propose a method to fuse the latent
representations of the knowledge retriever and the
knowledge-enhanced translator, which allows KG-
MT to better model the interconnections between
the retrieved entities and the generated translation.
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Here, we assume that an MT model is structured
as an encoder-decoder architecture, such as the
Transformer model (Vaswani et al., 2017). Given
a general encoder-decoder architecture, we feed
the knowledge-enhanced source text t+KG to the
encoder of the MT model to obtain the encoder
hidden states h+KG = ⟨h1, . . . ,hn+k+1⟩, where
hi is the hidden state of the encoder at position
i.2 Then, we prepend the embeddings ei of the
retrieved entities to the encoder hidden states h+KG

to obtain the encoder hidden states h+KG+E:

h+KG+E = ⟨e1, . . . , ek,h1, . . . ,hn+k+1⟩. (5)

Finally, we feed the hidden states h+KG+E to the
decoder of the MT model, which is now able to
also attend to the entity embeddings from the re-
triever and fuse them with its hidden states. Our
intuition is that the embeddings ei from the knowl-
edge retriever can contain useful fine-grained, la-
tent information about the retrieved entities. We
refer to this method as implicit knowledge inte-
gration, using an embedding-based fusion strat-
egy reminiscent of Fusion-in-Decoder (Izacard and
Grave, 2021a,b, FiD). However, unlike FiD, our
knowledge-enhanced translator fuses the hidden
states of two different encoders, i.e., the knowl-
edge retriever and the encoder of the knowledge-
enhanced translator, as shown in Figure 1.

4 Evaluating Cross-Cultural Translation
of Texts Containing Entity Names

To evaluate the effectiveness of our method, we
introduce Cross-Culture Translate (XC-Translate),
the first large-scale, manually-curated benchmark
for the task of cross-cultural translation of texts con-
taining entity names. XC-Translate is composed
of parallel texts in 10 English-to-X language pairs
from a diverse set of languages, including both
high-resource and low-resource languages, namely,
Arabic, Chinese, French, German, Italian, Japanese,
Korean, Spanish, Thai, and Turkish. We highlight
that this design choice allows our benchmark to fea-
ture languages with diverse scripts, some of which
are similar to English, such as French and Spanish,
and others that are very different, such as Arabic,
Chinese, and Thai. Importantly, our benchmark is:

• Challenging: XC-Translate is the first bench-
mark to focus on cross-cultural translation of

2To simplify the notation, we assume that each entity name
translation ns

i → nt
i is represented by a single token, even

though it is actually composed of at least three tokens.

texts containing entity names, which is partic-
ularly challenging due to the cultural-specific
references of entity names across languages;

• Large-scale: XC-Translate contains about
5,000 sentences for each language pair for a to-
tal of over 58,000 instances, making it one of
the largest benchmarks for MT, independently
of its focus on cross-cultural translation;

• Multi-reference: XC-Translate provides mul-
tiple translations for each source text (over
100,000 references, or 2 translations per sen-
tence on average);

• Gold-quality: XC-Translate is manually cre-
ated and verified by human annotators fluent
in the source and target languages, which en-
sures the quality of the benchmark and the
correctness of the translations.

We believe that XC-Translate will be a valuable
resource for the MT research community and
will encourage further research on the problem of
cross-cultural translation of texts containing entity
names.

4.1 Design Principles

The creation process of XC-Translate is mainly
driven by two design principles: (i) the texts should
contain entity names that are likely to be affected
not only by transliteration between languages, and
(ii) the heart of the challenge should be the transla-
tion of the entity names, rather than the translation
of the rest of the text, i.e., the text should not be
too complex to translate if the entity names are
translated correctly.

To satisfy the first design principle, we first iden-
tify for each language pair a set of entities from
Wikidata that adhere to the following two main cri-
teria: (a) the entity has at least one name in English
and one name in the target language, (b) the En-
glish name of the entity is at least 50% different
from the names in French, German, Italian, Span-
ish, and their word-for-word translation to English,
as measured by the Levenshtein distance. The ra-
tionale behind the second criterion is that such a
difference in the entity names across languages that
mostly share the same script is likely an indicator
of a name dissimilarity that goes beyond transliter-
ation. For example, the Italian name of the entity
“The Catcher in the Rye” is “Il Giovane Holden”,
while its French name is “L’Attrape-cœurs”.
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To satisfy the second design principle, we ask a
group of human annotators to curate a set of short
knowledge-seeking questions – less than 25 words
– in English about the identified entities. Requiring
the question to be short encourages simple and
concise questions that are easy to translate if the
entity names are correctly translated. Moreover,
requiring the text to be a question mitigates the
risk of including inaccurate facts in the text: for
example, “Is The Catcher in the Rye a book by J.
D. Salinger?” is a legitimate question, while “The
Catcher in the Rye is a book by J. D. Salinger” is a
factual statement that may or may not be factually
accurate.

4.2 Translation Process

Having identified the entities of interest for each
language pair and having created English questions
about them, we produce the translations in each tar-
get language via a two-step process. First, we ask
a group of human translators to translate the ques-
tions from English to the target language. Then, we
ask a second group of human annotators to verify
the correctness of the translations.3

The entire process is guided by a set of instruc-
tions and guidelines that we provide to the anno-
tators. Moreover, we require the annotators to be
fluent in English, native speakers of the target lan-
guage, and resident in a country where the target
language is spoken. Before starting the translation
process, we also require the annotators to pass an
entrance test to further verify their language profi-
ciency and their comprehension of the instructions
and guidelines; otherwise, they are not allowed
to participate in the annotation task. Finally, the
annotators are periodically evaluated on a set of
test questions: if they fail on them, they are ex-
cluded from the pool of annotators. Since each
English question is formulated from a given entity,
we can aid the translators by providing the entity
name(s) from Wikidata in the target language as
a hint (see Design Principle i.a in Section 4.1),
the English and target language descriptions of the
entity from Wikidata, and the English and target
language Wikipedia pages of the entity, which are
fundamental resources to understand the context
and background of the entity of interest.

At the end of the process, each English question

3The intersection between the translators and the annota-
tors is not empty but is kept to a minimum to avoid bias, and
the probability of an annotator verifying their own translation
is low.

is translated into the target language by at least
three different translators, and each translation is
then verified by at least three different annotators,
allowing us to retain only the translations that are
agreed upon by the annotators. We provide more
details about this process in the Appendix.

4.3 Evaluation Metrics
It is well known that the evaluation of MT sys-
tems is challenging, as there is no single metric
that can capture all the aspects of translation qual-
ity. For example, BLEU (Papineni et al., 2002) is
a popular metric that measures the n-gram overlap
between the generated translation and the reference
translations, but it is long known not to correlate
strongly with human judgments (Callison-Burch
et al., 2006). More recently, the research com-
munity has proposed alternative metrics, such as
BERTScore (Zhang et al., 2020) and COMET (Rei
et al., 2020), that aim to capture more nuanced
aspects of translation quality, such as semantic
similarity and factual correctness. However, such
learned metrics yield only a translation-level score,
which is not easy to interpret (Perrella et al., 2024)
and does not allow us to easily analyze the transla-
tion at the entity level.

To address the foregoing limitations, not only
do we provide the translations of the questions in
XC-Translate, but also the list of the valid trans-
lations of the entity names that are valid in the
context of the considered text. Having a compre-
hensive list of manually-curated valid names allows
us to introduce M-ETA (Manual Entity Translation
Accuracy), a simple metric to easily measure the
translation quality at the entity level. Differently
from previuos metrics that rely on automatically
identifying and aligning entities (Hu et al., 2022),
M-ETA directly checks whether an automatic trans-
lation contains one of the manually-curated names.
More formally, given a translation t′ in a target
language lt and a set of gold entities Êt′ , we define
the entity-level translation quality score Q(t′, Êt′)
as follows:

Q(t′, Êt′) =
1

|Êt′ |
∑

ei∈Êt′

q(t′, ei), (6)

where q(t′, ei) is the entity-level translation quality
score of the entity ei in the target text t′ and is
defined as follows:

q(t′, ei) = min{1,
∑

nt
i∈N t

ei

I(nt
i ∈ t′)}, (7)
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where N t
ei is the set of manually-curated names of

the entity ei in the target language lt and I(nt
i ∈ t′)

is an indicator function that is equal to 1 if the
name nt

i of the entity ei is in the target text t′ and
0 otherwise.

5 Experiments and Results

In this section, we first list the systems we consider
in our main experiments, then describe the datasets
used to train the MT systems, and finally report and
discuss the results.

Systems. We compare the following systems:

• GPT-3, GPT-3.5, and GPT-4:4 among the
most popular and best performing LLMs,
which have shown strong translation perfor-
mance in the literature;

• mBART-50, M2M-100, and NLLB-200: re-
cent multilingual MT models that support
translation from and to about 50, 100, and
200 different languages using a single model,
respectively;

• KG-MT: our proposed approach, which lever-
ages the information available in multilingual
knowledge graphs for end-to-end retrieval-
augmented translation.

To ensure a fair comparison, we fine-tune mBART-
50, M2M-100, NLLB-200, and KG-MT using the
same dataset. For more details about our experi-
mental setup, please refer to the Appendix.

Datasets. As mentioned in Sections 3.1 and 3.2,
KG-MT requires two datasets for training: one for
the knowledge retriever and one for the knowledge-
enhanced translator. The training dataset for
retrieval should contain instances of the form
⟨t, e+, e−⟩, where t is a source text, e+ is a rel-
evant entity for t, and e− is an irrelevant entity
for t. The training dataset for translation should
contain instances of the form ⟨t, t′, Êt⟩, where t is
a source text, t′ is a target text, and Êt is the set
of gold entities for t. To train the knowledge re-
triever, we use the training data from Mintaka (Sen
et al., 2022), a recently proposed dataset for multi-
lingual question answering in which each question
is tagged with the entities that appear therein. Since
the questions in Mintaka are manually translated,
we can also use its gold translations to train the
knowledge-enhanced translator.

4 Timestamps: GPT-3 – text-davinci-003, GPT-3.5 –
gpt-3.5-turbo-0613, GPT-4 – gpt-4-0613.

EN-to-XX (Avg)

BLEU COMET M-ETA Size

LL
M

GPT-3 37.4 75.4 14.1 175B

GPT-3.5 42.8 77.8 20.9 ?

GPT-4 50.9 82.1 25.3 ?

M
T

mBART-50 36.1 79.8 12.2 0.6B

M2M-100 34.8 77.9 11.5 0.4B

NLLB-200 39.5 81.9 17.9 0.6B

R
AG

KG-MTmBART 44.1 79.7 39.1 0.6B

KG-MTM2M 42.6 80.8 38.3 0.4B

KG-MTNLLB 51.8 84.6 41.1 0.6B

Table 1: Average performance of the baselines and the
variants of KG-MT on XC-Translate compared to the
state-of-the-art multilingual MT systems and LLMs.

Results on XC-Translate. Table 1 shows the re-
sults of the systems averaged over all the language
pairs of XC-Translate in terms of BLEU, COMET,
and M-ETA. We can first observe that MT systems,
such as mBART-50, M2M-100, and NLLB-200, as
well as LLMs, such as GPT-3, GPT-3.5, and GPT-
4, obtain unsatisfactory M-ETAs on XC-Translate,
with NLLB-200 and GPT-4 achieving the highest
average score of 17.9% and 25.3%, respectively.
These results support two of our hypotheses: (i)
translating texts that contains challenging entity
names is particularly difficult, and simply trying
to translate the original entity name is often not
sufficient to produce a correct translation; and (ii)
BLEU and COMET are not a reliable metrics to
evaluate the translation quality in this setting. In-
deed, a translation that is correct except for the en-
tity names still receives high BLEU and COMET
scores, even though the error in the translation of
the entity name may completely alter the meaning
and the intent of the entire translation.

Table 1 also shows that KG-MT outperforms all
the baselines by a large margin, with an average
M-ETA score of 41.1% for its best variant, which
is equivalent to a 129.1% and 62.5% relative im-
provement over the best MT system (NLLB-200)
and the best LLM (GPT-4), respectively. Most
notably, KG-MT is capable of closing the gap be-
tween NLLB-200 and GPT-4, outperforming an
LLM that is supposedly 100 times larger in terms
of number of parameters.

The jump in performance for KG-MT is consis-
tent across different underlying MT models, i.e., we
observe similar M-ETA scores (39.1%, 38.3%, and
41.1%) for the KG-MT variants independently of
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EN-AR EN-DE EN-ES EN-FR EN-IT EN-JA EN-KO EN-TH EN-TR EN-ZH

BLEU M-ETA BLEU M-ETA BLEU M-ETA BLEU M-ETA BLEU M-ETA BLEU M-ETA BLEU M-ETA BLEU M-ETA BLEU M-ETA BLEU M-ETA

mBART-50 21.7 10.9 45.5 18.5 44.9 15.1 44.3 15.6 43.2 12.9 43.9 13.9 26.7 8.3 45.6 1.9 26.2 20.5 18.5 4.1
M2M-100 27.3 13.5 37.9 11.5 51.7 19.7 41.8 13.7 44.9 17.4 34.6 8.0 28.1 8.0 35.8 0.8 29.6 19.3 16.0 2.8
NLLB-200 25.2 20.5 43.1 19.6 63.6 31.5 52.3 24.7 55.4 26.4 29.0 8.4 32.6 17.7 42.6 1.8 34.3 25.4 17.2 3.1

GPT-3 18.9 15.1 42.7 18.1 55.0 26.2 49.1 22.8 53.1 22.0 36.9 9.6 26.3 8.2 37.8 2.2 20.5 11.7 33.4 5.1
GPT-3.5 22.7 16.2 46.3 25.5 62.2 33.8 56.0 28.2 55.4 29.5 41.0 18.7 31.2 14.9 41.1 2.5 29.8 23.0 42.5 16.7
GPT-4 34.9 23.8 54.8 27.8 67.2 35.2 61.3 28.5 62.7 34.7 48.7 22.9 44.4 18.4 42.1 5.4 44.8 36.4 48.0 19.9

KG-MTmBART 32.6 48.5 48.8 41.5 60.5 47.7 50.6 41.8 58.8 51.3 49.8 48.5 22.2 36.9 48.2 12.7 27.3 48.1 20.9 13.5
KG-MTM2M 35.0 45.3 43.7 39.4 62.4 49.1 51.5 41.3 59.3 51.4 46.6 40.7 35.4 29.9 12.8 12.7 40.0 62.2 21.8 11.0
KG-MTNLLB 37.3 50.6 55.8 36.5 68.9 47.8 58.7 39.8 65.3 47.5 48.6 42.2 43.8 47.1 56.7 39.6 41.2 49.7 20.9 10.6

Table 2: Performance by language pair of the baselines and the variants of KG-MT on XC-Translate compared to
the state-of-the-art multilingual MT systems and LLMs.

whether we use mBART-50, M2M-100, or NLLB-
200 as the backbone for the knowledge-enhanced
translation model in KG-MT. This trend empiri-
cally demonstrates that our method is able to re-
trieve relevant entities about the source text and
integrate the information available in multilingual
knowledge graphs to improve the output quality.
In general, we observe that the improvement in
M-ETA is also consistent across different language
pairs, as shown in Table 2.

Results on WMT benchmarks. Having evalu-
ated the performance of KG-MT on XC-Translate,
we now turn our attention to WMT benchmarks to
assess whether our method degrades the translation
quality in general-purpose MT benchmarks. To this
end, we evaluate the performance of KG-MT on
the English-to-X test sets from WMT17, WMT18,
WMT19, WMT20, and WMT21. Table 3 shows
the results of KG-MT on the WMT benchmarks in
terms of BLEU and COMET. As we can observe,
KG-MT achieves competitive BLEU and COMET
scores on the WMT benchmarks compared to the
MT baselines, which suggests that our method does
not degrade the quality of general-purpose transla-
tions. On the contrary, KG-MT generally achieves
slightly improved BLEU and COMET scores com-
pared to vanilla MT systems, e.g., KG-MTNLLB
obtains an absolute improvement of 0.8 points in
BLEU and 1.7 points in COMET over NLLB-200.

6 Analysis and Discussion

In this section, we analyze KG-MT, and discuss
where we believe it may be improved in future
work. We expand on this analysis in the Appendix.

Explicit or implicit knowledge? Sections 3.2
and 3.3 introduce two methods to integrate the
knowledge retrieved by the knowledge retriever
into the knowledge-enhanced translator: explicit

EN-to-XX (Avg)

BLEU COMET

LL
M

GPT-3 18.1 48.1
GPT-3.5 22.2 57.3
GPT-4 24.4 61.0

M
T

mBART-50 22.0 55.7
M2M-100 21.4 52.8
NLLB-200 23.3 60.2

R
AG

KG-MTmBART 22.8 55.2
KG-MTM2M 22.3 54.3
KG-MTNLLB 24.1 61.9

Table 3: Evaluation results (BLEU and COMET) aver-
aged over the EN-to-XX test sets of WMT-17, WMT-18,
WMT-19, WMT-20, and WMT-21.

knowledge integration and implicit knowledge in-
tegration. The first method is more straightforward
but it also increases the length of the source text,
which is undesirable since most of the attention
mechanisms in popular Transformer-based models
are quadratic with respect to the input length. In-
stead, the second method requires intervening on
the inner workings of the MT model, which is more
complex and may not be always feasible. However,
it is also more flexible since the input length of the
decoder only grows with the number of retrieved
entities, which can be controlled by a hyperparame-
ter. To understand which method is more effective,
we compare the performance of KG-MT when us-
ing explicit knowledge integration, implicit knowl-
edge integration, and both. Figure 2 shows that
not only both methods are effective, but they are
also complementary, as the combination of the two
methods yields the best results. We hypothesize
that the injection of the entity embeddings with the
implicit knowledge integration may also act as an
indicator of whether the MT model should rely on
its parametric memory for during the generation
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Figure 2: Results of KG-MT when using explicit or
implicit knowledge integration, or both.

of the translation, independently of the semantics
represented within the entity embeddings.

Knowledge retrieval. The knowledge retriever
plays a fundamental role in KG-MT. If the re-
trieval step collects wrong or unrelated entities,
the knowledge-enhanced translator has to (i) be ro-
bust against noisy or irrelevant knowledge, and (ii)
fall back on its parametric memory, which is often
unreliable as shown by the results of the vanilla
MT systems on XC-Translate in Tables 1 and 2.
However, our analysis shows that our knowledge
retriever achieves 85.9% and 92.1% hits@1 and
hits@3, respectively, on XC-Translate, which sug-
gests that the knowledge retriever is effective at
retrieving relevant entities. Part of this success can
be attributed to our fine-tuning strategy with hard
negative mining, which allows the knowledge re-
triever to improve the hits@1 and hits@3 by 5.6%
and 4.2%, respectively, compared to using mCon-
triever (Izacard et al., 2021), a pretrained retriever.
Given the good performance with hits@3, we set
the knowledge retriever to retrieve at most three
entities for each source text, which is a trade-off
between retrieving more relevant entities and in-
creasing the computational cost.

Gold knowledge. If knowledge retrieval is not
a significant source of errors for KG-MT, then
the knowledge integration step, in which the
knowledge-enhanced translator has to learn how to
effectively integrate the retrieved entities into the
translation process, is likely to be the main bottle-
neck. To isolate the performance of the knowledge-
enhanced translator from the performance of the
knowledge retriever, we evaluate KG-MT when us-

BLEU

51.8

46.3
47.5

39.5

NLLB KG-MT KG-MT KG-MT
explicit implicit

Explicit or Implicit Knowledge Integration?

COMET

84.6

83.9

83.1

81.9

META

41.1

35.937.1

17.9

full

BLEU

56.3

51.8

39.5

NLLB KG-MT KG-MT
Translation Upper Bound with Gold Knowledge

COMET

85.5

84.6

81.9

META

52.7

41.1

17.9

gold knowledge

Figure 3: Results of KG-MT when using gold knowl-
edge instead of the knowledge from the retriever.

ing gold entities instead of the entities retrieved by
the knowledge retriever. Figure 3 shows that the
performance of KG-MT increases only by 11.6% in
terms of average M-ETA when using gold entities,
indicating that the knowledge-enhanced translator
is not always capable of using the gold knowledge.
Therefore, we hypothesize that the primary area
of gain for future work shall be on improving the
knowledge integration step, e.g., by using more
sophisticated fusion strategies for knowledge inte-
gration or creating better datasets for fine-tuning
the MT model on the knowledge integration step.

7 Conclusion and Future Work

In this paper, we addressed the problem of cross-
cultural translation of texts containing entity names.
Our contributions are threefold: (i) we introduced
KG-MT, a novel approach for retrieval-augmented
translation that leverages the information available
in multilingual knowledge graphs to improve the
translation of texts containing entity names; (ii)
we introduced XC-Translate, the first large-scale,
manually-curated benchmark for the task of cross-
cultural translation of texts containing entity names;
and (iii) we conducted extensive experiments on
XC-Translate and other existing benchmarks for
MT, showing that KG-MT significantly outper-
forms the state of the art on XC-Translate while
maintaining comparable results on general-purpose
MT benchmarks. We believe that our contribution
will encourage further research on the problems
that arise when translating texts containing cultural
references beyond entity names, such as idioms and
metaphors, and that retrieval-augmented translation
will be a valuable tool to address these challenges.
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Limitations

In this section, we discuss some of the main limita-
tions of our work and how future research may be
able to address them.

Language coverage. XC-Translate contains a di-
verse set of languages, but it is clearly not exhaus-
tive. Although the number of languages included
in our benchmark is comparable with the number
of languages studied every year in the WMT shared
tasks, it is still a small fraction of the world’s
languages. While full coverage is likely infeasi-
ble, we still miss entire linguistic families, such
as the Uralic, Dravidian, and Niger-Congo fami-
lies, and many languages from the Indo-European
family, such as Russian, Portuguese, and Hindi.
Future work should consider expanding the cov-
erage of XC-Translate to include more languages.
Indeed, different languages may present different
challenges for cross-cultural translation, and it is
important to understand these differences to de-
velop more robust and generalizable translation
systems. Not only that, but another aspect that
we do not consider in our work is the dialectal
and regional variation within a language, which
can also be a significant source of errors in trans-
lation. Our intuition is that, since current state-
of-the-art MT systems and LLMs struggle in our
setting, which mostly includes high- to medium-
resource languages, they would struggle even more
in low-resource languages and dialects.

Entity coverage and selection. The entities in
XC-Translate are selected from Wikidata, which
is a large and diverse knowledge graph, but it is
not complete. While our design principles (see
Section 4.1) are aimed at selecting entities that are
likely to be challenging for MT systems, our se-
lection strategy can also be considere aggressive
for several reasons: (i) we only consider entities
that are linked to Wikipedia pages, which may ex-
clude many entities that are relevant in a given
culture; (ii) we only consider entities that have at
least an English name, which may exclude many
entities that are relevant in a given culture; and
(iii) our selection strategy is based on our experi-
ence with using Wikidata and Wikipedia. Future
work should consider more sophisticated strategies
for selecting entities, such as considering language
pairs that do not involve English and tuning the
selection based on each language pair, rather than
having a one-size-fits-all approach. Moreover, fu-

ture work may also consider using other knowledge
graphs, as Wikidata inherits the biases and errors
of Wikipedia (and its editor demographics).

Translation quality. Our evaluation of KG-MT
is mostly based on the M-ETA metric, which is a
simple metric that measures the translation quality
at the entity level. While M-ETA is a useful metric
to evaluate the performance of KG-MT, it is not a
comprehensive metric to evaluate the translation
quality of MT systems, i.e., it cannot be used alone
to compare the performance different systems. This
is the reason why we also report the BLEU and
COMET scores of KG-MT on XC-Translate and
the WMT benchmarks. However, we acknowledge
that BLEU and COMET are also not comprehen-
sive metrics to evaluate the translation quality of
MT systems. Future work may consider fine-tuning
learned metrics on our XC-Translate annotations,
which also include a list of manually-curated valid
translations of the entity names that are valid in the
context of the considered text.

Knowledge retrieval. Our knowledge retriever
is based on a retrieval model that retrieves at most
three entities for each source text. While this design
choice is based on a trade-off between retrieving
more relevant entities and increasing the computa-
tional cost, it is not clear whether this is the best
design choice when using KG-MT on other types
of texts, e.g., long documents where the number of
entities may be significantly higher.

Comparison systems. Our comparison systems
are based on the state of the art in MT and LLMs,
but they are not necessarily the best systems for the
task of cross-cultural translation. We use mBART-
50, M2M-100, and NLLB-200 as the backbone for
the knowledge-enhanced translator in KG-MT, as
they are widely used, have shown strong perfor-
mance in the literature, and are available for fine-
tuning. Another advantage is that they are also mul-
tilingual, which allows us to use the same model for
all the language pairs in XC-Translate. Moreover,
we mainly considered the GPT family of LLMs, as
they are among the most popular and best perform-
ing LLMs, having also shown strong translation
performance in the literature. However, future work
may consider using openly-available LLMs. In this
work, we have focused on the retrieval-augmented
translation approach for MT systems, but future
work may consider similar approaches for openly
available LLMs, such as LLama and Mistral.
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A Creating XC-Translate

In this section, we provide in-depth details on the
creation process of XC-Translate, our novel dataset
for evaluating cross-cultural translation of texts
containing entity names.

A.1 Choice of languages
As mentioned in Section 4, 10 diverse languages
are selected from a set of typologically-different
linguistic families:

• West Germanic: German;

• Romance: Spanish, French, Italian;

• Semitic: Arabic;

• Sino-Tibetan: Chinese (simplified);

• Altaic: Turkish;

• Koreanic: Korean;

• Japonic: Japanese.

• Tai: Thai.

The architectural decision renders XC-Translate
a complex challenge, given the variability or consis-
tency in the symbol sets across different languages.
For instance, the spelling of a person’s name might
remain unchanged between English and French,
yet it’s highly improbable for it to be identical
in English and Chinese, necessitating at least a
transliteration. Furthermore, the act of transliterat-
ing between English and Korean (as well as other
languages, like Japanese) is fraught with unpre-
dictability, complicating the reliance on rule-based
methods for name translation between these lin-
guistically divergent languages. Our investigation
prioritized languages classified as high/medium-
resource, following the quantitative evaluation in
Conia et al. (2023) indicates that the representation
of textual data is substantially lacking, even for the
most recognized entities (top-10%) within those
high/medium-resource languages. The extension
of our benchmark to encompass lower-resource
languages is earmarked for subsequent endeavors.
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Figure 4: UI used for the annotation task: the annotators could familiarize themselves with the task with an outline
of the task instructions (detailed guidelines could be read in a separate page) and the information about the entity,
including its names in English and its Wikipedia pages in English and the target language (Italian in this case).

A.2 Human annotation process.

The objective of the annotation process was to (i)
translate the question from English to the target lan-
guage and (ii) verify the quality of the translations.
This was completed through the following tasks:

A.2.1 Translating text from English to the
Target Language.

First, given the entity, the human annotators were
asked to familiarize themselves with its informa-
tion. Through the user interface (IU) the following
details were provided: (i) entity names/aliases, (ii)
short description for the given entity retrieved from
Wikidata, and (iii) a built-in panel which displayed
the Wikipedia article in the English and target lo-
cale, if available. By imbedding the relevant details
in the UI, annotators were able to familiarize them-
selves with the entity without leaving the created
tool. This is show in Figure 4.

After learning about the entity, the annotators
were tasked with understanding the task with a set
of in-depth instructions in a separate guideline. The
guidelines provided information about (i) task ter-
minology, (2) detailed information on translating
text, (3) tips and edge-cases on translating text, (4)
positive and negative examples of the translation
task. The guidelines will be provided in the supple-
mentary material.

Upon thoroughly familiarizing themselves with
the task and details, the human annotators were
tasked with translating upwards of 4 questions
which contained the corresponding entity in a text
box as shown in Figure 5. For each question, the
following information was provided by the UI: (i)
English question and entity name, (ii) target lan-
guage, (iii) entity name in the target language, (iv)
possible translation generated by a different ma-
chine translation tool.

Next, the human annotator was requested to re-
iterate the entity name in the target language in the
following text box. The annotator was prompted to
double check the validity of the entity name in the
target language by using a Web search engine. By
implementing this step, it forced the annotator to
verify the validity segments of their translated text.

Upon completing the free-form componeent, the
annoator was asked binary questions if the entity
name in the target language they used was in the
task suggested list and if the possible template for
the question was used.

We note that annotators could provide feedback
in case they noticed an error or had a suggested im-
provment. The annotation task was completed over
7 different batches, over a duration of 2 months,
with iterative improvements made to the task UI
and guidelines based on the feedback provided by
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Figure 5: UI used for the annotation task: the annotator was tasked with providing the translation from the English
question to the target language in a free-form text box, and was provided relevant details such as the (i) English
question, (2) English entity, (3) entity names in the target language, and (4) a possible translation template in the
target language.

the human annotator.

A.2.2 Verifying human-curated translations.
Using the data collected from the first task, a sec-
ond group of human annoators were tasked with
verifying the correctness of the translation.

Similar to the previous task, human annotators
were provided details within the task UI and on
a separate guidelines, information to familiarize
themselves with the task entity, and task instruc-
tions as show in Figure 6)

After, the human annotators were tasked with
verifying the translation in the target language as
show in Figure 7. To do so, they were provided
the (i) English entity name and question and (ii)
target language entity name and question). With
this information, they answered two questions, with
their corresponding options:

Part A Is the Entity Name translated correctly?

• Yes The Entity Name was translated correctly.
Meaning, the translated entity name can be
used to refer to the English entity. If you
read the English and Translated Entity Name
separately, you WOULD KNOW they refer to
the same entity.

• No Meaning, the translated entity name can

be used to refer to the English entity. If you
read the English andTranslated Entity Name
separately, you WOULD NOT KNOW they
refer to the same entity.

Part B Does the English Question and the Trans-
lated Question have the same meaning?

• Yes The English Question and the Translated
Question DO have the same meaning. Basi-
cally, if I read the English Question and Trans-
lated Question separately, I WOULD under-
stand the same thing.

• No The English Question and the Translated
Question DO NOT have the same meaning.
Basically, if I read the English Question and
Translated Question separately, I WOULD
NOT understand the samething.

• Maybe The English Question and the Trans-
lated Question MAYBE HAVE the same
meaning. Basically, if I read the English
Question and Translated Question separately,
I WOULD LIKELY understand thesame thing.
But, it could be interpreted differently.

The phrasing of the question in Part B was fine-
tuned, to ensure annotators did not index on translit-
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eration, and focused on the semantic meaning of
the two questions.

The responses from the verification task, would
be used to curate the final dataset, determining
which English questions and language pair would
be accepted.

A.3 Quality assurance and inter-annotator
agreement

To ensure the production of high-quality results,
each annotator was required to clear a preliminary
test before they could contribute to the annotation
effort. This test involved reviewing a comprehen-
sive guide that acquainted them with the concepts
of entities and knowledge graphs, detailed the task
and UI elements, and included several illustrative
examples, followed by the accurate classification
of 25 entity names. Those who failed the entrance
exam were excluded from the actual annotation
task (the 25 entities used in the test were not in-
cluded in the final dataset). The pass threshold was
set at 85

For each specified language, we enlisted annota-
tors who had verified expertise in both English and
the language in question, confirmed through inter-
views and proof of residence within the relevant
country. Annotators received compensation based
on the standard hourly rates for their region. On
average, annotators allocated approximately one
minute to acquaint themselves with the task and an-
other minute per translation question, culminating
in an average of 3.5 minutes per task. Given that
each entity name was evaluated by three annotators,
the cumulative human effort invested in the anno-
tation process amounted to 3 annotators × (2800
entities × 60 seconds + 2800 entities × 3.2 ques-
tions × 50 seconds) / 60 minutes = approximately
5,133 hours.

B XC-Translate: Examples

In this section, we provide examples of the in-
stances in XC-Translate and their translations.

• English: "Who is the author of the science
fiction mystery-thriller novel called The Pe-
ripheral?"

• Italian: "Chi è l’autore del romanzo giallo-
thriller di fantascienza chiamato Inverso?"

• English: "How many seasons of Sweet Mag-
nolias are available on Netflix?"

• Italian: "Quante stagioni di Il colore delle
magnolie sono disponibili su Netflix?"

C Experimental Setup

In this section, we provide in-depth details on the
experimental setup of our experiments, including
the training of the knowledge retriever, the training
of the knowledge-enhanced translator, and the eval-
uation metrics, as well as the training details of the
baselines.

C.1 Hardware Infrastructure

The experiments were conducted on a server with a
single NVIDIA V100 GPU, 32GB of RAM, and an
32-core CPU. The server runs Ubuntu 20.04 LTS
and is equipped with CUDA 12.

Training times. The training of the knowledge
retriever took approximately 4 hours to converge,
while the training of the knowledge-enhanced trans-
lator took approximately 6 hours to converge, de-
pending on the underlying MT model, with M2M-
100 being the fastest and mBART-50 being the
slowest. This makes our approach feasible for
training on a single GPU and for short training
times contrary to synthetic data augmentation ap-
proaches that usually require multiple GPUs and/or
long training times.

C.2 Training of the Knowledge Retriever

The knowledge retriever is trained using the train-
ing data from Mintaka, a recently proposed dataset
for multilingual question answering in which a sub-
set of the questions are tagged with the entities that
appear therein. The training data for the knowledge
retriever contains instances of the form ⟨t, e+, e−⟩,
where t is a source text, e+ is a relevant entity for
t, and e− is an irrelevant entity for t, mined from
Wikidata using the hard negative mining strategy
outlined in Section 3.1.

The entire training dataset for Mintaka contains
about 14,000 instances, which makes it a relatively
small dataset for training a retriever. To mitigate
the risk of overfitting, we use a pretrained retriever,
mContriever, which is a retriever trained on a large-
scale multilingual dataset in a self-supervised way.

C.3 Training of the Knowledge-Enhanced
Translator

The knowledge-enhanced translator is trained us-
ing the training data from Mintaka too. The train-
ing data for translation contains instances of the
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Figure 6: UI used for the annotation task: the annotators could familiarize themselves with the task with an outline
of the task instructions (detailed guidelines could be read in a separate page) and the information about the entity,
including its names in English and its Wikipedia pages in English and the target language (Korean in this case).

form ⟨t, t′, Êt⟩, where t is a source text, t′ is a
target text, and Êt is the set of gold entities for t.
The training data is created by uniformly sampling
a mixture of the training data from Mintaka and
NLLB-200, a recent multilingual MT model that
supports translation from and to 200 different lan-
guages using a single model. While Mintaka is a
relatively small dataset, it is also convenient for our
purposes, as it can be used to train both the knowl-
edge retriever and the knowledge-enhanced transla-
tor. Future work may consider using larger datasets
for training the knowledge-enhanced translator as
well as adopting more sophisticated training strate-
gies, such as curriculum learning and adversarial
training.

C.4 Hyperparameters
The knowledge retriever is trained using the follow-
ing hyperparameters:

• Learning rate: 1e-5;

• Batch size: 32;

• Number of epochs: 5;

• Optimizer: AdamW;

• Loss function: Binary Cross-Entropy;

• Pretrained retriever: mContriever;

• Hard negative mining: enabled;

• Number of negative samples: 8;

• Maximum query length: 128;

• Maximum context length: 128.

While the query length and the context length (i.e.,
the entity name and its description) are set to 128,
the textual representations of the entities usually do
not exceed 100 tokens, which makes the maximum
context length a reasonable choice.

The knowledge-enhanced translator is trained
using the following hyperparameters:

• Learning rate: 1e-5;

• Batch size: 32;

• Number of epochs: 5;

• Optimizer: AdamW;

• Loss function: Cross-Entropy;

• Maximum input length: 512;

• Maximum output length: 512.

The maximum input length and the maximum out-
put length are set to 512, which is the maximum
length supported by the underlying MT models that
we consider in our study.
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Figure 7: UI used for the annotation task: the annotator was tasked with verifying the translation from the English
question to the target language in a free-form text box, and was provided relevant details such as the (i) English
question, (2) English entity, (3) entity names in the target language, and (4) a possible translation template in the
target language.

D Related Work: Addendum

In this section, we provide an in-depth discussion of
the related work on machine translation and entity
name translation, with a particular focus on a few
more relevant works.

Zeng et al. (2023): the authors recently proposed
a method to extract entity names from a source
text and translate them into a target language by
looking them up in a dictionary and appending their
translation to the source text, which is similar to
what we named explicit knowledge integration in
our work (see Section 3.2). The authors evaluate
their method on a small-scale dataset and show
that it outperforms a vanilla MT system. However,
there are important differences between their work
and ours:

• Their focus is on transliteration rather than
transcreation. This is evident in their evalu-
ation, in which they select language pairs in
which transliteration is necessary, but also in
their method, in which they make explicit use
of a transliteration system. We believe that
their work and ours are complementary, as
they focus on a different aspect of the prob-
lem, and that their method could be integrated
into our method to improve the performance

of KG-MT.

• Their method is based on a dictionary lookup,
which is simple and effective but that ignores
the problem of ambiguous entities, i.e., enti-
ties that have different translations in different
contexts. This is a problem that we address
in our work by using a knowledge retriever to
retrieve relevant entities for the source text.

• Our knowledge retriever is also capable of
retrieving entities that do not have an exact
match with the source text, i.e., it does not rely
on mention detection. Moreover, using our ap-
proach allows the retriever not to retriever any
entities if their retrieval (or the knowledge that
would be retrieved) is not relevant to the trans-
lation task. In contrast, their method leaves
this task to the encoder-decoder architecture
of the MT system.
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