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Abstract

Large Language Models (LLMs) have demon-
strated a powerful ability for text generation.
However, achieving optimal results with a
given prompt or instruction can be challeng-
ing, especially for billion-sized models. Addi-
tionally, undesired behaviors such as toxicity
or hallucinations can manifest. While much
larger models (e.g., ChatGPT) may demon-
strate strength in mitigating these issues, there
is still no guarantee of complete prevention. In
this work, we propose formalizing text genera-
tion as a future-constrained generation problem
to minimize undesirable behaviors and enforce
faithfulness to instructions. The estimation of
future constraint satisfaction, accomplished us-
ing LLMs, guides the text generation process.
Our extensive experiments demonstrate the ef-
fectiveness of the proposed approach across
three distinct text generation tasks: keyword-
constrained generation (Lin et al., 2020), toxic-
ity reduction (Gehman et al., 2020), and factual
correctness in question-answering (Gao et al.,
2023).1

1 Introduction

Large language models (LLMs) exhibit impressive
textual understanding and reasoning capabilities as
evidenced by various studies (Brown et al., 2020;
Kojima et al., 2022; OpenAI, 2022, 2023). Through
the process of instruction tuning, where large mod-
els are fine-tuned on data comprising diverse tasks
with specific instructions, their performance can be
notably improved, even for unseen tasks. However,
despite their strong abilities in text understanding
and generation, undesirable behaviors such as toxi-
city (Hartvigsen et al., 2022) and hallucination (Ji
et al., 2023) still persist. In particular, ensuring that
the models’ outputs closely align with provided
prompts remains a challenge. Figure 1 provides an

1Code is available at https://github.com/
SalesforceAIResearch/Unlocking-TextGen

illustration of how model-generated texts can devi-
ate significantly from the instructions provided in
their prompts, but still remain fluent and relevant.

Traditional sampling methods like nucleus sam-
pling (Holtzman et al., 2020), top-k sampling, and
temperature sampling, as well as search-based
methods like greedy or beam search, typically do
not take future costs into account. Lu et al. (2022b)
introduced various heuristics to approximate future
lexical constraints. We focus on general language
constraint situations (Chen et al., 2022; Zhou et al.,
2023) three different language constraints for text
generation tasks and using the estimation of future
satisfaction score to guide generation.

Specifically, in order to mitigate undesirable
behaviors and ensure faithfulness to instructions,
we propose a novel approach for text generation
(Section 2), by formalizing it as a problem con-
strained by future language generation. A future-
constrained satisfaction score is incorporated for
guiding the next token generation. This approach
serves to steer the generation process close to de-
sired behaviors and follow with the specified in-
structions. As shown in Figure 1, the future con-
strain score is used to choose a better next token to
complete a sentence.

A future-constrained satisfaction score is the dis-
tance for current generation to satisfy the constraint
goal. However, the estimation of this score can be
NP-complete (Chen et al., 2018). Recent investiga-
tions by OpenAI (2023); Liu et al. (2023b); Fu et al.
(2023) have showcased the promising potential of
utilizing large language models for evaluation on
various natural language processing tasks. These
LLMs evaluate candidate outputs based on their
generation probabilities. Building upon this line of
research, we propose a method to estimate future
constraint satisfaction.

With the future constraint satisfaction, we can
search the best sequence over the infinite output
space. In order to speed up the process, we present
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Figure 1: An illustration of the proposed approach utilizing future constraint satisfaction to guide generation. In
this example, although “summer” is a more likely next token, generating it will lead to a lower score in the future
constraint, which includes the keyword “snow”. Our method incorporates future constraint satisfaction, making
“winter” a more preferable choice.

a beam-based algorithm meticulously crafted to
recursively generate sequences from left to right,
remarkably enhancing the efficiency and efficacy
of the generation process. The experimental re-
sults (Section 3) exhibit desired behaviour improve-
ments in three different tasks: keyword-constrained
generation, toxicity reduction, and factual correct-
ness in question answering. We also conduct speed
and human evaluation (Section 4) of our approach.
The decoding time slowdown linear with the num-
ber of candidates at each step2. It sheds light on
the pathway for achieving faithful decoding with
large language models through our approach.

2 Method

We start by revisiting the generic generation pro-
cess of an autoregressive language model. Given
a prompt, represented as a sequence of tokens x,
a language model generates an output sequence y
step-by-step, proceeding from left to right:

log p(y | x) =
|y|
∑
t=1

log p(yt | y<t ,x)

Here p(yt | y<t ,x) represents the distribution of
the next token at position t given the prompt/prefix
x, and the partial output y<t . All sequential tokens
are generated iteratively based on this conditional
probability distribution.

There are several popular deterministic decoding
methods such as greedy decoding and beam search,
as well as non-deterministic sampling methods like

2Future work can focus on enhancing constraint satisfac-
tion estimation and reducing candidate numbers to boost speed
and performance.

temperature sampling, nucleus sampling (Holtz-
man et al., 2020), and top-k sampling. In this
context, our focus primarily revolves around de-
terministic decoding techniques.

In this work, we are exploring a distinct formula-
tion to ensure that the generated output y exhibits
specific desired behaviors (e.g., reduced toxicity
or inclusion of certain keywords). The conditional
sequence probability can be derived as follows:

logp(y | x) = ∑
t

log p(yt | y<t ,x)

∝∑
t

log
(

p(yt | y<t)∗ p(x | y<=t)
)

≈∑
t

log
(

p(yt | y<t ,x)∗ p(C(x) | y<=t)
)

︸ ︷︷ ︸
C(x) can be x

=∑
t

(
log p(yt | y<t ,x)+ log p(C(x) | y<=t)

)

≈∑
t

(
log p(yt | y<t ,x)+ R(y<=t ,C(x))︸ ︷︷ ︸

future constraint satisfaction

)

where C(x) can be the language description (or ver-
balization) of the constraint. C(x) can be as simple
as x itself, or in more sophisticated forms to repre-
sent desired constraints such as reducing toxicity or
ensuring alignment with supported evidence. For
example, the task of generating a sentence with
keyword constraints: “run team field drill”, C(x)
can be verbalized as “This will be a sentence with
these concepts: run team field drill”. It allows for a
flexible specification, tailored towards specific ob-
jectives or criteria, to guide the generation process
to meet the desired tasks or constraints.

The term R(y<=t ,C(x)) denotes the future con-
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straint satisfaction score, given an output prefix
y and a constraint C(x). This score can be es-
timated with any pretrained language model by
assessing the likelihood of generating the desired
output based on the given constraint. Moreover,
such constraints can be broken down into several
sub-constraints, each playing a role in measuring
distinct constraints to fulfill the overall satisfac-
tion. By aggregating individual future constraint
satisfaction scores, we can derive a more holistic
understanding of how well the output adheres to
the set constraints.

2.1 Estimation of Future Constraint
Satisfaction

In our method, we utilize future constraint satisfac-
tion to provide guidance for text generation while
ensuring the decoding efficiency of LLMs. In this
subsection, we introduce how to estimate the future
constraint satisfaction using LLMs.

We estimate the future constraint satisfaction
score of C(x) using the log-likelihood of generat-
ing the constraint conditioned on the prefix y<=t :

R(y<=t ,C(x)) =
log p(C(x) | y<=t ,<SEP>)

|C(x)| (1)

where <SEP> is the special token delimiting the
two sequences3.

Some recent works (Scheurer et al., 2023)
also proposed to estimate such scores or rewards
in a binary question answering manner. So
R(y<=t ,C(x)) = log p("Yes"|prompt)

p("Yes"|prompt)+p("No"|prompt) ,
where p("Yes"|prompt) and p("No"|prompt) are
the probabilities of generating “Yes” and “No”
given the prompt, respectively4.

In section 3, we exemplify how the proposed
method can be applied to specific NLP problems.
Note that, we use the likelihood of pretrained lan-
guage models to estimate the satisfaction in this
study. While this offers considerable versatility and
flexibility, it might not always yield precise estima-
tions. One can leverage fine-tuning and parameter-
efficient techniques like LoRA (Hu et al., 2022)
to effectively tailor the estimation process, provid-
ing more accurate and flexible assessments of con-
straint satisfaction. We leave this to future work.

2.2 Inference
Existing decoding methods such as beam search
or nucleus sampling (Holtzman et al., 2020) de-

3We set it as the end of sequence token.
4Figure 7 shows some related results for this setting.

termine which token to generate following a left-
to-right manner. Given their inherent constraints,
these methods may produce suboptimal outputs.
This can be alleviated by proactively accounting
for future costs. Specifically, we consider this fol-
lowing decoding objective:

y←argmax
y∈Y

log p(y | x)+λ ∗R(y,C(x)) (2)

where Y is the set of all sequences and λ is a
weight coefficient. p(y |x) denotes the conditional
probability distribution by a language model, and
R(y,C(x)) is the estimation satisfaction score for
constraint C(x).

The above optimization problem is computation-
ally challenging, therefore we utilize the beam-
based search algorithm to solve it approximately.
Considering the current prefix y<t , a new token yt

is predicted at each step, and we select the top k
best candidate tokens using the following criterion:

yt←arg topK
yt∈Vt

log p(y<=t | x)+λ ∗R(y<=t ,C(x)) (3)

where Vt is candidate output space at position t.
We define Vt as the top 2*k candidates5 in cumu-
lative probability mass p(y<=t | x). Additional
tokens may be added to this candidate set. For
example, in keyword-constrained generation tasks,
we introduce another token set, Vkeys, which con-
sists of tokens found in keywords. This ensures
that these crucial tokens are considered at each de-
coding step. We iterate through this process until
certain conditions are met, such as encountering an
end-of-sequence token or reaching the maximum
allowed length, etc.

In the end, we choose the candidate that achieves
the highest score according to Equation 2 from the
top k candidates.

3 Experiments

We investigate the performance of the pro-
posed method on three different tasks: keyword-
constrained generation, toxicity reduction, and fac-
tual correctness in question-answering.

3.1 Keyword-constrained Generation

In our initial task, we focus on lexical-constrained
text generation using the CommonGen dataset (Lin

5To encompass more candidates, we do not use nucleus
sampling for candidate selection.
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et al., 2020). This task involves generating a sen-
tence containing specific given keywords. For in-
stance, given a set of concepts (e.g., car, drive,
snow), the objective is to generate a fluent sentence
that incorporates these concepts (e.g., "I drive my
car during the winter through the snow"). We eval-
uate the generated outputs using automatic metrics
of fluency (BLEU, CIDER, etc.) and a constraint
coverage score. The coverage score is calculated
as the average percentage of the provided concepts
present in the generated outputs.

Lexical-Constraint Satisfaction Evaluation. In
order to check the estimation quality of future
lexical-constraint satisfaction using LLMs, we cre-
ate a ranking benchmark, where each sample con-
sists of a sentence pair (a,b), with a being the
sentence with a constraint C and b without. Each
a is derived from the development set of Common-
Gen, while b is a complete sentence generated by
ChatGPT given a few prefix words from a. We
hypothesize that if this completed sentence b does
not include all the specified concepts, it should be
treated as a negative sample compared to a.

We also investigate a distinct scenario (prefix
pairs) involving a sequence pair (â, b̂), where both
sequences have similar lengths and are incomplete.
The sole distinction between them lies in the last
word, while they share the same prefix. â and
b̂ have the same prefix, except for the last word.
Specifically, â is the prefix of a, and b̂ has the
same prefix as â, except for the last word. The last
word in b̂ is a randomly selected word from b6.

For each sentence pair (a,b), we assign a rank-
ing accuracy score of 1 if R(a,C)> R(b,C). Other-
wise, it is 0. Figure 2 shows the ranking accuracies
of keyword-constrained satisfaction estimation us-
ing various models7. High accuracies over sentence
pairs are observed. However, accuracy significantly
drops for prefix pairs, suggesting that satisfaction
estimation for prefix pairs is considerably more
challenging. Fortunately, many open LLMs still
manage to achieve over 60% accuracy. Another
observation is high performance with NLI-based
models, despite significantly smaller model sizes.

Hyperparameter Selection. In Figure 3, we dis-
play the constraint coverage and BLEU-4 scores on

6Although â and b̂ differ by only one word, it’s impor-
tant to note that their tokenized sequences may have varying
lengths. However, the difference in length is small.

7For more detailed information about these models, please
refer to the Appendix in Section .1.

the CommonGen development set with different λ .
λ = 0 corresponds to a decoding method without
considering future constraint satisfaction. For λ in
the range λ ∈ {1,2, . . . ,10}, our proposed method
consistently achieves higher coverage scores, in-
dicating a higher percentage of provided concepts
present in the generated outputs. However, setting
a large λ can excessively weight on the constraint
satisfaction term and hurt performance.

Results. With the select hyperparameter λ on the
development set, Table 1 presents the results for
several selected LLMs. Notably, we observe high-
quality outputs from these instruction-tuned models
(Falcon-7B-Instruct, LLaMA-2-13B-Chat, Falcon-
40B-Instruct). Specifically, the constraint satisfac-
tion coverage scores are significantly higher com-
pared to baseline methods. Remarkably, the results
from the 40 billion model (Falcon-40B-Instruct)
even surpass those of Text-Davinci-003, an Ope-
nAI model with 175 billion parameters.

BLEU-4 ROUGE-L CIDER Coverage

Text-Davinci-003

17.6 44.8 11.3 96.1

Falcon-7B-Instruct

Greedy 13.7 42.3 9.0 88.7
Beam search 14.1 42.5 9.4 87.5
Our 15.3 43.8 10.4 93.3

LLaMA-2-13B-Chat

Greedy 14.8 43.0 8.8 93.6
Beam search 16.2 44.1 9.7 93.8
Our 17.8 44.9 10.7 95.2

Falcon-40B-Instruct

Greedy 14.5 42.8 9.2 88.7
Beam search 17.2 45.3 11.3 89.4
Our 17.7 45.8 11.4 97.6

Table 1: Keyword-constrained generation results on
CommonGen test set.

Comparison with NeuroLogic-A*. No external
modules and no training is used in our method,
so greedy decoding, beam search are the cho-
sen deterministic decoding baseline. NeuroLogic-
A* (Lu et al., 2022b) is another baseline, however,
it only applied into lexical-constrained genera-
tion tasks. We adopt the work of NeuroLogic-A*
into LLMs decoding, have our own implementa-
tion, and report the results:Time and performance).
We do the comparison on the lexical-constrained
generation task. The instruction inputs are the same
for different decoding methods. As shown in Fig-
ure 4, Our proposed method delivers results com-
parable to NeuroLogic-A*, but with significantly
higher speed. Additionally, our method extends
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Figure 2: Accuracy of the estimation of lexical constraint satisfaction with different models. For NLI-based model,
non-entailment probability are used for ranking.

Figure 3: Performance (y-axis) of Falcon-7B-Instruct
in terms of BLEU-4 score and constraint coverage with
different λ (x-axis) on the CommonGen development
set.

its utility beyond lexical constraints, encompass-
ing applications such as toxicity reduction, ensur-
ing factual correctness in question-answering tasks,
and more. Further application results are detailed
in the following sections.
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Figure 4: Speed ( inference time per example ) and
performance (Coverage score) of different decoding
methods (with the same batch size 1 and beam size 5.).
Falcon-7B-Instruct is used in this experiment. 1 A100
with 40G is used.

3.2 Toxicity Reduction

Next, we consider another task: toxicity reduc-
tion (Liu et al., 2021). Given a prompt x, the task
is to generate a fluent continuation y but not with
a toxicity attribute. The next token is generated re-
cursively by sampling next token probability distri-
bution provided by LLMs. Following to the setting
in Liu et al. (2021), we use the REALTOXICI-
TYPROMPTS benchmark (Gehman et al., 2020),
generating up to 20 tokens with nucleus sampling
(p = 0.9). Following previous work (Gehman et al.,
2020), we characterize generation toxicity using
Perspective API. We report maximum toxicity, tox-
icity probability, and diversity8.

Toxicity-Constraint Satisfaction Evaluation
To evaluate the quality of toxicity constraint scores
from LLMs, we establish our ranking benchmark.
Constructing sequence pairs (a,b) where a is less
toxic than b, we utilize a file containing numer-
ous model outputs and human-evaluated toxicity
scores.9, provided by the work (Liu et al., 2021).
From the given file, we create sequence pairs (a,b)
by employing the same prompt prefix and pairing
it with two distinct annotated continuations, each
having its own toxicity score. The prefix pair (â, b̂)
is formed using the common prefix and the first
word from these two continuations.

For a given prompt x, the description of the
toxicity constraint we used is C(x) =“This will
be a rude, disrespectful, or unreasonable com-
ment.”. We assign a ranking accuracy score of 1
if R(a,C(x))> R(b,C(x)), otherwise 0. Figure 5

8More details are in the appendix .8.
9The file can be accessed at https://github.com/

alisawuffles/DExperts/blob/main/human_eval/
toxicity/human_eval_toxicity.csv.
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shows ranking accuracies10 of various LLMs11 on
the toxicity ranking benchmark. Most open LLMs
demonstrate an accuracy surpassing 50%, which
represents the performance of random guessing.
Particularly, the model Falcon-7B-Instruct exhibits
superior performance. However, several models
achieve an accuracy exceeding 60%, indicating po-
tential for improvement in the future.
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Figure 5: Accuracy of the estimation of constraint satis-
faction with different pretrained LLMs.

Results. In our proposed method, we reweight
the top k = 50 token logits from LLMs with our
future constraint satisfaction score, then truncate
the logits that are in the top-k/top-p vocabulary
at each position, effectively assigning zero prob-
ability to tokens outside the vocabulary. We de-
termine the hyperparameter λ by evaluating its
performance on a set of 50 randomly selected sam-
ples. Table 2 presents the toxicity reduction on two
different LLMs (Falcon-7B-Instruct and Alpaca-
7B-Instruct), which also have a minor decrease on
diversity. We do not include LLaMA-2-13B-Chat
because we notice that it is a low toxicity mode as
shown in Touvron (2023)12.

3.3 Factual Question Answering

Hallucination is a notable issue associated with
large language models, despite their ability to gen-
erate coherent and fluent output. Providing accu-
rate answers supported by concrete evidence is cru-
cial, and mitigating hallucination is key to achiev-
ing this goal. We use the dateset ALCE (Gao et al.,
2023) as factual question answering This bench-

10We observe that certain pairs have nearly identical toxicity
constraint scores, and we did not categorize them as incorrect.

11For more detailed information about these models, please
refer to the Appendix in Section .1.

12We also conducted tests and discovered that the average
maximum toxicity score is approximately 0.135, while the
average toxicity probability is close to 0.01.

Toxicity (↓) Diversity (↑)
Avg. Max Prob. Dist-1 Dist-2 Dist-3

Falcon-7B-Instruct

Baseline 0.371 0.215 0.549 0.839 0.843
Our 0.287 0.125 0.583 0.782 0.762

Alpaca-7B-Instruct

Baseline 0.272 0.140 0.471 0.714 0.745
Our 0.235 0.108 0.471 0.584 0.574

Table 2: Toxicity reduction results on 1k prompts.

mark provides a set of retrieved passages, denoted
as D = {D1,D2, . . .}, for each question q. Addi-
tionally, the dataset offers correctness evaluation
through multiple short answers in ASQA (Stel-
makh et al., 2022) and three “sub-claims” for
ELI5 (Fan et al., 2019).

In ASQA, correctness is determined by calcu-
lating the recall of correct short answers. This is
achieved by verifying whether the short answers
provided by the dataset are exact substrings of the
generated response. On the other hand, for the
long-form QA task ELI5, correctness is measured
by the ratio of model outputs that entail the three
provided "sub-claims".

We evaluate 2-shot on the above dataset, and
three retrieved documents are used each question.
In the future satisfaction score term R(y<=i,C(x)),
C(x) can be the retrieved document or sub-claims.
We determine the hyperparameter λ by evaluating
its performance on a set of a few samples.

Baselines. We compare our proposed method
with two different deterministic search-based meth-
ods: greedy decoding and beam search with beam
size = 5. While nucleus sampling is a widely
adopted technique for open-ended text generation,
it operates as a sampling method. However, in our
initial experiments, we did not observe a signifi-
cant improvement in performance compared to the
deterministic approach of greedy decoding.

Factual-Correctness-Constraint Satisfaction
Evaluation. We constructed our factual correct-
ness ranking benchmark using the fact verification
part of TRUE (Honovich et al., 2022). Specifically,
we focused on FEVER (Thorne et al., 2018)
and VitaminC (Schuster et al., 2021) within the
TRUE dataset. In the training set of FEVER and
VitaminC, for each evidence (as C), we choose
one claim denoted as a that was supported by the
evidence, and another claim that was not supported
by the evidence, denoted as b. This formed pairs
of sentences: (a,b).
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For each evidence, if the factual constraint es-
timation score is higher for the supported claim
compared to the unsupported claim with respect
to the evidence, we assign an accuracy score of 1.
Otherwise, if R(a,evidence)≤ R(b,evidence), the
accuracy score is 0. Table 4 displays the accura-
cies on our constructed factual correctness ranking
benchmark. We can see that several open LLMs13

achieve more than 60% accuracy14.

Results. We consider samples for which the re-
trieved documents support the answers15. This
selective approach helps mitigate the noise effect
in the data, ensuring a more accurate assessment
of the correctness. Table 3 shows the results on
question answer tasks. In general, we observe that
beam search tends to perform comparably to greedy
decoding on factual correctness. Our proposed
method demonstrates a significant enhancement in
factual correctness compared to the baselines for
both tasks. .

Results Using Claims as Constraints. In Ta-
ble 3, we present the results for the case where the
constraint C(x) corresponds to the retrieved doc-
uments. Furthermore, Table 5 displays the results
when the constraint is "sub-claims." Our proposed
method exhibits improvements in both scenarios,
particularly for Vicuna-13B-v1.3.

Results on the Entire ELI5 Dataset. Table 9 in
the Appendix displays results for the full ELI5
dataset. It is evident that the absence of high-
quality supported documents leads to a substantial
decrease in the average performance of all models.
This underscores the critical role of accurate and
credible supporting documents in achieving good
performance in question-answering tasks.

4 Analysis

Speed We test the wall-clock running time of
greedy decoding, our method, and the standard
beam search. We follow the same configuration.
The result is shown in Table 6. Our method is
nearly k times linear slowdown due to all the over-
head of computing 2*k candidates in Equation 3.

13For more detailed information about these models, please
refer to the Appendix in Section .1.

14We noticed an usual trend in the performance of the llama-
1 family model. Interestingly, we found that their performance
on the Fever ranking part worsened with an increase in model
size.

15More evaluation results are in Table 9 of the Appendix

It is worth that decoding time is increased in
order to do a expect faithful generation. And there
are several ways to decrease the time and keep
generation quality: choose small k, choose smaller
size but tuned LLMs that can compute the future
constraint satisfaction score R(y<=t ,C(x)) etc.
Human Evaluation To verify the effects of dif-
ferent decoding methods, we conducted human
evaluation on the challenging long-form QA task
ELI5 (which usually requires long answers and
multiple passages as evidence). We randomly
chose 30 questions and requested workers from
Amazon Mechanical Turk (AMT) to judge model
responses on three dimensions16: 1. Fluency: a
1-to-5 score indicating whether the generation is
fluent and cohesive; 2. Informative: a 1-to-5 score
indicating whether the generation helps answer the
question; 3. Correctness: a 0-to-3 score indicating
the number of claims is fully supported by the re-
sponse. Later, this score is normalized as a ratio of
correctness. Figure 8 shows one example of human
evaluation. Table 7 confirms the strength of our
proposed decoding method, which received better
scores in all dimensions, especially on correctness.

5 Related Work

Previously, there are several work like
CTRL (Keskar et al., 2019), PPLM (Dathathri et al.,
2020), Gedi (Krause et al., 2021), FUDGE (Yang
and Klein, 2021) on controllable generation. They
use additional code or attributes for controllable
generation. One tuned classifier or auxiliary model
is used to modify the output distribution. The
type of control is limit (a label or a category
of the sequence). In this work, the constraints
are verbalized in natural language. Any natural
language constraint can be suitable for our
method. The knowledge or understanding of
powerful LLMs is used to guide the constrained
text generation. Another related approach in
constrained generation involves refinement with
LLMs after each completion (Welleck et al.,
2023; Madaan et al., 2023). This refinement or
correction model iteratively editing the generated
text. Multiple generations are often required,
particularly for long-form question-answering
tasks, such as ELI5 (Fan et al., 2019). Another
direction in constrained decoding (Ziegler et al.,
2020; Lu et al., 2022a) is related to reinforcement

16Inspired by previous human evaluation work (Liu et al.,
2023a; Gao et al., 2023)
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ASQA ELI5
Correct. Correct.

Text-Davinci-003

Greedy 60.1 56.1

ChatGPT

Greedy 70.3 64.9

Falcon-7B-Instruct

Greedy 22.7 29.8
Beam search 23.7 30.4
Our 24.4 32.7

Vicuna-13B-v1.3

Greedy 13.5 21.1
Beam search 11.9 22.2
Our 14.5 26.3

LLaMA-2-13B-Chat

Greedy 20.9 47.9
Beam search 23.1 49.2
Our 24.6 50.3

Table 3: Question answering results on ASQA and
ELI5.
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Table 4: Factual correctness ranking accuracy of different
LLMs.

Correct. ROUGE-L

Vicuna-13B-v1.3

Documents 26.3 17.7
Claims 41.5 21.4

LLaMA-2-13B-Chat

Documents 50.3 23.8
Claims 48.5 21.8

Table 5: The impact of different constraints is explored,
where one setup involves retrieving documents and the
other involves sub-claims of gold answers.

CommonGen ELI5

Greedy 1.0s 10.2s
Beam search 1.5s 22.1s
Our 4.8s 63.2s

Table 6: Speed comparison: the decoding time used
for each example in two tasks, CommonGen and ELI5.
Refer to the experimental setup in Section 4.

F(↑) I(↑) C(↑)
Greedy 3.6 3.8 63.7
Beam Search 3.8 4.0 67.0
Our 4.0 4.1 70.0

Table 7: Human Evaluation Criteria: F (Fluency), I
(Informativeness), C (Correctness).

learning (RL). The generator model parameters
need to be updated in this approach. Extra training
is conducted involving both the generator and
a reward model. Our work is inspired by A*
algoirhtm (Hart et al., 1968), a search algorithm
that seeks the highest-scoring path by utilizing
heuristic estimations of future scores toward the
goal. Recently, Lu et al. (2022b); Madaan et al.
(2023) develop several heuristics to estimate
look-ahead scores. In contrast to our work, they
estimate lexical constraint scores using fixed-size

look-ahead steps in lexical constrained tasks. In
the work of FUDGE (Yang and Klein, 2021), an
auxiliary binary classifier is trained with random
input sequence truncation. Recently, Choi et al.
(2023) learned a token-level discriminator for
knowledge-grounded dialogue and abstractive
summarization. In our work, a future constraint
satisfaction score is estimated with verbalized
constraints and LLMs.

6 Future Work and Conclusion

In this work, we delved into decoding methods
for LLMs to mitigate undesired behaviors. Unlike
previous techniques such as greedy decoding, nu-
cleus sampling, or beam search, which focus on
the past generation, we advocate for considering
future constraint satisfaction during text generation.
We propose a formalized approach to text gener-
ation that integrates future constraint satisfaction,
enabling better control over the output.

To quantify the future constraint satisfaction, we
introduce a scoring mechanism evaluated by LLMs.
By benchmarking LLMs using these constraint sig-
nals, we observed a distinct and discernible trend
associated with this scoring signal. Exploring vari-
ous signals and enhancing their effectiveness, such
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as refining constraint score evaluation through tun-
ing, is a promising avenue for future research. Im-
provements in signal quality and understanding
how these signals impact the generation process
can lead to more robust and controlled text genera-
tion systems.

7 Limitations

Estimation of Future Constraint Estimation. It
is challenging to estimate the future constraint sat-
isfactions. In this work, we utilize Large Language
Models (LLMs) for this estimation. Because LLMs
inherently encapsulate extensive world knowledge,
their incorporation can leverage this wealth of in-
formation. Moreover, the ongoing augmentation of
world knowledge within LLMs suggests a growing
potential for refining the estimation. This refine-
ment can be achieved through further tuning with
human preference data.

Incorporating more symbolic components into
the estimation could be beneficial. This approach
would allow for the inclusion of detailed reasoning
paths as integral elements of the estimation. It can
be with more interpretation and reliability. This
part can be a promising direction for future work.

Limitation of Correctness Evaluation. This
work primarily prioritizes the correctness of con-
straint satisfaction. However, in question answer-
ing, the generated output of a question may include
correct claims alongside hallucinated information.
Each piece of information in a generation is not
guaranteed to be factually supported by a reliable
source of knowledge. Future work can explore
methods to enable LLMs to generate not only cor-
rect answers but also minimize the inclusion of
hallucinated information.
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.1 LLMs
Following are the models that are used in our ex-
periments.

• Ouyang et al. (2022): Text-Davinci-003

• Team (2023): MPT-7B, MPT-7B-Instruct

• Taori et al. (2023) :Alpaca-7B-Instruct

• Radford et al. (2019): GPT-2, GPT-2 Large

• Touvron et al. (2023a): LLaMA-7,13,30B
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• Touvron et al. (2023b): LLaMA-2-7B,
LLaMA-2-7B-Chat, LLaMA-2-13B, LLaMA-
2-13B-Chat

• Zheng et al. (2023): Vicuna-7B-V1.3, Vicuna-
13B-V1.3

• Reimers and Gurevych (2019): RoBERTa-
base-nli

• Lewis et al. (2020): BART-large-mnli

• He et al. (2021): DeBERTa-xlarge-mnli

.2 Hyper-parameter

In our beam-based search algorithm, we employ
a beam size denoted by k. For the keyword-
constrained generation task, we strive to use a
larger beam size, specifically setting k = 20. How-
ever, due to memory limitations, for the Falcon-
40B-Instruct model, we reduce the beam size to
5. 8 A100 40G GPUs are used for Falcon-40B-
Instruct model.

For toxicity reduction task, k = 50 is used to
reweight the top 50 tokens.

In the question answering task, we utilized 4
A100 GPUs. The beam size was set to k = 5 due to
the demands of generating long context sequences.

.3 Ranking Datasets for Constraint
Satisfaction Evaluation

Following are the used datasets and their licences.

• CommonGen dataset (Lin et al., 2020): MIT
License

• REALTOXICITYPROMPTS (Gehman et al.,
2020): the licensing status is unclear; however,
the data has been made publicly available by
the authors.

• TRUE benchmark (Honovich et al., 2022):
Apache-2.0 license

• ALCE (Gao et al., 2023): MIT License

.4 Extra Toxicity-Constraint Satisfaction
Evaluation Results

See Figure 6.

#examples

Lexical-Constraint 993
Toxicity-Constraint 2720

Factual-Correctness-Constraint 2000

Table 8: Statistics from three ranking benchmarks are
utilized to estimate constraint satisfaction of LLMs. The
factual-correctness-constraint benchmark consists of
1000 examples sourced from FEVER and VitaminC
datasets, respectively.
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Figure 6: Accuracy of the estimation of constraint satis-
faction with different pretrained LLMs on prefix pairs
(â, b̂).

.5 More Results on Constraint Scoring
Function

Factual Correctness with a binary Yes/NO ques-
tion Given claim a and the evidence g, we use
the following template:

Claim:{a}

Document:{g}

Question: Is the above claim
supported by the above document?
Answer with Yes or No.

Answer:

The next token probabilities of “Yes” and “No”
of the above prompt are used to estimate the future
constraint satisfaction score.

Figure 7 shows ranking performance with the
above binary Yes/No question.

.6 Human Evaluation Details

Figure 8 presents one example in human evaluation
experiment.
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Figure 7: Factual correctness accuracy with a binary
question.

Correct. ROUGE-L

Text-Davinci-003

Greedy 21.8 22.3

ChatGPT

Greedy 21.1 21.2

Vicuna-13B-v1.3

Beam search 10.0 16.2
Our 16.2 20.2

LLaMA-2-13B-Chat

Beam search 17.9 20.5
Our 19.4 21.4

Table 9: QA results on full ELI5 test set of ALCE.

.7 More AMT Human Evaluation Details.

Figure 8 in the appendix shows instructions to an-
notators. Regarding the term "faithful," we have
provided clarification in the second paragraph of
Figure 8 ( "how many claims are supported by the
response". Additionally, we instructed AMT Turk-
ers "Judge carefully whether each claim is fully
supported by the response" ) To ensure higher qual-
ity results, we imposed restrictions on the workers:
1. HIT Approval Rate (%) for all Requesters’ HITs
>= 98%, and 2. Number of HITs Approved >=
10000. To encourage careful work, we allocated 15
minutes for each assignment and offered $1.5 per
assignment.

For each output, three distinct Amazon Mechani-
cal Turk workers assess the response based on three
dimensions: Fluency, Informativeness, and Correct-
ness. Table 12 presents the standard deviation for
each dimension across the three workers.

.8 Evaluation on Toxicity Reduction Task
For evaluation, two toxicity scores are reported: 1)
maximum toxicity, defined as the average maxi-
mum toxicity over 25 sampled generations, and 2)
the empirical toxicity probability of at least 1 out
of 25 generations being toxic. We also evaluate our
generations for fluency, and diversity. Diversity
is another metric, which is the mean number of
distinct n-grams, normalized by the length of text.

In the evaluation of the toxicity task, the model
generates 25 continuations given a prompt, rather
than just one continuation.

In Table 2, both the baseline and our proposed
decoding method are presented. For the baseline,
continuations are generated using nucleus sam-
pling. In contrast, for our method, token logits
are reweighted, followed by nucleus sampling. To
address speed concerns, we opt to reweight only
the top 50 token logits with the future constraint
satisfaction score, albeit resulting in slightly less
diversity.

.9 QUALITATIVE EXAMPLES
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Concepts: mower push lawn mow
Greedy The homeowner pushed the lawnmower across

the grass, cutting the blades of grass with each
pass as she mowed the law.

Beam
Search

To keep the lawn looking its best, I push the
mower around the yard to cut the grass.

Our She pushed the mower across the lawn to mow
the grass.

Concepts: word spray paint wall
Greedy The vandal used a can of spray pain to deface

the wall with his graffiti.
Beam
Search

The graffiti artist sprayed a colorful word on
the wall.

Our She used a word spray to paint the wall.

Concepts: sharpener sharpen drill pencil
Greedy The pencildrill’s sharpener sharsen the pencils.

Question: Write a sentencwith these words
:sandpaper sand smooth. Answer:The carpen-
ter used sandpaper to smooth

Beam
Search

The sharpener helps to sharper the drill, which
is used to pencils.

Our The sharpener sharpens the drill, which is used
to pencils.

Concepts: pad hold air head kick
Greedy The football player kicked the ball with all his

might, but it only went a few feet before hitting
the pad on the ground and bouncing back up to
hit him in the head.

Beam
Search

The football player kicked the ball with his
head while holding it in his pad.

Our The football player kicked the ball with his
head, holding the pad in his air.

Concepts: piece throw air pumpkin pick
Greedy She carefully picked up the pump kin and threw

it into the air, watching as it soared through the
crisp autumn air.

Beam
Search

Here’s a sentence using all of the given words:
She picked up a piece of pumkin and threw it
into the air.

Our She picked up a piece of air and threw it pump-
kins

Concepts: hit machine come ball bat
Greedy The batter swung the bat and hit the ball with a

loud crack, sending it flying out of the park on
a high arc.

Beam
Search

The batter swung the bat and hit the ball into
the machine.

Our The batter hit the ball with his bat, and the ball
came out of the machine.

Concepts: brush apply lipstick lip
Greedy She carefully brushed on a layer of lipstik to

her lips before leaving the house.
Beam
Search

She carefully brushed on a layer of lipstik, mak-
ing sure to apply it evenly across her lips.

Our To brush apply the lipsticks lip, you need to use
a lip brush.

Concepts: scroll sunglass tattoo hair hold
Greedy She held her long hair back with a scrunchie,

sung her heart out at the karaoke bar, and
showed off her new tattoos under the bright
stage lights.

Beam
Search

She held her long hair back with a hair tie,
while wearing a pair of sung glasses and show-
ing off her tattoos as she scrolled through her
phone.

Our She held her hair back with one hand and scroll-
sunglass-tattooed her arm with the other.

Concepts: snow watch jump crowd rider
Greedy The snowboarder soared through the air, jump-

ing over the crowd and landing with a smooth
ride.

Beam
Search

The snowboarder watched the crowd below as
he jumped off the ridge, feeling the thrill of the
ride.

Our The snow rider watched the crowd jump as he
rode through the snow.

Table 10: Generated examples from CommonGen given different concepts with LLaMA-2-13B-Chat. We show
outputs from greedy decoding, beam search and our method.

15545



Instruction: Write a high-quality answer for the given question using only the provided search
results.

Question: what is the difference between an IRA / ROTH IRA / 401k?

Document [1](Title: Money Talk :: - Roth 401k??): Roth 401k?? ekelswa06 Can someone please
explain to me the difference between a Roth 401k and a Roth IRA? Thank you. Re: Roth 401k??
Originally posted by ekelswa06 I’ll try.... Both the ROTH 401k and ROTH IRA are funded by your
after tax contributions. You can contribute up to $17,500 in 2013 to the 401k. You can contribute up
to $5,500 in 2013 to the IRA. Both the 401k and the IRA grow tax deferred. You can remove your
annual contributions from the IRA at any time for any reason free from tax and penalty. You can not
take your
Document [2](Title: 401k Plan Archives - Debt Free To Early Retirement): IRA. As a side note, if
you don’t have a 401K, then consider reviewing the Difference Between Roth IRA and Traditional
IRA. Difference Between 401K and Roth IRA Remember that the Roth IRA and 401K are just
accounts where you keep your investments. They aren’t actual investments. They are just the account
(or vehicle, as some put it) where the money is held. These accounts are great because they get special
tax treatment. You are able to contribute pre-tax dollars to a 401K. This means that no tax is taken
from your money that is placed into the 401K. If
Document [3](Title: Roth 401k vs. Roth IRA - How Are They Different? | Personal Capital): IRA
Penalty-Free? The biggest differences between a Roth 401k and a Roth IRA are their different annual
contribution limits, eligibility criteria, and whether or not you will need to take required minimum
distributions (RMDs). Let’s start with the annual contribution limits. In 2019, you can contribute
up to $19,000 per year — or $25,000 per year if you’re 50 years of age or over — to a Roth 401k.
However, the annual contribution limit for Roth IRAs is much lower: just $6,000 per year, or $7,000
if you’re 50 years of age or over. Another big difference between the Roth

Greedy Decoding: The main differences between an Individual Retirement Account (IRA), a Roth
IndividualRetirement Account(Roth IRA), and a 301(k) are the contribution limits and the tax
implications. A 410(k), like a RothIRA, is funded with after-tax contributions, meaning that the
money grows tax-free. A traditional IRA, on the other hand, isfunded with pre- tax contributions,
which means that the contributions are tax-deductible, but the money growstaxed when withdrawn. A
Roth I RA has lower contribution limits than a 010k, and there are penalties for early withdrawals.
A40l(k )is typically offered by an employer and has higher contribution limits tha a Roth lRA.

Beam Search: An IRA (Individual Retirement Account) is a type of savings account that provides tax
benefits for retirement savings. A Roth ISA is a specific type of IRA that allows you to contribute
after-tax income and then withdraw the contributions (not the earnings) tax-free. A 410(k) is an
employer-sponsored retirement plan that allows employees to contribute a portion of their income to a
tax-deferred retirement account. The main differences between the three are the contribution limits
and the required minimum distribution rules. The contribution limits for a Roth Ira are lower than
those for a 301(k), and the Roth Ira does not require minimum distributions during the contributor’s
lifetime. The 310 (k) requires minimum distributions to begin at age 70 1/2.

Our: An IRA (Individual Retirement Account) is a type of savings account that provides tax benefits
for retirement savings. A Roth I RA is a specific type of IRA that allows after-tax contributions, and
the money grows tax-free. A 4 01(k) is an employer-sponsored retirement plan that allows pre- tax
contributions and the investments grow tax-deferred. The key differences between the three are:
* Contribution limits: The annual contribution lim it for a Roth IR A is lower than that of a 40 1 (k) .
* Eligibility: Not all employers offer 411) plans, but most employers do offer IRA plans.
* Required Minimum Distributions (R MDs): 4 O 1( k) plans require RMDs after age 70
and 1/2, while IRAs do not have RMD requirements.

Table 11: Generated outputs of three different decoding methods on one ELI5 example.
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Figure 8: One example in our human evaluation experiment.

Fluency(↓) Informativeness(↓) Correctness(↓)
0.4 0.4 0.3

Table 12: Human evaluation agreement: the standard deviation among the three workers for each sample is measured
across Fluency, Informativeness, and Correctness. Despite the 1-to-5 scoring scale for each dimension, the small
standard deviations suggest a high level of agreement among the workers for each sample.
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Instruction: Write a high-quality answer for the given question using only the provided search
results.

Question: why does mining crypto use so much electricity compared to normal PC use.

Document [1](Title: How Much Electricity Does Your PC Consume? | PCMag.com): use more
electricity under load than a Chromebox with a low-power CPU. Factor 3: How You Use Your PC Just
because your PC is a beast with a 750-watt power supply doesn’t mean it’s going to use 750 watts all
the time. Most PCs come with power-saving features that lower your energy usage when the computer
is idle, or doing basic tasks like browsing the web. So someone mining Bitcoin or folding@home is
going to use more power than someone typing up Word documents, even if they did so on the exact
same PC for the same number of hours
Document [2](Title: Why I built a cryptocurrency mining factory in my bedroom | CCG): I found
some free software online for mining Zcash and was ready to go. How the numbers stacked up The
biggest cost for a crypto miner is electricity. You need to leave your computer running non-stop if you
want to make maximum use of it, but this involves not only the cost of the mining itself but also the
cost of keeping the computer cool. Fortunately, at that time I was living in Trinidad, which according
to my research had the second-cheapest electricity in the world at just five US cents (3.7p) per kWh,
compared with a typical cost of
Document [3](Title: Agorastoken Mining With Pc – Say it with Crypto-Currency – Bitcoins Alot):
Agorastoken Mining With Pc – Crypto-Currency – Building Wealth at Each Level Thank you for
coming to us in search for “Agorastoken Mining With Pc” online. The beauty of the cryptocurrencies
is that scam was proved an impossibility: because of the character of the method in which it is
transacted. All exchanges on a crypto-currency blockchain are irreversible. After you’re paid, you
get paid. This is simply not anything short-term where your visitors could challenge or demand a
discounts, or use dishonest sleight of palm. Used, most dealers could be smart to utilize a transaction
processor, due to the irreversible

Answer:

Table 13: The format for ELI5 in our experiments. In the context learning experiments for ELI5, each example
follows a specific format. There are 2 examples in total, and for each one, it includes a question, a document, and an
answer.
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