
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 15506–15524
November 12-16, 2024 ©2024 Association for Computational Linguistics

DogeRM: Equipping Reward Models with Domain Knowledge
through Model Merging

Tzu-Han Lin Chen-An Li Hung-yi Lee Yun-Nung Chen
National Taiwan University, Taipei, Taiwan

{r12944034,r13942069,hungyilee}@ntu.edu.tw y.v.chen@ieee.org

Abstract

Reinforcement learning from human feedback
(RLHF) is a popular strategy for aligning large
language models (LLMs) with desired behav-
iors. Reward modeling is a crucial step in
RLHF. However, collecting paired preference
data for training reward models is often costly
and time-consuming, especially for domain-
specific preferences requiring expert annota-
tion. To address this challenge, we propose
the Domain knowledge merged Reward Model
(DogeRM), a novel framework that integrates
domain-specific knowledge into a general re-
ward model by model merging. The experi-
ments demonstrate that DogeRM enhances per-
formance across different benchmarks and pro-
vide a detailed analysis showcasing the effects
of model merging, showing the great potential
of facilitating model alignment.1

1 Introduction

Modern large language models (LLMs), such as
GPT-4 (Achiam et al., 2023) and Gemini (Team
et al., 2023), showcase impressive capabilities
across various tasks (Gao et al., 2023; Beeching
et al., 2023), with aligning their behavior with hu-
man preferences. Reinforcement learning from
human feedback (RLHF) is a prominent technique
for enhancing the alignment of desired behaviors in
LLMs (Christiano et al., 2017; Ziegler et al., 2020;
Ouyang et al., 2022). A key component of RLHF
is its reward models (RMs), which assess entire
sentences generated by policy models. The reward
signals produced by these RMs are instrumental in
adjusting the parameters of the policy models, thus
directly impacting the policy models’ effectiveness.

RMs are developed by training LLMs on
paired preference data to simulate human judg-
ment (Ouyang et al., 2022). This preference data
consists of two responses to a given user input,

1The source code and trained models are released at
https://github.com/MiuLab/DogeRM.

Merge

Solve 2x+3=8

 Step1: 2x=5
 Step2: x=5/2
 Step3: x=1
 Answer: 1

Domain RM

Domain SFT

SFT RM

Pretrained

4.95

Scalar
Reward

0.05

Scalar
Reward

Instruction+Response

 Step1: 2x=5
 Step2: x=5/2
 Step3: x=2.5
 Answer: 2.5

Text Response

Solve 2x+3=8

 Step1: 2x=5
 Step2: x=5/2
 Step3: x=1
 Answer: 1

Instruction+Response

User Instruction

Solve 2x+3=8

Figure 1: The framework of DogeRM, illustrating the
merging of a general RM with a domain-specific LM to
create a domain-specific RM. All icons used in this fig-
ure are sourced from https://www.flaticon.com/.

accompanied by a human-assigned label indicat-
ing which response is more preferred. However,
gathering such preference data can be costly and
time-consuming due to the requirement of human
annotation (Stiennon et al., 2020). This challenge
becomes more pronounced when handling domain-
specific preference data, as it necessitates expertise
from domain specialists.

Recent developments have demonstrated the ef-
fectiveness of model merging techniques in strategi-
cally integrating multiple domain-specific models
into a multi-domain model without requiring ad-
ditional training (Wortsman et al., 2022; Ilharco
et al., 2023). Furthermore, domain-specific SFT
data is relatively more accessible compared to pref-
erence data. Moreover, many high-quality domain-
specific models are available on open-source plat-
forms (Wolf et al., 2020), which can be directly
employed in the merging process. This brings us to
consider a novel approach: Is it possible to equip
reward models with domain knowledge through

15506

https://github.com/MiuLab/DogeRM
https://www.flaticon.com/

merging with domain-specific language models?
In this work, we propose Domain knowledge

merged Reward Model (DogeRM), exploring the
potential of merging a reward model trained on
a general open-sourced preference dataset with
a language model fine-tuned on domain-specific
datasets, such as math and coding. An illustration
of DogeRM is presented in Figure 1. We evalu-
ate DogeRM using RewardBench (Lambert et al.,
2024), Auto-J Eval (Li et al., 2024) and Best-of-
N sampling on GSM8K (Cobbe et al., 2021) and
MBPP (Austin et al., 2021). Our results demon-
strate that DogeRM improves performance and can
be generalized to different model architectures. We
also conduct a comprehensive analysis to demon-
strate the impact of model merging.

2 Related Work

Reward Modeling RMs are crucial for aligning
language models with human preferences, provid-
ing proxy rewards as training signals for policy
models. Previous work has employed RL algo-
rithms with RMs to guide language models towards
human preferences in various NLP tasks (Ziegler
et al., 2020; Stiennon et al., 2020; Wu et al., 2021;
Nakano et al., 2022; Menick et al., 2022) and
instruction-following (Ouyang et al., 2022; Rama-
murthy et al., 2023). In RLHF literature, RMs eval-
uate the quality of instructions and responses based
on criteria like helpfulness and harmlessness (Bai
et al., 2022) or more fine-grained objectives (Wu
et al., 2023).

Several open-source paired preference datasets
are available for training RMs for RLHF, such as
OpenAI Summarization (Stiennon et al., 2020),
HH-RLHF (Bai et al., 2022), SHP (Ethayarajh
et al., 2022), Ultrafeedback (Cui et al., 2024), PKU-
SafeRLHF (Ji et al., 2023), HelpSteer (Wang et al.,
2024c), Nectar (Zhu et al., 2023), and UltraInter-
act (Yuan et al., 2024). However, most datasets
are not domain-specific. To address this, our work
focuses on merging RMs with domain-specific lan-
guage models, aiming to equip RMs with domain
knowledge.

Model Merging Model merging integrates multi-
ple task-specific models into a single unified model
without additional training. A straightforward ap-
proach involves averaging parameters from models
fine-tuned from the same initial model (Wortsman
et al., 2022). Another method employs weighted
averaging of model parameters (Matena and Raffel,

2022; Jin et al., 2023).
Another innovative approach involves creating

task vectors by subtracting the weights of a pre-
trained model from those of the same model after
fine-tuning for a specific task. This method show-
cases the flexibility and composability of these vec-
tors through arithmetic operations (Ilharco et al.,
2023; Yadav et al., 2024; Huang et al., 2024).

Some recent work focused on model merging
to align with user preferences. They interpo-
lated model parameters fine-tuned on diverse re-
wards (Rame et al., 2024a; Jang et al., 2023; Wang
et al., 2024a), or merging RMs for combining dif-
ferent aspects of rewards (Rame et al., 2024b).

However, these methods still rely heavily on sub-
stantial domain-specific preference data to integrate
domain knowledge. In contrast, our approach sig-
nificantly reduces the need for such data by focus-
ing on incorporating domain-specific knowledge
into RMs through model merging.

3 Methodology

3.1 Reward Modeling
To train a reward model, we replace the decoding
layer of a transformer-based pre-trained language
model with a linear regression layer. This new layer
projects the logits from the final transformer layer
to a scalar, representing the reward of a given input.

Given an input prompt x, the chosen response yc,
and the rejected response yr, we use the following
loss function to optimize our reward model:

LRM = − log [σ(r(x, yc))− σ(r(x, yr))] (1)

where r(x, yc) is the reward of chosen response,
r(x, yr) is the reward of rejected response, and
σ(·) is the logistic function.

3.2 Model Merging
Our proposed method merges the parameters of
a supervised fine-tuned language model, denoted
as θSFT, with those of a reward model, θRM, both
initialized from the same pre-trained model θ.

We divide θSFT into three disjoint parts:

θSFT = {θSFT
emb, θ

SFT
trans, θ

SFT
dec } (2)

where θSFT
emb, θ

SFT
trans, θ

SFT
dec represent the embedding,

transformer, and decoding layers’ parameters, re-
spectively.

Similarly, we also divide θRM into three parts:

θRM = {θRM
emb, θ

RM
trans, θ

RM
reg } (3)

15507

Model

Reward Bench Auto-J Eval Best-of-16

Chat Chat-Hard Safety
Reasoning

Code Math Others GSM8K MBPP
Code Math

(a) LLaMA-2 RM 95.8 47.6 44.6 78.9 68.2 76.2 84.4 79.2 35.3 17.2

(b) FT on Auto-J Math 94.7 48.5 44.4 79.1 68.7 76.2† 90.2† 79.2† 35.2 -
(c) FT on Auto-J Code 94.7 48.2 44.3 78.8 66.9 89.3† 84.4† 79.4† - 17.2

(d) Ours (+ MetaMath) 95.8 44.5 43.5 85.7 79.6 79.8 87.5 79.3 40.7 -
(e) Ours (+ MAmmoTH) 96.1 44.7 43.8 84.1 85.2 79.8 87.5 79.7 40.5 -
(f) Ours (+ Code Model) 96.1 45.6 43.9 84.3 71.8 82.1 87.5 79.7 - 17.2

Table 1: Performance comparison across various benchmarks. Row (a) represents our base LLaMA-2 7B (Touvron
et al., 2023) reward model. Rows (b) and (c) show results after fine-tuning the LLaMA-2 RM using the test data
from Auto-J Eval (Li et al., 2024) Math and Code subsets, respectively. We use † to denote training accuracy,
as these values are derived from benchmark testing data used during training. Rows (d) to (f) demonstrate the
performance of LLaMA-2 RM when merged with MetaMath-7B (Yu et al., 2024), MAmmoTH-7B (Yue et al.,
2024a), and the Code Model, each with a weight factor of λ = 0.35.

where θRM
emb, θ

RM
trans, θ

RM
reg denote the parameters for

the embedding, transformer, and regression layer,
respectively.

For embedding layer parameters, we apply a
weighted average to common token embeddings:

θMERGE
emb,ti = λ · θSFT

emb,ti + (1− λ) · θRM
emb,ti (4)

where ti is a common token to both models, θemb,ti
is the corresponding embedding, and λ is a hy-
perparameter controlling the weight of the SFT
parameters, ranging from 0 to 1.

As for the unshared tokens, we directly use the
embedding from their corresponding source model.

θMERGE
emb,ti =

{
θSFT

emb,ti If ti is unique to SFT
θRM

emb,ti If ti is unique to RM
(5)

For the transformer layers, we perform a
weighted average directly since both models are
initialized from the same pre-trained model:

θMERGE
trans = λ · θSFT

trans + (1− λ) · θRM
trans (6)

Finally, we derive the merged reward model
θMERGE by combining θMERGE

emb , θMERGE
trans , and the

reward model’s regression layer θRM
reg :

θMERGE = {θMERGE
emb , θMERGE

trans , θRM
reg } (7)

4 Experiments

4.1 Experimental Setup
Reward Model To fine-tune the backbone of our
reward model, we utilize the 10k SFT split from
Alpacafarm (Dubois et al., 2023). For reward mod-
eling, we employ the UltraFeedback (Cui et al.,
2024). The details of training and these datasets
are presented in Appendix A and D, respectively.

Domain-Specific SFT For the math LLMs, we
adopt the open-source models, MetaMath-7B (Yu
et al., 2024) and MAmmoTH-7B (Yue et al.,
2024a), both of which are fine-tuned from LLaMA-
2-7B. For code generation LLM, since we could
not find open-source models with detailed training
information, we use OSS-Instruct and Magicoder-
Evol-Instruct (Wei et al., 2024) to fine-tune
LLaMA-2-7B ourselves. We refer to this model as
the Code Model in the following sections. The de-
tails of code fine-tuning datasets and math models
are presented in Appendix D, E, and F.

4.2 Evaluation

We evaluate the reward models using two bench-
marks, RewardBench (Lambert et al., 2024) and
Auto-J Eval (Li et al., 2024). These benchmarks
provide paired instruction-completion data, with
the preferred completion annotated as chosen and
the other as rejected, using accuracy as the evalua-
tion metric. We use the core set of RewardBench,
focusing primarily on the reasoning category to
evaluate the model’s abilities in code and mathe-
matical reasoning. For Auto-J Eval, we use pair-
wise testing data and categorize the dataset into
three categories: code, math, and others, following
Yuan et al. 2024. Additionally, to further test our
reward model’s effectiveness in enhancing model
performance through reranking, we conduct best-
of-N sampling on zero-shot prompted responses
from llama-2-7B-chat for GSM8K (Cobbe et al.,
2021) and MBPP (Austin et al., 2021). None of
the models used in the experiment were trained on
these data sources. Details about the models and

15508

datasets are provided in Appendix D and E, while
the hyperparameters used for best-of-N sampling
are outlined in Appendix B.

Additionally, in DogeRM, determining an ap-
propriate weight factor λ depends on a small in-
domain validation set. This raises an important
question: Can fine-tuning the reward model on
this small dataset match or even exceed the perfor-
mance of our method in the target domain? To in-
vestigate this, we performed continuous fine-tuning
of our LLaMA-2 RM using test data from Auto-J
Eval and evaluated the newly fine-tuned RM on the
remaining benchmarks to assess its effectiveness.

Lastly, We present results using a weight factor
of λ = 0.35 for the main findings, with an analysis
of the impact of λ detailed in section 4.4 and results
for different values of λ presented in Appendix H.

4.3 Results
RM Benchmarks The main results of RM bench-
marks are shown in Table 1. Merging the
LLaMA-2 RM with MetaMath-7B (Row (d)) and
MAmmoTH-7B (Row (e)) improves math perfor-
mance on RewardBench by 11.4% and 17%, re-
spectively, and coding performance by 5.2% and
5.8%, respectively. Similar enhancements are seen
on Auto-J Eval, with gains in both math and coding.
Merging our LLaMA-2 RM with the Code Model
(Row (f)) further improves coding performance on
RewardBench and Auto-J Eval by 5.4% and 6%, re-
spectively, along with noticeable improvements in
math performance on both benchmarks. Although
DogeRM enhances performance in the reasoning
domain, there is no significant degradation in other
domains. The specific role of domain knowledge
is evident, as merging with the math model leads
to greater improvements in the math domain than
merging with the Code model, and vice versa.

Best-of-N Sampling Figure 2 and Table 1
show the results, with accuracy improvements
on GSM8K. At the best-of-16 setting, merging
with math models (Rows (d) and (e)) improves
GSM8K by 5%, while merging with the Code
Model (Row (f)) maintains performance on MBPP
without degradation. We attribute the modest im-
provement on MBPP to the low upper bound of
reranking performance (indicated by the black line
in Figure 2b), which constrains the potential gains
from reranking in this task.

Fine-tuning on Small Validation Dataset Rows
(b) and (c) of Table 1 show the results of fine-tuning

(a) + MetaMath/MAmmoTH
on GSM8K.

(b) + Code Model on MBPP.

Figure 2: Best-of-N results. Merging with domain-
specific models improves reranking accuracy. Topline:
Pass@N, the probability of obtaining at least one correct
solution out of N responses. Baseline: LLaMA-2 RM.

our LLaMA-2 RM on the Auto-J Eval Math and
Code test subsets, respectively. While fine-tuning
improved performance on Auto-J Eval, it did not
generalize well to other benchmarks. In contrast,
using these datasets as a validation set to determine
an appropriate λ for merging resulted in better over-
all performance. For a detailed analysis of λ’s im-
pact across different benchmarks, see Appendix H.

4.4 Analysis

Effect of Weight Factor λ To further investigate
how the weight factor λ affects our method’s per-
formance, we test various values of λ ranging from
0 to 1 in increments of 0.05, observing the per-
formance changes across these values on Reward-
Bench. Figure 3 shows that performance degrades
when λ is large. We suggest setting λ between 0.2
and 0.5 to achieve better results.

Reward Differences We delve deeper into how
model merging affects the output of reward mod-
els by examining the value of the reward signals
corresponding to chosen and rejected prompts in
RewardBench. Figure 3 illustrates the distribu-
tion before and after merging. In the math subset,
we notice that the difference in reward scores be-
tween the chosen and rejected prompts initially
increases and then decreases as λ varies from 0
to 1. Conversely, in the code subset, this differ-
ence consistently decreases. We hypothesize that
this discrepancy arises because the original reward
model inherently excels in the code subset.

Generalizability To test the adaptability of
DogeRM to different model architectures, we use
an open-source Mistral-based (Jiang et al., 2023)
RM (Ray2333, 2024) merging with Misrtral-based

15509

(a) + MAmmoTH on Reward-
Bench math subset.

(b) + Code Model on Reward-
Bench code subset.

(c) + MAmmoTH on Reward-
Bench math subset.

(d) + Code Model on Reward-
Bench code subset.

Figure 3: The impact of different value of λ on Re-
wardBench math and code subsets. (a)(b): Accuracy;
(c)(d): Reward difference between chosen and rejected
prompts.

Model
Reward Bench Auto-J Eval Best-of-16

Code Math Code Math GSM8K

Mistral RM 93.5 55.0 88.1 87.5 44.2
+ MAmmoTH2-Plus 92.6 85.0 88.1 90.6 46.6

Table 2: Performance of Mistral-based models on var-
ious benchmarks and best-of-16 results. Our methods
show improvements across RM benchmarks and in best-
of-16 sampling on GSM8K.

MAmmoTH2-7B-Plus (Yue et al., 2024b). Details
of these models are presented in Appendix E. The
results for λ = 0.35 in reasoning domains on RM
benchmarks and best-of-N sampling on GSM8K,
with N=16, are presented in Table 2. Our method
improves math performance by 30% on Reward-
Bench and 3% on Auto-J Eval. Additionally, we en-
hance reranking performance on GSM8K by 2.4%.
These results demonstrate the adaptability of our
methods to different model architectures. The re-
sults for different λ are presented in Appendix H.

Integrating Multiple Domains To evaluate
DogeRM’s capability of integrating knowledge
from multiple domains, we experimented by merg-
ing MAmmoTH (Yue et al., 2024a) and the Code
model into LLaMA-2 RM. We heuristically set the
weight factors for MAmmoTH, the Code model,

Model
Reward Bench Auto-J Eval Best-of-16

Code Math Code Math GSM8K MBPP

LLaMA-2 RM 78.9 68.2 76.2 84.2 35.3 17.2
+ Math & Code 83.0 85.2 81.0 87.5 39.5 17.0

Table 3: Performance of merging LLaMA-2 RM with
MAmmoTH-7B and the Code model on various bench-
marks and best-of-16 results. Our methods show im-
provements across RM benchmarks and in best-of-16
sampling on GSM8K.

and LLaMA-2 RM at 0.2, 0.2, and 0.6, respectively.
The evaluation results, presented in Table 3, in-
dicate that merging models from multiple related
domains can indeed enhance performance in those
domains.

5 Conclusion

In this work, we introduce a novel approach,
DogeRM, which integrates domain knowledge into
RM by merging it with the domain-specific SFT
models. We demonstrate that DogeRM enhances
performance on math and coding benchmarks and
can be generalized to different model architectures.
A series of analyses show that DogeRM effectively
affects the reward signal corresponding to cho-
sen and rejected prompts. The results highlight
DogeRM’s potential to enhance model alignment
and generation verification through model merging,
offering promising results across various bench-
marks.

Limitations

There are several limitations in our work: (1) Our
framework has been tested exclusively in the math
and coding domains, leaving other areas such as
medicine, finance, and law unexplored. In Sec-
tion 4.4, we demonstrated the effectiveness of merg-
ing domain-specific models for math and coding
into RM. However, the integration of models from
multiple orthogonal domains remains an area for
future investigation. (2) Our method was tested ex-
clusively on 7B models, and we have not evaluated
its performance on models of larger or smaller sizes.
(3) While our framework is compatible with vari-
ous merging techniques, such as TIES-Merge (Ya-
dav et al., 2024), we have not thoroughly examined
the impact of these more advanced methods. In
this work, we focused on demonstrating the core
idea—improving RM performance in a target do-
main by merging with a domain-specific language
model. To keep our approach straightforward, we

15510

used weighted averaging, which, in the case of two
models, can be understood as a form of task arith-
metic. Despite the simplicity of this method, it has
already led to notable performance gains. However,
the effectiveness of more sophisticated merging
techniques remains unexplored, and we leave this
investigation for future work. (4) The models be-
ing merged must share the same architecture, a
limitation common to most model merging algo-
rithms (Wortsman et al., 2022; Ilharco et al., 2023;
Yadav et al., 2024). Recently, evolutionary model
merging (Akiba et al., 2024) has been proposed
as a solution for merging models with different ar-
chitectures. Investigating the merging of models
with varying architectures remains a topic for fu-
ture research. (5) Due to the sensitivity of RLHF
to hyperparameter choices and our limited compu-
tational resources, we did not implement RLHF
algorithms such as PPO (Schulman et al., 2017) or
RLOO (Ahmadian et al., 2024) in this work. Ex-
ploring the integration of DogeRM within RLHF
frameworks is left for future work.

Ethics Statement

While our method effectively equips reward mod-
els with domain knowledge, it does not eliminate
the inherent biases within these models. Further in-
vestigation is needed to explore the impact of these
inherited biases in the original reward models.

Acknowledgments

We thank the reviewers for their insightful com-
ments. This work was financially supported by the
National Science and Technology Council (NSTC)
in Taiwan, under Grants 111-2222-E-002-013-
MY3 and 112-2223-E002-012-MY5. We thank to
National Center for High-performance Computing
(NCHC) of National Applied Research Laborato-
ries (NARLabs) in Taiwan for providing computa-
tional and storage resources. We are also grateful
to Yen-Ting Lin, Wei-Lin Chen, Chao-Wei Huang
and Wan-Xuan Zhou from National Taiwan Uni-
versity for their insightful discussions and valuable
advice on Figure 1.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Arash Ahmadian, Chris Cremer, Matthias Gallé,
Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ah-
met Üstün, and Sara Hooker. 2024. Back to basics:
Revisiting REINFORCE-style optimization for learn-
ing from human feedback in LLMs. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12248–12267, Bangkok, Thailand. Association
for Computational Linguistics.

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and
David Ha. 2024. Evolutionary optimization of model
merging recipes. Preprint, arXiv:2403.13187.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, Nelson El-
hage, Zac Hatfield-Dodds, Danny Hernandez, Jack-
son Kernion, Kamal Ndousse, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam Mc-
Candlish, Chris Olah, and Jared Kaplan. 2021. A
general language assistant as a laboratory for align-
ment. Preprint, arXiv:2112.00861.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Ben Mann, and Jared Kaplan. 2022. Training
a helpful and harmless assistant with reinforce-
ment learning from human feedback. Preprint,
arXiv:2204.05862.

Alvaro Bartolome, Gabriel Martin, and Daniel Vila.
2023. Notus. https://github.com/argilla-io/
notus.

Edward Beeching, Clémentine Fourrier, Nathan Habib,
Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023.
Open llm leaderboard. https://huggingface.
co/spaces/open-llm-leaderboard/open_llm_
leaderboard.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion

15511

https://doi.org/10.18653/v1/2024.acl-long.662
https://doi.org/10.18653/v1/2024.acl-long.662
https://doi.org/10.18653/v1/2024.acl-long.662
https://arxiv.org/abs/2403.13187
https://arxiv.org/abs/2403.13187
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://github.com/argilla-io/notus
https://github.com/argilla-io/notus
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, et al. 2024. Ultrafeedback:
Boosting language models with scaled ai feedback.
In Forty-first International Conference on Machine
Learning.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin,
Shengding Hu, Zhiyuan Liu, Maosong Sun, and
Bowen Zhou. 2023. Enhancing chat language models
by scaling high-quality instructional conversations.
In The 2023 Conference on Empirical Methods in
Natural Language Processing.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi
Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy S Liang, and Tatsunori B Hashimoto. 2023.
Alpacafarm: A simulation framework for methods
that learn from human feedback. Advances in Neural
Information Processing Systems, 36.

Kawin Ethayarajh, Yejin Choi, and Swabha
Swayamdipta. 2022. Understanding dataset
difficulty with V-usable information. In Proceedings
of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine
Learning Research, pages 5988–6008. PMLR.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Alex Havrilla. 2023. synthetic-instruct-gptj-pairwise.
https://huggingface.co/datasets/Dahoas/
synthetic-instruct-gptj-pairwise.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Shengding Hu, Yifan Luo, Huadong Wang, Xingyi
Cheng, Zhiyuan Liu, and Maosong Sun. 2023. Won’t

get fooled again: Answering questions with false
premises. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5626–5643, Toronto,
Canada. Association for Computational Linguistics.

Shih-Cheng Huang, Pin-Zu Li, Yu-chi Hsu, Kuang-
Ming Chen, Yu Tung Lin, Shih-Kai Hsiao, Richard
Tsai, and Hung-yi Lee. 2024. Chat vector: A simple
approach to equip LLMs with instruction following
and model alignment in new languages. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 10943–10959, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong
Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh
Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu.
2023. Personalized soups: Personalized large lan-
guage model alignment via post-hoc parameter merg-
ing. arXiv preprint arXiv:2310.11564.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi
Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun, Yizhou
Wang, and Yaodong Yang. 2023. Beavertails: To-
wards improved safety alignment of llm via a human-
preference dataset. In Advances in Neural Informa-
tion Processing Systems, volume 36, pages 24678–
24704. Curran Associates, Inc.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and
Pengxiang Cheng. 2023. Dataless knowledge fu-
sion by merging weights of language models. In
The Eleventh International Conference on Learning
Representations.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi,
et al. 2024. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint
arXiv:2403.13787.

15512

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://openreview.net/forum?id=oEsYs3WRc3
https://openreview.net/forum?id=oEsYs3WRc3
https://proceedings.mlr.press/v162/ethayarajh22a.html
https://proceedings.mlr.press/v162/ethayarajh22a.html
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise
https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://doi.org/10.18653/v1/2023.acl-long.309
https://doi.org/10.18653/v1/2023.acl-long.309
https://doi.org/10.18653/v1/2023.acl-long.309
https://doi.org/10.18653/v1/2024.acl-long.590
https://doi.org/10.18653/v1/2024.acl-long.590
https://doi.org/10.18653/v1/2024.acl-long.590
https://openreview.net/forum?id=6t0Kwf8-jrj
https://proceedings.neurips.cc/paper_files/paper/2023/file/4dbb61cb68671edc4ca3712d70083b9f-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4dbb61cb68671edc4ca3712d70083b9f-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4dbb61cb68671edc4ca3712d70083b9f-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=FCnohuR6AnM
https://openreview.net/forum?id=FCnohuR6AnM

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, hai
zhao, and Pengfei Liu. 2024. Generative judge for
evaluating alignment. In The Twelfth International
Conference on Learning Representations.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. In International Conference on
Machine Learning, pages 22631–22648. PMLR.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference on
Learning Representations.

Michael S Matena and Colin A Raffel. 2022. Merging
models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–
17716.

Jacob Menick, Maja Trebacz, Vladimir Mikulik,
John Aslanides, Francis Song, Martin Chadwick,
Mia Glaese, Susannah Young, Lucy Campbell-
Gillingham, Geoffrey Irving, and Nat McAleese.
2022. Teaching language models to support answers
with verified quotes. Preprint, arXiv:2203.11147.

Niklas Muennighoff, Qian Liu, Armel Randy Ze-
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra,
and Shayne Longpre. 2024. Octopack: Instruction
tuning code large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2022. Webgpt: Browser-
assisted question-answering with human feedback.
Preprint, arXiv:2112.09332.

OpenAI. 2023. Openai gpt-3 api text-davinci-003
(deprecated). Accessed: 2023-06-15. Available at:
https://beta.openai.com/docs/models/gpt-3.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu,
Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi.
2023. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and
building blocks for natural language policy optimiza-
tion. In The Eleventh International Conference on
Learning Representations.

Alexandre Rame, Guillaume Couairon, Corentin
Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
Laure Soulier, and Matthieu Cord. 2024a. Rewarded
soups: towards pareto-optimal alignment by inter-
polating weights fine-tuned on diverse rewards. Ad-
vances in Neural Information Processing Systems,
36.

Alexandre Rame, Nino Vieillard, Leonard Hussenot,
Robert Dadashi, Geoffrey Cideron, Olivier Bachem,
and Johan Ferret. 2024b. WARM: On the benefits
of weight averaged reward models. In Forty-first
International Conference on Machine Learning.

Ray2333. 2024.
reward-model-mistral-7b-instruct-unified-feedback.
Ray2333/reward-model-Mistral-7B-instruct-
Unified-Feedback. Accessed: June 2024.

Paul Röttger, Hannah Kirk, Bertie Vidgen, Giuseppe
Attanasio, Federico Bianchi, and Dirk Hovy. 2024.
XSTest: A test suite for identifying exaggerated
safety behaviours in large language models. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages
5377–5400, Mexico City, Mexico. Association for
Computational Linguistics.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. arXiv preprint
arXiv:1707.06347.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020.
Learning to summarize with human feedback. In
Advances in Neural Information Processing Systems,
volume 33, pages 3008–3021. Curran Associates,
Inc.

15513

https://openreview.net/forum?id=gtkFw6sZGS
https://openreview.net/forum?id=gtkFw6sZGS
https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://arxiv.org/abs/2203.11147
https://arxiv.org/abs/2203.11147
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://beta.openai.com/docs/models/gpt-3
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=8aHzds2uUyB
https://openreview.net/forum?id=8aHzds2uUyB
https://openreview.net/forum?id=8aHzds2uUyB
https://openreview.net/forum?id=8aHzds2uUyB
https://openreview.net/forum?id=s7RDnNUJy6
https://openreview.net/forum?id=s7RDnNUJy6
https://huggingface.co/Ray2333/reward-model-Mistral-7B-instruct-Unified-Feedback
https://huggingface.co/Ray2333/reward-model-Mistral-7B-instruct-Unified-Feedback
https://doi.org/10.18653/v1/2024.naacl-long.301
https://doi.org/10.18653/v1/2024.naacl-long.301
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https:
//github.com/tatsu-lab/stanford_alpaca.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja
Hauth, et al. 2023. Gemini: a family of highly
capable multimodal models. arXiv preprint
arXiv:2312.11805.

theblackcat102. 2023. The evolved code alpaca dataset.
https://huggingface.co/datasets/
theblackcat102/evol-codealpaca-v1.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
and Shengyi Huang. 2020. Trl: Transformer
reinforcement learning.
https://github.com/huggingface/trl.

Haoxiang Wang, Yong Lin, Wei Xiong, Rui Yang,
Shizhe Diao, Shuang Qiu, Han Zhao, and Tong
Zhang. 2024a. Arithmetic control of LLMs for
diverse user preferences: Directional preference
alignment with multi-objective rewards. In
Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 8642–8655, Bangkok,
Thailand. Association for Computational Linguistics.

Yuxia Wang, Haonan Li, Xudong Han, Preslav Nakov,
and Timothy Baldwin. 2024b. Do-not-answer:
Evaluating safeguards in LLMs. In Findings of the
Association for Computational Linguistics: EACL
2024, pages 896–911, St. Julian’s, Malta.
Association for Computational Linguistics.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams,
Makesh Narsimhan Sreedhar, Daniel Egert, Olivier
Delalleau, Jane Scowcroft, Neel Kant, Aidan Swope,
and Oleksii Kuchaiev. 2024c. HelpSteer:
Multi-attribute helpfulness dataset for SteerLM. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages
3371–3384, Mexico City, Mexico. Association for
Computational Linguistics.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
LINGMING ZHANG. 2024. Magicoder:
Empowering code generation with OSS-instruct. In
Forty-first International Conference on Machine
Learning.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen
Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. 2020.
Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 38–45,
Online. Association for Computational Linguistics.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S
Morcos, Hongseok Namkoong, Ali Farhadi, Yair
Carmon, Simon Kornblith, et al. 2022. Model soups:
averaging weights of multiple fine-tuned models
improves accuracy without increasing inference time.
In International conference on machine learning,
pages 23965–23998. PMLR.

Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nisan
Stiennon, Ryan Lowe, Jan Leike, and Paul
Christiano. 2021. Recursively summarizing books
with human feedback. Preprint, arXiv:2109.10862.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane
Suhr, Prithviraj Ammanabrolu, Noah A. Smith, Mari
Ostendorf, and Hannaneh Hajishirzi. 2023.
Fine-grained human feedback gives better rewards
for language model training. In Thirty-seventh
Conference on Neural Information Processing
Systems.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. WizardLM:
Empowering large pre-trained language models to
follow complex instructions. In The Twelfth
International Conference on Learning
Representations.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2024. Ties-merging:
Resolving interference when merging models.
Advances in Neural Information Processing Systems,
36.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU,
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,
Adrian Weller, and Weiyang Liu. 2024. Metamath:
Bootstrap your own mathematical questions for large
language models. In The Twelfth International
Conference on Learning Representations.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen
Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
2024. Advancing LLM reasoning generalists with
preference trees. In AI for Math Workshop @ ICML
2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao
Huang, Huan Sun, Yu Su, and Wenhu Chen. 2024a.

15514

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://github.com/huggingface/trl
https://doi.org/10.18653/v1/2024.acl-long.468
https://doi.org/10.18653/v1/2024.acl-long.468
https://doi.org/10.18653/v1/2024.acl-long.468
https://aclanthology.org/2024.findings-eacl.61
https://aclanthology.org/2024.findings-eacl.61
https://doi.org/10.18653/v1/2024.naacl-long.185
https://doi.org/10.18653/v1/2024.naacl-long.185
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=XUeoOBid3x
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2109.10862
https://arxiv.org/abs/2109.10862
https://openreview.net/forum?id=CSbGXyCswu
https://openreview.net/forum?id=CSbGXyCswu
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=2Y1iiCqM5y
https://openreview.net/forum?id=2Y1iiCqM5y

MAmmoTH: Building math generalist models
through hybrid instruction tuning. In The Twelfth
International Conference on Learning
Representations.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen.
2024b. Mammoth2: Scaling instructions from the
web. Preprint, arXiv:2405.03548.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng,
Tanya Goyal, and Danqi Chen. 2024. Evaluating
large language models at evaluating instruction
following. In The Twelfth International Conference
on Learning Representations.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595–46623. Curran Associates,
Inc.

Yaowei Zheng, Richong Zhang, Junhao Zhang,
YeYanhan YeYanhan, and Zheyan Luo. 2024.
LlamaFactory: Unified efficient fine-tuning of 100+
language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational
Linguistics (Volume 3: System Demonstrations),
pages 400–410, Bangkok, Thailand. Association for
Computational Linguistics.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
and Jiantao Jiao. 2023. Starling-7b: Improving llm
helpfulness & harmlessness with rlaif.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code
generation with diverse function calls and complex
instructions. arXiv preprint arXiv:2406.15877.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. 2020. Fine-tuning
language models from human preferences. Preprint,
arXiv:1909.08593.

A Training Details

We use V100 GPUs for training models. We spent
2 hours training the backbone of our LLaMA-2
RM, 8 hours training our LLaMA-2 RM, and 12
hours training our Code Model. Since V100 did not
support bf16, we adopted mixed precision training
(fp16) for both SFT and Reward Modeling.

A.1 Supervised Fine-Tuning (SFT)

We use LlamaFactory (Zheng et al., 2024) for su-
pervised fine-tuning (SFT). For fine-tuning the

backbone of our LLaMA-2 RM, we use Alpaca-
farm (Dubois et al., 2023) with a learning rate of
1e-5 and a batch size of 128. For code generation,
we follow a training procedure similar to Wei et al.
(2024). First, we use OSS-Instruct to fine-tune
LLaMA-2-7B (Touvron et al., 2023) for 2 epochs.
Then, we continuously fine-tune the model with
Magicoder-Evol-Instruct for 1 epoch. The learning
rate for both stages is 1e-5, and the effective batch
size is 128.

A.2 Reward Modeling

For reward modeling, we modify the sample code
provided by TRL (von Werra et al., 2020). We
trained the backbone model described in the previ-
ous section on UltraFeedback (Cui et al., 2024) for
1 epoch, using a learning rate of 1e-5 and a batch
size of 32.

For continuous fine-tuning of LLaMA-2 RM on
Auto-J Eval (Li et al., 2024) math and code test
data, we set the learning rate to 1e-6, the batch size
to 8, and the number of epochs to 1.

B Best-of-N Sampling

We use vLLM (Kwon et al., 2023) to gener-
ate responses for reranking. For the GSM8K
dataset (Cobbe et al., 2021), we set the temper-
ature to 1.0, top-p to 1.0, and a maximum to-
ken length of 512. In the case of MBPP (Austin
et al., 2021), we adjust the temperature to
0.1, top-p to 0.95, and maintain the same max
length of 512, aligning with the hyperparameters
from the bigcode-evaluation-harness2 reposi-
tory (Zhuo et al., 2024).

C Prompt Template

For LLaMA-2 based models, we use the same
prompt template as LLaMA-2-Chat model, as
shown below:

<s>[INST] <<SYS>>
{System Prompt}
<</SYS>>

{Instruction} [/INST] {Response}<\s>

We use this template for both SFT and re-
ward modeling. For Mistral-based models, the
prompt template is modified by removing the sys-
tem prompt part:

2https://github.com/bigcode-project/
bigcode-evaluation-harness

15515

https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://arxiv.org/abs/2405.03548
https://arxiv.org/abs/2405.03548
https://openreview.net/forum?id=tr0KidwPLc
https://openreview.net/forum?id=tr0KidwPLc
https://openreview.net/forum?id=tr0KidwPLc
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness

<s>[INST] {Instruction} [/INST] {Response}<\s>

The default system prompt we used in SFT and
reward modeling aligns with the original system
prompt for LLaMA-2-Chat model:

You are a helpful, respectful and honest
assistant. Always answer as helpfully as
possible, while being safe. Your answers
should not include any harmful, unethical,
racist, sexist, toxic, dangerous, or illegal
content.

Please ensure that your responses are socially
unbiased and positive in nature. If a question
does not make any sense, or is not factually
coherent, explain why instead of answering
something not correct. If you don’t know the
answer to a question, please don’t share false
information.

The system prompt used in prompting LLaMA-
2-7B-Chat for Best-of-N sampling on GSM8K is:

You are a math problem solver. Please think
step by step and demonstrate your calculation
steps. After your reasoning steps, you should
generate the answer by following the format
starting with 'The answer is'

The system prompt used in prompting LLaMA-
2-7B-Chat for Best-of-N sampling on MBPP is:

Write Python code to solve the task.

D Dataset Details

Alpacafarm (Dubois et al., 2023) The Al-
pacafarm dataset consists of 52k instructions as
well as response generated by text-davinci-003
model (OpenAI, 2023) from the original Alpaca
dataset (Taori et al., 2023). Alpacafarm splits the
datasets into 10k ’sft’ subset for instruction fine-
tuning, 10k ’pref’ subset for preference learning,
20k ’unlabeled subset for training such as PPO, and
2k ’val’ subset for validation. We only utilize the
10k ’sft’ subset for fine-tuning the backbone of our
reward model.

UltraFeedback (Cui et al., 2024) This dataset
consists of 64k prompts from sources including
UltraChat (Ding et al., 2023), ShareGPT (Chiang
et al., 2023), Evol-Instruct (Xu et al., 2024), Truth-
fulQA (Lin et al., 2022), FalseQA (Hu et al., 2023),
and FLAN (Longpre et al., 2023). The responses
are generated by a pool of different LLMs. The

preferences are generated by GPT-4 (Achiam et al.,
2023). In our experiment, we use a cleaned version
of UltraFeedback3 (Bartolome et al., 2023), which
removes TruthfulQA contamination and uses the
average of the preference ratings.

OSS-Instruct & Magicoder Evol-Instruct (Wei
et al., 2024) OSS-Instruct consists of 75k
synthesized data collected by prompting Chat-
GPT (Achiam et al., 2023) to generate a coding
problem and solution based on a seed code snip-
pet from an open-sourced platform. The Magi-
coder Evol-Instruct dataset, based on the work
in (Luo et al., 2024), uses an open-source imple-
mentation (theblackcat102, 2023) that has been fur-
ther decontaminated, resulting in 110k data points
for fine-tuning. Both OSS-Instruct and Magicoder
Evol-Instruct are used to fine-tune the Code Model
for merging.

RewardBench (Lambert et al., 2024) Reward-
Bench is a benchmark designed to evaluate reward
models (RMs). The datasets are categorized into
core sets and prior sets. The prior sets consist of
testing sets from open-sourced preference dataset
such as OpenAI Summarization (Stiennon et al.,
2020), Anthropic Helpful split (Bai et al., 2022),
Anthropic HHH (Askell et al., 2021), and Stanford
Human Preference (SHP) (Ethayarajh et al., 2022).

We utilize the core sets for evaluation, which
include four categories: chat, chat-hard, rea-
soning, and safety. The chat category collects
data from AlpacaEval (Li et al., 2023) and MT
Bench (Zheng et al., 2023) to assess RMs’ basic
ability to discern correct responses in open-ended
dialogue. Chat-Hard incorporates data from MT
Bench (Zheng et al., 2023) with similar ratings and
LLMBar (Zeng et al., 2024) data designed to chal-
lenge LLM-based judges. The reasoning category
includes math data selected from PRM800K (Light-
man et al., 2024), where the prompt is the reference
answer and the rejected prompt is a wrong solution
generated by GPT-4 (Achiam et al., 2023). The
coding data utilizes HumanEvalPack (Muennighoff
et al., 2024), augmenting HumanEval (Chen et al.,
2021) across six programming languages, with the
prompt being the reference solution and the re-
jected prompt being buggy solutions. Safety cate-
gory comprises data from XSTest (Röttger et al.,
2024), Do-Not-Answer (Wang et al., 2024b), and

3https://huggingface.co/datasets/argilla/
ultrafeedback-binarized-preferences-cleaned

15516

https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned
https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned

an in-development refusals dataset at AI2, aiming
to accurately test models’ ability to refuse danger-
ous content and avoid incorrect refusals triggered
by similar words.

Auto-J Eval (Li et al., 2024) Auto-J Eval’s pair-
wise testing set includes examples from various
sources: OpenAI Summarization (Stiennon et al.,
2020), WebGPT (Nakano et al., 2022), Stanford
SHP (Ethayarajh et al., 2022), Synthetic GPT-
J (Havrilla, 2023), and PKU-SafeAlignment (Ji
et al., 2023). GPT-4 (Achiam et al., 2023) serves
as the annotator. The dataset consists of categories
including Summarization, Exam Questions, Code,
Creative Writing, Functional Writing, Rewriting,
General Communication, and NLP Tasks. We ex-
clude the tied examples and re-group the data into
Code, Math (extract from Exam Questions cate-
gory), and Others, following Yuan et al. 2024.

GSM8K (Cobbe et al., 2021) This dataset con-
sists of 8.5K grade school-level math problems.
We use the prompt from the testing set to perform
Best-of-N sampling in a zero-shot manner.

MBPP (Austin et al., 2021) This dataset con-
sists of 1,000 crowd-sourced Python programming
problems, which are entry-level problems covering
standard libraries, programming, and so on. We
use the testing set to perform Best-of-N sampling
in a zero-shot manner.

E Open-Source Model Details

MetaMath (Yu et al., 2024) We use the
LLaMA-2-7B based model fine-tuned by the au-
thors for merging. The MetaMath-7B mod-
els are trained on the MetaMathQA dataset,
which the authors curated by bootstrapping prob-
lems from GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021). According to
the original paper, the model did not trained on any
data from the testing set of GSM8K and MATH.

MAmmoTH (Yue et al., 2024a) We merge our
RM with the MAmmoTH-7B model, a LLaMA-
2-7B based model fine-tuned on the MathInstruct
dataset. This dataset combines a diverse range of
math problems and hybrid rationales curated by the
author. According to the original paper, the model
did not trained on any data from the testing set of
GSM8K as well as MATH.

Mistral-RM (Ray2333, 2024) We use
a Mistral-based RM, initialized from

Model MBPP Humaneval

LLaMA-2 18.6 12.2
FT on Alpacafarm 21.0 15.9
Code Model 26.2 31.7

Table 4: Performance on two code benchmarks.

Mistral-7B-Instruct-v0.2, trained on diverse
preference datasets to evaluate our framework’s
adaptability. Detailed information about the
training setup can be found in the author’s blog.4

MAmmoTH2-Plus (Yue et al., 2024b) To test
the adaptability of our framework across different
model architectures, we use the MAmmoTH2-7B-
Plus and merge it with the Mistral RM. This model
is fine-tuned from the MAmmoTH2-7B, which
is fine-tuned from Mistral-7B-Instruct-v0.2,
on public instruction tuning datasets to further en-
hance performance. According to the original pa-
per, the model did not trained on any data from the
testing set of GSM8K as well as MATH.

F Code Model Details

To showcase the capabilities of the fine-tuned
code model, we assess its performance on two
benchmarks: MBPP (Austin et al., 2021) and
HumanEval (Chen et al., 2021), utilizing Big-
CodeBench (Zhuo et al., 2024) for evaluation. Ta-
ble 4 demonstrates that our fine-tuned Code model
outperforms the original Llama2 and the backbone
of our reward model in the code benchmarks.

G Case Study

We conducted a case study on the predictions of
the reward model. We examined the changes in
chosen/rejected prompt rewards on the coding sub-
set of RewardBench before and after merging the
reward models. We identified that the problems
initially predicted incorrectly but corrected after
merging can be categorized into math, string oper-
ations, and bit operations. The passed and failed
cases are shown in Table 5 and Table 6 respectively.
Of the four problems correctly predicted before
merging but incorrectly predicted after merging,
two were related to list/sorting operations, while
the others involved mathematical operations such
as modular arithmetic and derivatives.

4https://www.notion.so/
abe03f9afdac42b9a5bee746844518d0

15517

https://www.notion.so/abe03f9afdac42b9a5bee746844518d0
https://www.notion.so/abe03f9afdac42b9a5bee746844518d0

Instruction (Math)
Write a Python function ‘max_fill(grid, capacity): import math‘ to solve the following problem:
You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a
row represents a single unit of water. Each well has a corresponding bucket that can be used to
extract water from it, and all buckets have the same capacity. Your task is to use the buckets
to empty the wells. Output the number of times you need to lower the buckets.
Example 1:
Input:
grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]]
bucket_capacity: 1
Output: 6
Example 2:
Input:
grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]]
bucket_capacity : 2
Output: 5
Example 3:
Input:
grid: [[0,0,0], [0,0,0]]
bucket_capacity : 5
Output: 0
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10ˆ2
* 1 <= grid[:,1].length <= 10ˆ2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
Chosen Response
return sum([math.ceil(sum(arr)/capacity) for arr in grid])
Rejected Response
return sum([math.floor(sum(arr)/capacity) for arr in grid])

Instruction (String)
Write a Python function ‘concatenate(strings: List[str]) -> str‘ to solve the following problem:
Concatenate list of strings into a single string >>> concatenate([]) ’’ >>> concatenate([’a’,
’b’, ’c’]) ’abc’
Chosen Response
return ’’.join(strings)
Rejected Response
return ’ ’.join(strings)

Instruction (Bit Operation)
Write a Python function ‘string_xor(a: str, b: str) -> str‘ to solve the following problem:
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string. >>> string_xor(’010’,
’110’) ’100’
Chosen Response

def xor(i, j):
if i == j:

return '0'
else:

return '1'
return ''.join(xor(x, y) for x, y in zip(a, b))

Rejected Response

def xor(i, j):
if i == j:

return '1'
else:

return '0'
return ''.join(xor(x, y) for x, y in zip(a, b))

Table 5: Passed cases after merging.

15518

Instruction (List/Sorting)
Write a Python function ‘sort_array(array)‘ to solve the following problem:
Given an array of non-negative integers, return a copy of the given array after sorting, you
will sort the given array in ascending order if the sum(first index value, last index value) is
odd, or sort it in descending order if the sum(first index value, last index value) is even.
Note: * don’t change the given array.
Examples:
* sort_array([]) => []
* sort_array([5]) => [5]
* sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5]
* sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0]
Chosen Response
return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0)
Rejected Response
return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 != 0)

Instruction (Math)
Write a Python function ‘derivative(xs: list)‘ to solve the following problem:
xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * xˆ2 +
Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> derivative([1, 2, 3]) [2, 6]
Chosen Response
return [(i * x) for i, x in enumerate(xs)][1:]
Rejected Response
return [(i * x) for i, x in enumerate(xs)]

Table 6: Failed cases after merging.

H Full Results

Full results with different values of λ on Best-of-N
sampling and RM benchmarks are presented here.

H.1 Best-of-N

Figure 4 and 5 demonstrate the results of Best-of-N
sampling on GSM8K when merging our LLaMA-
2 RM with MetaMath-7B (Yu et al., 2024) and
MAmmoTH-7B (Yue et al., 2024a), respectively.
DogeRM shows consistent improvement across dif-
ferent models being merged.

Figure 6 shows the result of Best-of-N sampling
on MBPP when merging our LLaMA-2 RM with
the Code Model. While merging did not lead to a
performance decline, the observed improvement is
modest. We suspect this is attributable to the low
upper bound of reranking performance (represented
by the black line), which limits the potential gains
from reranking in this task.

Finally, Figure 7 shows the results when
merging the Mistral RM (Ray2333, 2024)
with MAmmoTH2-7B-Plus (Yue et al., 2024b).
DogeRM improves the reranking accuracy at an
N=16 setting by 2.88%, indicating that our method
can be generalized to different model architectures.

H.2 RewardBench

Figure 8 and 9 shows the results on different cat-
egories. We further split the reasoning category
into math and coding. Merging LLaMA-2 RM

with math models shows consistent improvement
in both Math and Coding. The performance drop
in chat-hard and safety categories can be observed.

Figure 10 shows the result of merging LLaMA-2
RM with the Code Model. We observe improve-
ments in both the Math and Coding, with a per-
formance drop in both the chat-hard and safety
categories.

Finally, Figure 11 shows the result of merging
Mistral RM with MAmmoTH2-7B-Plus. We im-
prove accuracy on the math subset by 30%, while
the improvement on the coding subset is minor,
likely because the original RM already achieved
high accuracy on this subset. An improvement in
the chat-hard category can also be observed, con-
trary to previous cases, but a performance degrada-
tion in the safety category is found.

We believe that the performance degradation in
safety aligns with observations from Yuan et al.
2024, which indicate that removing safety data
from the RM training set improves reasoning per-
formance, suggesting that modeling safety may
hurt reasoning. As for the chat-hard category, we
did not observe consistent performance degradation
across all combinations. A deeper investigation
into this is left for future work. Despite these is-
sues, our method can effectively equip the LLaMA-
2 RM with domain-specific knowledge, a finding
that holds across different domains as well as dif-
ferent model architectures.

15519

H.3 Auto-J Eval
The results of merging LLaMA-2 RM with math
models are presented in Figure 12 and 13, showing
improvements in both the Code and Math subsets.
A similar observation can be found in Figure 14,
which shows the result of merging LLaMA-2 RM
with the Code Model, and Figure 15, which shows
the result of merging Mistral RM with MAmmoTH-
2-7B-Plus. These results support the conclusion
that DogeRM can equip RMs with domain-specific
knowledge.

15520

(a) Best-of-2 (b) Best-of-4 (c) Best-of-8 (d) Best-of-16

Figure 4: Full results of LLaMA-2 RM + MetaMath on GSM8K.

(a) Best-of-2 (b) Best-of-4 (c) Best-of-8 (d) Best-of-16

Figure 5: Full results of LLaMA-2 RM + MAmmoTH on GSM8K.

(a) Best-of-2 (b) Best-of-4 (c) Best-of-8 (d) Best-of-16

Figure 6: Full results of LLaMA-2 RM + Code Model on MBPP.

(a) Best-of-2 (b) Best-of-4 (c) Best-of-8 (d) Best-of-16

Figure 7: Full results of Mistral RM + MAmmoTH2-Plus on GSM8K.

15521

(a) Chat (b) Chat-Hard (c) Safety

(d) Code (e) Math

Figure 8: Full results of LLaMA-2 RM + MetaMath on Reward Bench.

(a) Chat (b) Chat-Hard (c) Safety

(d) Code (e) Math

Figure 9: Full results of LLaMA-2 RM + MAmmoTH on Reward Bench.

15522

(a) Chat (b) Chat-Hard (c) Safety

(d) Code (e) Math

Figure 10: Full results of LLaMA-2 RM + Code Model on Reward Bench.

(a) Chat (b) Chat-Hard (c) Safety

(d) Code (e) Math

Figure 11: Full results of Mistral RM + MAmmoTH2-Plus on Reward Bench.

15523

(a) Code (b) Math (c) Others

Figure 12: Full results of LLaMA-2 RM + MetaMath on Auto-J Eval.

(a) Code (b) Math (c) Others

Figure 13: Full results of LLaMA-2 RM + MAmmoTH on Auto-J Eval.

(a) Code (b) Math (c) Others

Figure 14: Full results of LLaMA-2 RM + Code Model on Auto-J Eval.

(a) Code (b) Math (c) Others

Figure 15: Full results of Mistral RM + MAmmoTH2-Plus on Auto-J Eval.

15524

