
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 15322–15336
November 12-16, 2024 ©2024 Association for Computational Linguistics

AppBench: Planning of Multiple APIs from Various APPs
for Complex User Instruction

Hongru Wangα†, Rui Wangα†, Boyang Xueα, Heming Xiaγ ,
Jingtao Caoα, Zeming Liuσ, Jeff Z. Panδ‡, Kam-Fai Wongα‡

αThe Chinese University of Hong Kong
γThe Hong Kong Polytechnic University

σBeihang University, δThe University of Edinburgh
hrwang, kfwong@se.cuhk.edu.hk

Abstract

Large Language Models (LLMs) can interact
with the real world by connecting with versa-
tile external APIs, resulting in better problem-
solving and task automation capabilities. Pre-
vious research primarily focuses on APIs with
limited arguments from a single source or over-
looks the complex dependency relationship be-
tween different APIs. However, it is essential
to utilize multiple APIs collaboratively from
various sources (e.g., different Apps in the
iPhone), especially for complex user instruc-
tions. In this paper, we introduce AppBench,
the first benchmark to evaluate LLMs’ ability
to plan and execute multiple APIs from var-
ious sources in order to complete the user’s
task. Specifically, we consider two significant
challenges in multiple APIs: 1) graph struc-
tures: some APIs can be executed indepen-
dently while others need to be executed one
by one, resulting in graph-like execution order;
and 2) permission constraints: which source
is authorized to execute the API call. We have
experimental results on 9 distinct LLMs; e.g.,
GPT-4o achieves only a 2.0% success rate at
the most complex instruction, revealing that
the existing state-of-the-art LLMs still can-
not perform well in this situation even with
the help of in-context learning and finetuning.
Our code and data are publicly available at
https://github.com/ruleGreen/AppBench.

1 Introduction

Empowering Large Language Models (LLMs)
(Zhao et al., 2023) with versatile tools such as re-
trievers (Wang et al., 2023a, 2024b), models (Shen
et al., 2023), and even physical robots (Liang et al.,
2023), holds significant promise in overcoming in-
herent limitations, such as hallucination (Ji et al.,
2023) and outdated information (Nakano et al.,
2021; Liu et al., 2023a), and unveils the immense

† Equal Contributions. Work done when first author visits
EdinburghNLP.

‡ Co-corresponding Authors

Search for a locomotive departing from Portland, OR on the 2nd of
this month to Vancouver, BC, and then search for a residence in
Vancouver for two people with a rating of 4.2 or higher.

from, total, class, … = findtrains (date_of_journey =
2019-03-02, from = Portland, to = Vancouver)

where_to, address, … = searchhouse (number_of_adults
= 2, rating = 4.2, where_to = Vancouver)

…
Visible APPs with APIs

User Instruction

Planning Path

Figure 1: An example of one user instruction requires
two independent APIs from different APPs since input
arguments of both two APIs do not rely on each other.
We use different icons to indicate different APPs, and
color API, and returned arguments and input arguments.

potential for LLMs to tackle increasingly complex
and interactive real-world tasks (Li et al., 2023; Lu
et al., 2023). Over the past several months, lots of
new benchmarks and datasets have been proposed
to evaluate the performance of different LLMs to
adeptly select and execute various tools (Li et al.,
2023; Shen et al., 2023; Huang et al., 2024a), mark-
ing a pivotal milestone in their evolution. Out of
plentiful tools in practice, APIs have become one
of the fundamental and promising tools in today’s
digital world, due to greater flexibility and cus-
tomizability with well-defined format and ease of
execution (Qin et al., 2023).

Previous works have attempted to evaluate
LLMs on their ability to call the correct API in mul-
tiple turn dialogues, such as API-Bank (Li et al.,
2023) and ToolBench (Qin et al., 2024), or single
turn instructions, like APIBench (Patil et al., 2023).
However, most existing benchmarks focus either
on a single API call in a single turn or on APIs
with limited arguments. For instance, API-Bank
mainly evaluate one API call per turn in multi-turn
dialogues, while APIBench and ToolBench consid-
ers APIs only with one or two arguments (e.g., only

15322

https://github.com/ruleGreen/AppBench

one output with one or two inputs). Furthermore,
the small number of arguments makes it difficult
to fully explore the complex dependency relation-
ships between multiple APIs. For instance, the in-
put arguments for a current API may depend on the
return arguments of several previous APIs. These
limitations highlight a gap in addressing complex
user instructions when it is necessary to utilize
multiple APIs in practice, underscoring the need
for more comprehensive and practical evaluation
benchmarks.

To bridge the gap, we introduce a new evalua-
tion benchmark: AppBench, representing the first
effort to assess the aptitude of LLMs to function
as the meta planner for multiple APIs from various
sources for complex user instruction. Specifically,
we simulate a situation in which the user instruction
can be fulfilled through collaboratively API calls
from various APPs in the mobile device. Figure 1
shows one typical example. Given the complex
user instruction, the meta LLM, such as Apple’s
Siri and Google Assistant, need to plan an exe-
cutable path according to user instruction and cor-
responding API descriptions. To fulfill this require-
ment, it is necessary not only to indicate which
APP will distribute and execute each API but also
to specify the execution order of the APIs, includ-
ing all necessary inputs and returned arguments.
We consider this setting aligns well with the com-
plexity and practical limitations in the real world,
and presents a great opportunity for advanced AI
assistants like Apple’s Siri to showcase their intelli-
gence and capability in orchestrating collaborative
API executions across multiple Apps.

In this way, two significant challenges are iden-
tified: graph structure and permission isolation.
Firstly, the inter-dependency between multiple
APIs creates a more complex execution structure.
Some APIs can be executed independently, while
others are dependent and must be executed sequen-
tially, resulting in a graph-like structure. Secondly,
these APIs may originate from different sources,
and the LLM might not have permission to call
them directly. This necessitates identifying the au-
thorized source for each API. For instance, APIs
from one company may only be executed by an
LLM within the same company. In doing so, we
aim to chart a path towards realizing the vision of
an intelligent assistant capable of seamlessly navi-
gating and interfacing with the myriad APPs and
APIs pervasive in contemporary digital ecosystems.

To conclude, our contribution can be summarized
in three folds:

• To the best of our knowledge, we are the first
to identify graph structure and permission iso-
lation issues of multiple API calls when ad-
dressing complex user instructions.

• We propose AppBench, serving as an impor-
tant complementary evaluation benchmark to
assess the planning capabilities of different
LLMs as meta planner for these APIs. Addi-
tionally, we introduce an automatic data col-
lection pipeline, which can be used to gather
data efficiently and effectively.

• Our experimental results on 9 distinct LLMs
demonstrate almost all models, including the
latest GPT-4o, fall short in this setting, par-
ticularly when dealing with complex graph
planning structures. Further analysis shows
that simple in-context learning and fine-tuning
do not significantly improve performance.

2 Related Work

Tool Benchmarks. The complexity of real-world
tasks necessitates the integration of diverse tools
and services, consisting of three types of tools (Qin
et al., 2023): 1) physical interaction-based tools
(Liang et al., 2023); 2) GUI-based tools (Wang
et al., 2024d); and 3) program-based tools (Wang
et al., 2023a; Li et al., 2023). On the one hand,
some work focuses on models, retrievers, or calcu-
lators to address the intrinsic limitations of LLMs,
such as ToolQA (Zhuang et al., 2023) and Tool-
Bench (Qin et al., 2024). On the other hand, an-
other line of work targets APIs since they are par-
ticularly crucial for bridging smooth interaction
between humans and the digital realm (Li et al.,
2023; Qin et al., 2024; Huang et al., 2024a). Most
previous works formulate this as an API selection
task given all related information about each API
and current input, which overlooks the nuanced de-
pendencies and permission constraints between dif-
ferent APIs, such as APIBench (Patil et al., 2023)
and API-Bank (Li et al., 2023). Nevertheless, the
successful execution of APIs in the real world ne-
cessitates meeting requirements fulfilled (either the
value is provided by the user or previous APIs)
and obtaining permission from trusted agents be-
yond just knowing API names and a few arguments.
More details can refer to latest survey (Qu et al.,
2024) and tutorial (Wang et al., 2024a).

15323

Language Agent. Existing frameworks for lan-
guage agents have made notable strides in facili-
tating interaction with external tools (Shen et al.,
2023; Li et al., 2023; Huang et al., 2024a) and en-
vironment (Puig et al., 2018a; Wang et al., 2022).
They usually follow the single-agent paradigm to
access different tools or services sequentially (Lu
et al., 2023; Li et al., 2023), or multi-agent frame-
work by assigning different agents different roles
to call different cognitive tools (Wang et al., 2023b)
. For example, Lu et al. (2023) propose Chameleon
which utilizes one agent to plan the execution or-
der of different services by outputs a sequence of
names of tools, which assume that the agents to call
these tools are already known, and lots of works fol-
low (Xu et al., 2023; Huang et al., 2024a). Further-
more, various benchmarks are proposed to evaluate
the abilities of LLMs serving as agents in differ-
ent situations (Li et al., 2023; Liu et al., 2023b;
Ma et al., 2024). For instance, Yao et al. (2023)
proposes WebShop to evaluate whether LLMs are
capable of interacting with the Web. Similarly,
(Puig et al., 2018b) simulates household activities
through programs, and many works use this as
a testbed for embodied agents (Hao et al., 2024).
Latest work focus on using APIs or functions to
control the whole planning processing of agents
(Wang et al., 2024c).

3 AppBench Construction

In this section, we start with a formal task definition
and then provide a detailed explanation of how we
efficiently and effectively built our AppBench by
leveraging existing datasets.

3.1 Task Definition

Given the user instruction u and a virtual mo-
bile environment with an APP family, E =
{APP1, APP2, ..., APPn} where each APP con-
tains several APIs {p1i , ..pji} where i stands for ith
APP and j means jth API inside this APP, the meta
agent need to decide an executable path to call
different APIs from various APPs to fulfill the in-
struction in the format of the list which each item
in the list is {APPi : r1, r2, .., rm = pji (k1 =

v1, ..., kn = vn)}. The APPi and pji denote the
name of the APP and corresponding API of this
APP, and the ri and ki mean the ith returned and
input arguments respectively. The vi can be the
actual value provided by the user or a returned ar-
gument by previous APIs.

Existing task-oriented
dialogue datasets

Dialogue Context

Please make a hotel
reservation for me to attend
EMNLP 2024 conference.

Summarization

…

APIs from different Apps

Planning Path of used
App and API

build dependency

…

User Instruction

Quality Control

Figure 2: A high-level processing to collect the
AppBench, taking advantages of existing task-oriented
dialogue datasets.

3.2 Data Categorization

Based on the number of APPs and APIs utilized in
each user instruction, the data can be categorized
into four distinct types. Each category represents
a typical use case in practical scenarios, creating
a comprehensive benchmark for evaluating real-
world applications when combined.

• Single APP Single API (SS) The instructions of
the users only need to utilize one API from one
APP.

• Single APP Multiple API (SM) The instructions
of the users need to utilize multiple API from
one APP. It is important to note that these APIs
can be called either sequentially or concurrently,
depending on whether there is a dependency be-
tween their arguments.

• Multiple APPs Single API (MS) The instructions
of the users need to utilize multiple APIs and
each of them belongs to one different APP. Also,
there may exist dependency between APIs across
different APPs.

• Multiple APPs Multiple API (MM) The instruc-
tions of the users need to utilize multiple APIs
and multiple APPs. The difference with MS is
there may exist multiple APIs come from the

15324

Benchmark SS SM MS MM DP
APIBench (Patil et al., 2023) ✓ ✗ ✗ ✗ ✗

API-Bank (Li et al., 2023) ✓ ✗ ✗ ✗ ✗

ToolQA (Zhuang et al., 2023) ✓ ✗ ✗ ✗ ✗

ToolBench (Qin et al., 2024) ✓ ✓ ✓ ✓ ✗

UltraTool (Huang et al., 2024a) ✓ ✓ ✗ ✗ ✓

AppBench (Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison with existing evaluation bench-
marks at the turn-level for a fair comparison. DP stands
for Dependency.

same APP. Furthermore, the dependency relation-
ship between arguments can be the most complex
when dealing with APIs from the same APP or
from different APPs.

Table 1 shows the detailed comparison between
AppBench with other popular benchmarks. Most
of existing benchmark focus on part of these typical
situations or overlook the complex dependency re-
lationships between multiple APIs. In addition, our
formulation highlights the potential for investigat-
ing graph structure and permission management,
considering the inherent complexity of APIs and
Apps, particularly in terms of handling DP in mul-
tiple input and output arguments.

3.3 Data Collection

To maximize the authenticity of user instructions
and minimize human efforts, we prioritize using
existing task-oriented dialogue datasets (Rastogi
et al., 2020; Budzianowski et al., 2018). These
datasets are typically collected through human-to-
human interactions in real-world scenarios and con-
tain a wide range of APIs across numerous domains
and services. Specifically, we selected the SGD
(Rastogi et al., 2020) dataset as the seed dataset
because it encompasses most of the domains and
APIs. We then utilized LLMs and Python scripts
to generate the desired inputs and outputs, respec-
tively. Figure 2 illustrates the detailed procedures.

Instruction Acquisition. Firstly, we extract the
utterances of the user and system in the task-
oriented dialogue and feed it into the LLM1 to
summarize the user’s requirements in one instruc-
tion. For example, the user may want to know the
city and date of EMNLP 2024, and book a hotel
according to the city and date. In the previous
task-oriented dialogue, this is achieved by multi-
turn interactions. In contrast, we summarize the
whole dialogue into one complex user instruction to
mimic more natural and complex cases in practice.

1GPT-4o during the collection

Statistics SS SM MS MM
Samples 200 200 200 200
Apps 9 11 10 11
APIs 11 22 12 23
Avg. Apps 1.0 1.0 2.7 2.2
Avg. APIs 1.0 2.2 2.7 3.3
Avg. arguments 4.0 4.5 3.8 4.4
Max. Seq. 1 4 4 8
Max. Para. 1 1 4 3
Avg. Seq. 1 2.2 1.2 1.9
Avg. Para. 1 1.0 2.2 1.8

Table 2: The data statistics of our proposed AppBench.

To ensure that the values of certain intermediate
arguments (such as date and city) are not disclosed
at the instruction, we require the LLM to avoid out-
putting the actual values of other arguments, except
for those that are explicitly provided in the prompts,
such as user-aware arguments. The prompt details
can be found in Appendix A 2.

Planning Path. Besides the instruction part, we
write a Python script to automatically parse the
API calls at different system turns in the multi-
turn dialogue to form the planning path as the
output. Specifically, we regard different domains
(a.k.a., services) in task-oriented dialogue as dif-
ferent APPs such as restaurants and hotels, and
extract the name of the domain and API first to
locate which APP should invoke to call the API,
and then we follow the execution order of different
APIs to build the dependency between various ar-
guments. For example, if the returned arguments
from the previous API are required in the current
API, we use #name to indicate it such as #date and
#city in the Figure 2. In this way, we can get an
executable and unique path to execute APIs from
different APPs.

Quality Assessment To ensure the quality of
data, we utilize a Python script to validate whether
or not all actual values are provided from the user
side, and none of values are provided from the sys-
tem side. Furthermore, we adapt GPT-4o to score
each instruction in terms of fluency and diversity
from 1 to 10, and then remove cases whose score is
lower than 6. Approximately 20% of the samples
were removed, and the average score of the remain-
ing samples is around 8.05. We finally manually
check each instruction-path pair, and remove some

2All prompts can be found in Appendix if not stated.

15325

Data
Type Example Structure

SS
Instruction: Find a house with a rating of 4.6 or higher for a trip to Delhi for two people, inquire about laundry service availability
Output:
House: address, phone_number, total_price, has_laundry_service, … = searchhouse(number_of_adults='2', rating='4.60', where_to='Delhi’)

SM

Instruction: Please book a Hatchback car with insurance to be picked up from Warsaw Chopin Airport on March 7th at 1:30 pm, and returned on
March 13th in Warsaw.
Output:
Rents: pickup_location, price_per_day, ….. = getcarsavailable(car_type='Hatchback', city='Warsaw', end_date='2019-03-13', pickup_time='13:30',
start_date='2019-03-07’)
Rents: car_type, car_name, …… = reservecar(add_insurance=‘True’, car_type=car_type, end_date=end_date, pickup_location=#pickup_location,
pickup_time=pickup_time, start_date=start_date)

MS

Instruction: Search for a locomotive departing from Portland, OR on the 2nd of this month to Vancouver, BC, and then search for a residence in
Vancouver for two people with a rating of 4.2 or higher.
Output:
Train: from, total, class, … = findtrains (date_of_journey = 2019-03-02, from = Portland, to = Vancouver)
House: address, phone_number, total_price, has_laundry_service, … = searchhouse(number_of_adults=‘2’, rating=‘4.2‘, where_to=
Vancouver’)

MM

Instruction: Please make a reservation for 3 people at one Korean restaurant in San Francisco at 1:30 pm on March 12th, and also book a Luxury
taxi for 3 to 4 Embarcadero Center.
Output:
Restaurant: restaurant_name, has_vegetarian_options, phone_number, rating, address, price_range, category, … = findrestaurants (category
='Korean', has_seating_outdoors='True', location='San Francisco’)
Restaurant: date, time, location, …… = reserverestaurant (date=‘2019-03-12’, location=location, number_of_seats=‘3’, restaurant_name =
#restaurant_name, time='13:30’)
Rents: destination, ride_type, ride_fare, wait_time, number_of_seats = getride(destination='4 Embarcadero Center', number_of_seats=‘3’,
ride_type='Luxury')

Para.=1
Seq.=1

Para.=1
Seq.=2

Para.=2
Seq.=(1,1)

Para.=2
Seq.=(2,1)

Figure 3: An example of different types of samples in AppBench. We color APP, API, and returned arguments
and input arguments. We also present the structure of the example using grey nodes and colorful nodes to indicate
user instruction and APIs from different APPs, respectively. We bold the argument which is returned by the
previous API call (a.k.a., dependency relationship). Para. and Seq. represents the parallel and sequential size
of the corresponding data sample. We emphasize we only choose the simplest examples in each type for better
understanding, there are data samples with much more complex logic structures in the original dataset.

mismatch pairs such as the instruction is simple or
API calls can not complete the user instructions,
resulting in 200 high-quality samples for each cate-
gory.

3.4 Data Statistic

Table 2 illustrates the statistics of AppBench.
Specifically, there are approximately 10 different
APPs for each type and over 20 various APIs in
both MS and MM. We provide the list of all APP
and API in Table 8. Secondly, the average num-
ber of APIs increases from SS, SM to MS, MM,
revealing the complex relationship. We also em-
phasize that the higher number of arguments for
each API aligns with the complicated nature of
tool execution in practice, as there may be multiple
input and returned arguments for one API. Further-
more, we provide statistics about sequential and
parallel relationships in each category (Seq. and
Para.), revealing the complex graph structure in the
dataset. Figure 3 presents one example for each
category for better understanding. More analysis
can be found in the Appendix A.2.

4 Experiments

4.1 Setup

Models. We choose several LLMs from both
open- and closed-source models, aiming to provide

a comprehensive evaluation, following (Huang
et al., 2024a; Zhuang et al., 2023). Specifically, we
choose Mistral-7B (Mistral-7B-v0.2) (Jiang
et al., 2023), the LLaMa3 series (AI@Meta, 2024)
(Meta-Llama-3-8B/70B-Instruct),
and the Qwen series (Bai et al., 2023)
(Qwen1.5-7B/14B/72B-Chat) from open-
source LLMs. Besides that, we also select GPT3.5
(gpt-3.5-turbo) and GPT4 (gpt-4o) from
closed-source LLMs. We also tried other models
such as LLaMA2-7B or Vicuna but we find it
difficult for them to output in the required format.

Implementation Details. We set the temperature
and top p as 0.1 to reduce randomness. The experi-
ments of open-source models are run on NVIDIA
A100 GPUs and those of closed-source models are
fulfilled by APIs of OpenAI. To address the limita-
tions imposed by the varying context windows of
different LLMs, we adopt a hierarchical prompting
approach. First, we prompt the LLMs to identify
the relevant APP. Once the appropriate APP is de-
termined, we then provide the LLMs with only the
API descriptions of these specific APPs.

4.2 Evaluation Metrics

In order to evaluate the LLMs’ capabilities of se-
lecting proper APPs, choosing APIs, and fulfilling
all arguments to execute the API based on the users’

15326

Models SS SM MS MM
F1app F1api Succ F1app F1api Succ F1app F1api Succ F1app F1api Succ

Mistral-7B 55.97 16.31 0.51 36.59 15.09 0.50 33.72 6.42 0.00 28.92 7.56 0.00
Vicuna-13B 43.20 3.70 2.00 34.71 4.63 0.50 20.43 3.10 0.00 21.05 2.52 0.00
LLaMA3-8B 63.04 42.67 23.23 37.20 25.33 0.50 30.65 19.52 0.10 26.39 17.80 0.05
LLaMA3-70B 71.20 70.00 50.00 46.48 46.96 10.50 32.61 32.96 2.50 28.97 28.53 0.50
QWen1.5-7B 48.14 19.54 0.00 30.13 16.71 0.00 23.24 10.11 0.00 23.76 11.55 0.00
QWen1.5-14B 72.89 28.41 10.10 41.89 25.51 1.50 42.22 21.98 0.80 32.36 15.07 0.00
QWen1.5-72B 81.23 24.28 12.50 51.89 25.27 1.00 45.94 13.42 0.62 38.53 11.51 0.00
GPT-3.5 63.60 57.95 30.81 41.49 43.65 6.50 33.17 34.53 7.00 27.79 28.09 1.00
GPT-4o 88.31 86.87 70.92 50.83 50.57 20.50 39.39 39.14 11.00 32.62 32.35 2.00

Table 3: The main results of different LLMs on AppBench. Bold highlights the best score among all models, and
underline underscores the best score under the same model scale

instruction, we carefully design two F1 scores for
APP and API, and one overall success rate consid-
ering the complexity of the task. We also provide
the results of EM metrics in the Appendix.

F1 of App. We first get the precision Papp as the
number of correctly predicted APPs divided by the
total number of APPs predicted by the model:

Papp =
app_hit_num
app_pred_num

(1)

and recall Rapp as the number of correctly pre-
dicted APPs divided by the total number of APPs
that are in the ground truth as follows.

Rapp =
app_hit_num

app_ground_truth_num
(2)

The F1 of App score is 2PR / (P+R), as usual.

F1 of API. Similarly, the metrics of API predic-
tions can be evaluated using F1api. Note that we
only consider the name of the API here to deter-
mine LLM whether or not to choose the right API,
and the performance of arguments of APIs is eval-
uated in the next metric.

Success Rate (Succ): This metric evaluates
whether the LLMs can fully execute the user’s
instruction by correctly identifying all required
APPs, APIs, and arguments. It is defined as the
proportion of instances where all elements—APP,
API, and arguments—are in perfect alignment with
the ground truth, considering the complex depen-
dency relationship between different APIs across
APPs, resulting in a direct measure of model ca-
pability in full instruction fulfillment. Since there
may exist different output orders, we calculate this
at the structure level since the execution structure
is unique.

4.3 Main Results

Table 3 shows the results of different LLMs for
different types of user instructions on AppBench,
respectively. Several conclusions can be drawn
from the results 3.

Overall, GPT-4o achieves the best overall perfor-
mance, while LLaMA3-70B sometimes outper-
forms GPT-3.5, mostly in scenarios only involv-
ing single APP. In general, other models signif-
icantly lag behind GPT-4o in all types of instruc-
tions, and only QWen1.5-72B or LLaMA3-70B
achieves better or competitive performance com-
pared with GPT-4o. Despite significant advance-
ments in LLMs, the existing models still fall short
in addressing the complexities of planning cases
such as multiple APPs and multiple APIs. One fact
is that all LLMs only get less than 3% Succ in MM
situations.

As the size of the model increases, the perfor-
mance can get further improved regardless of
the type of instructions and the improvement be-
comes less significant with multiple APPs. As
evidenced by LLaMA3 and QWen1.5 series mod-
els, we can find that large models mostly lead to
better performance. However, when the instruction
requires coordination between multiple APPs, most
models show a significant drop in performance and
some models even get 0 at Succ, such as QWen1.5-
7B and 14B. Moreover, the F1app can get around
10% improvement in a single APP while only less
than 5% in LLaMA3 series models.

The complexity of planning highly impacts the
performance of these models. From the varying
scores of different LLMs across different scenarios,

3The conclusions are consistent with EM results at Ta-
ble 11.

15327

Figure 4: The relationship between GPT-4o’s perfor-
mance with parallel and sequential scaling. Both par-
allel and sequential scaling cause challenges for model
performance.

a trend in performance emerges: the observed order
of performance is approximately: MM < MS < SM
< SS. This trend exists in most LLMs such as GPT-
4o, QWen1.5-14B, LLaMA3-8B, and LLaMA3-
70B. The slight difference between SM and MS
can be attributed to different percentages of spe-
cific data examples such as the number of APPs
and APIs. This kind of trend also aligns well with
our intuition that the MM scenario is the most com-
plicated, followed by MS and SM, and SS is the
simplest.

5 Analysis

In this section, we conduct a comprehensive
analysis, aiming to answer three research ques-
tions. RQ1: How do the parallel and sequential
dependencies influence the model performance?
(Sec 5.1) RQ2: Is it necessary to identify APP
first to reduce the context window? (Sec 5.2) and
RQ3: What is the major bottleneck of current
LLMs (Sec 5.3), and can fine-tuning or in-context
learning alleviate it? (Sec 5.4, 5.5).

5.1 The Effects of Dependency Structures

We classify the dependency structures among APIs
as twofold: parallel execution and sequential exe-
cution. For each data sample, we measure the par-
allel execution scale by the number of connected
components of APIs and use the average size of
these API-connected components as the sequential
execution scale. The data sample with a sequen-
tial scale of 1 means no sequential dependencies
among APIs. All of the APIs can be finished in a
parallel way. Then, we classify the data samples of
AppBench based on the above criteria and discard
the categories with less than 10 samples.

SS

20

40

60

80

Pe
rfo

rm
an

ce

GPT-3.5-hier
GPT-3.5-flat
GPT-4o-hier
GPT-4o-flat

SM
0

10

20

30

40

50

GPT-3.5-hier
GPT-3.5-flat
GPT-4o-hier
GPT-4o-flat

F1_APP F1_API Succ

MS

10

20

30

40

Pe
rfo

rm
an

ce GPT-3.5-hier
GPT-3.5-flat
GPT-4o-hier
GPT-4o-flat

F1_APP F1_API CIFR

MM

0

10

20

30

GPT-3.5-hier
GPT-3.5-flat
GPT-4o-hier
GPT-4o-flat

Figure 5: The performance gap between hierarchical
and flat prompting on GPT-3.5 and GPT-4o.

We illustrate the Exact Match (EM) of Argu-
ments of GPT-4o in Figure 4 since arguments are di-
rectly related to the dependency relationship. First
of all, when the parallel scale is fixed, an increased
sequential scale becomes more challenging for
GPT-4o, and vice versa. Secondly, GPT-4o appears
to struggle more with sequential-complex data than
parallel-complex samples. The gap between differ-
ent para. size (i.e., when seq. size is fixed) is much
smaller than the gap between different seq. size
(i.e., when para. size is fixed).

5.2 The Effects of Different Prompting

In the main experiments, we initially required
LLMs to select candidate APPs based on user in-
put and the APP’s descriptions, and then generate
API calls, resulting in hierarchical prompting. Re-
cently, many studies have expanded the context
of LLMs to 200K or more (Huang et al., 2024b).
Many of these works proposed LLMs with a con-
text window that is sufficient to accommodate all
the descriptions of APPs and APIs at once (flat
prompting). Therefore, this section explores how
the model would perform if we directly provided
all apps and APIs to the model. We test GPT-3.5
and GPT-4o and compare the results in Figure 5.

We can observe that flat prompting has impacted
the performance of the GPT-3.5, with obvious de-
clines in metrics such as F1app scores across data
types. We attribute this to the introduction of a
large amount of irrelevant information, which af-
fects the model’s understanding and extraction of
useful APPs and APIs. Surprisingly, the GPT-
4o model achieved better performance using flat

15328

Category Keys Values
I D I D T/S

SS 6.1 - 6.6 - 42.1/26.3
SM 5.5 8.0 2.5 75.5 27.1/15.2
MS 6.0 1.0 6.0 30.0 45.1/8.8
MM 19.0 15.0 6.0 82.0 36.8/24.6

Table 4: Error analysis of GPT-4o on AppBench. I
and D stand for independent and dependent variables or
values, respectively, between multiple APIs. T/S refers
to time-related or space-related values, such as start date
and location.

prompting. We believe this is due to the GPT-4o’s
more powerful long-context understanding capabil-
ities, which allow it to accurately identify the re-
quired APP and API. Moreover, the absence of the
error propagation effect that occurs during the first
APP selection step of hierarchical prompting, has
led to a clear improvement in performance. How-
ever, flat prompting requires a strong contextual
capability that few models possess, and it necessi-
tates the input of a large number of irrelevant to-
kens, which incurs additional computational power
consumption.

5.3 Error Analysis

We further conduct error analysis at the argument
level since it is directly related to different rela-
tionships between multiple APIs, to identify poten-
tial bottlenecks of the current best model: GPT-4o.
Specifically, there are two main categories of errors
to consider: 1) key error. It occurs when the model
predicts fewer keys than expected to successfully
execute the API call, and it can be further divided
into two types: Independent: The missing or in-
correct keys are from the independent variables
or arguments and Dependent: The missing or in-
correct keys are from the dependent variables or
arguments; and 2) value error. it occurs when the
model predicts values that do not match the ground
truth values, given the name of the key. Value errors
can also be divided into I and D types.

Table 4 presents the percentage of error cases
over the number of total arguments in each cat-
egory while T/S is the percentage over all error
arguments in each category. It is found that as
complexity increases, errors also increase. The
lower D-key error and D-value error in MS can be
attributed to a smaller percentage of dependency
cases in this category. Out of all types of errors, the
D-value error appears to be the biggest bottleneck
or challenge for the LLM. Further analysis reveals

0

50
23.23

16.24

original
finetune

0

25
0.5 1.0

original
finetune

F1_APP F1_API Succ
0

20

0.1 1.5

original
finetune

F1_APP F1_API Succ
0

20

0.05 0.0

original
finetune

Figure 6: The performance gap between original
LLaMA3-8B and finetuned one.

that the value errors are particularly prevalent for
time and space-related keys. For example, the lan-
guage models may struggle to accurately recognize
or reason about date/time expressions used in the
user’s input, such as "next Monday".

5.4 The Effects of Fine-tuning

We additionally collected around 1,000 samples for
each category from the training dataset of SGD,
resulting in 4,000 samples total. We then used this
mixed dataset to fine-tune the LLaMA3-8B model.
Figure 6 shows the final results. Further fine-tuning
on in-domain data did bring some improvement
in the F1 score of the APP and API, but can not
boost the performance for the Succ. Upon closer
inspection, we found that the major reason for the
lower performance on Succ was due to issues with
recognizing or matching the keys and values in the
input arguments. The model sometimes failed to
recognize all the necessary input keys and values,
or mistakenly used keys from other APIs. This
appears to be strongly related to the complexity of
the task. Factors like the dependency relationships
between multiple APIs, as well as the lengthy API
descriptions, made it challenging for the LMs to
fully capture the necessary patterns and logic.

5.5 The Effects of In-context Learning

Table 5 shows the in-context performance of GPT-
4o when using different shots at the demonstrations.
Specifically, we randomly sample (instruction, out-
puts) from the same training set created during
fine-tuning according to the used APP in the cur-
rent instruction. For example, if the used APP in
current instruction is Hotel, we sample the first 3
appeared samples with the same APP in the training
set to form 3-shot demonstrations, aiming to save
the space of additional API descriptions and make
the agent familiar the utilization of current API.
From the table, we find that in-context learning

15329

Settings SS SM MS MM
F1app F1api Succ F1app F1api Succ F1app F1api Succ F1app F1api Succ

GPT-4o 88.31 86.87 70.92 50.83 50.57 20.50 39.39 39.14 11.00 32.36 32.35 2.00
3-shot 93.73 90.73 81.63 51.16 50.90 13.50 40.12 39.92 12.50 32.72 32.73 2.50
4-shot 93.23 89.72 79.59 50.96 50.70 14.00 40.29 40.29 10.50 32.44 32.44 3.00
5-shot 93.70 91.18 79.59 50.32 50.06 14.00 40.33 40.12 12.50 32.36 32.36 2.50

Table 5: In-context learning results of GPT-4o on AppBench.

shows some improvement in simpler cases, such as
SS (≈ 10 points increase on Succ). However, the
performance does not improve further as situations
become more complex and even decreases in sce-
narios like SM or MS, highlighting the challenges
of complex planning. The worst performance in
SM may be strongly related to our sampling strat-
egy, as we only consider the APP level rather than
different APIs within the same APP. More effective
in-context learning for complex planning is desired
and warrants further exploration and attention.

6 Conclusion

In this paper, we introduce a new benchmark,
AppBench, addressing the challenge of complex
user instructions that require the involvement of
multiple APIs. These scenarios demand advanced
planning capabilities from LLMs to effectively han-
dle graph structures and ensure permission iso-
lation in practical applications. We left the self-
evolving or more effective fine-tuning framework
in our future work.

7 Acknowledgement

Thanks for the insightful comments and feedback
from the reviewers. This work was supported by
the National Key R&D Program of China (No.
2023YFF0725600) and the National Natural Sci-
ence Foundation of China (No. 62406015). This
research work also is partially supported by CUHK
direct grant (No. 4055209) and CUHK Knowledge
Transfer Project Fund No. (KPF23GWP20).

8 Limitations

We acknowledge the following limitations in terms
of the evaluations and benchmarks.

Evaluations. We do not consider the existing
agent framework since we mainly focus on the
base capabilities of various LLMs on this new
benchmark. We anticipate that introducing ad-
ditional reflection or a carefully designed agent

framework may further boost the performance of
original LLMs.

Benchmarks. We mainly take advantage of exist-
ing task-oriented datasets to build our benchmark,
which brings two limitations: 1) We main focus
on text-based natural language interactions while
the API also works at different modalities. We
leave this in future work, and 2) We do not con-
sider APPs with overlap or similar functions, but
they exist in practice such as different platforms
to buy tickets. We argue that these apps can often
be distinguished through minor modifications to
the app names and APIs. The specific choice of
which app a user selects ultimately comes down to
individual user preferences, which is outside the
scope of this paper.

9 Ethical Considerations

In conducting our research, we have thoroughly
reviewed and ensured compliance with ethical stan-
dards. Our study utilizes existing datasets, which
have been publicly available and previously vetted
for ethical use. These datasets have been carefully
selected to avoid any form of offensive or biased
content. Therefore, we consider that our research
does not present any ethical issues. The data used
is ethically sourced, the analysis is unbiased, and
all procedures align with established ethical guide-
lines.

References
AI@Meta. 2024. Llama 3 model card.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang

15330

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz–a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2024. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji-
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,
Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng
Xu, and Qun Liu. 2024a. Planning, creation, usage:
Benchmarking llms for comprehensive tool utiliza-
tion in real-world complex scenarios.

Yunpeng Huang, Jingwei Xu, Junyu Lai, Zixu Jiang,
Taolue Chen, Zenan Li, Yuan Yao, Xiaoxing Ma,
Lijuan Yang, Hao Chen, Shupeng Li, and Penghao
Zhao. 2024b. Advancing transformer architecture in
long-context large language models: A comprehen-
sive survey.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. API-bank: A comprehensive
benchmark for tool-augmented LLMs. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 3102–3116,
Singapore. Association for Computational Linguis-
tics.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2023. Code as policies: Language model pro-
grams for embodied control.

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng,
Zhengxiao Du, Peng Zhang, Yuxiao Dong, and
Jie Tang. 2023a. Webglm: Towards an efficient
web-enhanced question answering system with hu-
man preferences. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 4549–4560.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie
Huang, Yuxiao Dong, and Jie Tang. 2023b. Agent-
bench: Evaluating llms as agents.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-
positional reasoning with large language models.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An ana-
lytical evaluation board of multi-turn llm agents.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018a. Virtualhome: Simulating household activities
via programs. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018b. Virtualhome: Simulating household activities
via programs.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023. Tool learning with foundation
models.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong

15331

http://arxiv.org/abs/2305.11554
http://arxiv.org/abs/2305.11554
http://arxiv.org/abs/2401.17167
http://arxiv.org/abs/2401.17167
http://arxiv.org/abs/2401.17167
http://arxiv.org/abs/2311.12351
http://arxiv.org/abs/2311.12351
http://arxiv.org/abs/2311.12351
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.187
http://arxiv.org/abs/2209.07753
http://arxiv.org/abs/2209.07753
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2401.13178
http://arxiv.org/abs/2401.13178
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/1806.07011
http://arxiv.org/abs/1806.07011
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr

Wen. 2024. Tool learning with large language mod-
els: A survey.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 34, pages 8689–8696.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
hugging face.

Hongru Wang, Minda Hu, Yang Deng, Rui Wang, Fei
Mi, Weichao Wang, Yasheng Wang, Wai-Chung
Kwan, Irwin King, and Kam-Fai Wong. 2023a. Large
language models as source planner for personalized
knowledge-grounded dialogues. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 9556–9569, Singapore. Association for
Computational Linguistics.

Hongru Wang, Yujia Qin, Yankai Lin, Jeff Z. Pan, and
Kam-Fai Wong. 2024a. Empowering large language
models: Tool learning for real-world interaction. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’24, page 2983–2986, New
York, NY, USA. Association for Computing Machin-
ery.

Hongru Wang, Huimin Wang, Lingzhi Wang, Minda
Hu, Rui Wang, Boyang Xue, Hongyuan Lu, Fei Mi,
and Kam-Fai Wong. 2023b. Tpe: Towards better
compositional reasoning over conceptual tools with
multi-persona collaboration.

Hongru Wang, Boyang Xue, Baohang Zhou, Rui Wang,
Fei Mi, Weichao Wang, Yasheng Wang, and Kam-
Fai Wong. 2024b. UniRetriever: Multi-task candi-
dates selection for various context-adaptive conver-
sational retrieval. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 17074–17086, Torino, Italia.
ELRA and ICCL.

Hongru Wang, Boyang Xue, Baohang Zhou, Tianhua
Zhang, Cunxiang Wang, Guanhua Chen, Huimin
Wang, and Kam fai Wong. 2024c. Self-dc: When
to retrieve and when to generate? self divide-and-
conquer for compositional unknown questions.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan,
Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang.
2024d. Mobile-agent: Autonomous multi-modal mo-
bile device agent with visual perception.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and
Prithviraj Ammanabrolu. 2022. ScienceWorld: Is
your agent smarter than a 5th grader? In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11279–11298,

Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2023. Webshop: Towards scalable
real-world web interaction with grounded language
agents.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolqa: A dataset for llm
question answering with external tools.

15332

http://arxiv.org/abs/2405.17935
http://arxiv.org/abs/2405.17935
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580
https://doi.org/10.18653/v1/2023.findings-emnlp.641
https://doi.org/10.18653/v1/2023.findings-emnlp.641
https://doi.org/10.18653/v1/2023.findings-emnlp.641
https://doi.org/10.1145/3626772.3661381
https://doi.org/10.1145/3626772.3661381
http://arxiv.org/abs/2309.16090
http://arxiv.org/abs/2309.16090
http://arxiv.org/abs/2309.16090
https://aclanthology.org/2024.lrec-main.1483
https://aclanthology.org/2024.lrec-main.1483
https://aclanthology.org/2024.lrec-main.1483
http://arxiv.org/abs/2402.13514
http://arxiv.org/abs/2402.13514
http://arxiv.org/abs/2402.13514
http://arxiv.org/abs/2401.16158
http://arxiv.org/abs/2401.16158
https://doi.org/10.18653/v1/2022.emnlp-main.775
https://doi.org/10.18653/v1/2022.emnlp-main.775
http://arxiv.org/abs/2305.18323
http://arxiv.org/abs/2305.18323
http://arxiv.org/abs/2207.01206
http://arxiv.org/abs/2207.01206
http://arxiv.org/abs/2207.01206
http://arxiv.org/abs/2306.13304
http://arxiv.org/abs/2306.13304

A Data Collection

A.1 Prompt Details

Your task is to generate a complex instruction in one sen-
tence which exactly reflect what user want to do during
the dialogue with the dialogue system as follows.

Please give all specific values of user requirements in user
aware arguments {user_aware_arguments}.

You should not know any values of other arguments speci-
fied by the system side.

Table 6: The prompt used to prompt LLM to generate
the summarized instruction

Please evaluate the given instruction based on the follow-
ing criteria:

Fluency:
– Evaluate the prompt’s clarity, coherence, and ease of
understanding.
– Consider factors such as the organization, language flow,
and presentation of the prompt.

Diversity:
– Evaluate the range of topics, perspectives, and related
APP and APIs covered by the prompt.

Please only output the overall score considering both of
fluency and diversity. The overall score should be a value
between 1 and 10, with 10 representing the best.

Table 7: Prompts to evaluate the quality of generated
instructions.

A.2 Data Statistics
Definition of Parallel and Sequential In this sec-
tion, we delve into the execution logical structure
inherent in each data sample to have a better under-
standing of task complexity. We conceptualize the
APIs used within a single data instance as nodes
within a directed graph and the dependency among
them as the directed edges. Consequently, we an-
alyze the interrelations among all APIs within the
data sample and construct a corresponding graph
for each of them. It is important to notice that
not all APIs within a sample are interdependent,
and some may operate independently. As a result,
the APIs within the same data sample generally
form several distinct components. We treat each
component as a unit to perform topological sorting.
The execution process of each unit can be paral-
lel, while the procedure within the component is
sequential.

As shown in Figure 3, the illustrated MM sample
needs to leverage 2 APIs from APP-1 and 3 APIs

from APP-2 to fulfill the user instruction. Though
APIs of APP-1 are interdependent, they do not need
results from APIs of APP-2. Hence the formed
graph of this sample has 2 components, with a size
of 2 and 1. These two components can be fulfilled
simultaneously, but the results from APIs of APP-1
or APP-2 need to be executed one by one.

Above all, to quantify the complexity inherent
in these interactions, we compute both the average
and maximum sizes of these components as sequen-
tial scale(Max. and Avg. Seq. in Table 2), which
reflect the complexity of sequential dependency
among the APIs. Additionally, we measure both
the average and the maximum number of compo-
nents within each sample (Max. and Avg. # Para.
as the parallel scale, providing insight into the level
of parallelism among the APIs or components.

As shown in Table 2, the instances of SS and
SM are relatively simple. Since the samples of
MS have the most complex sequential scales. The
samples of MM are the most complex since their
parallel and sequential scales are relatively larger
than the others.

B Experimental Details

15333

App APIs
Rents getcarsavailable, reservecar, getride
Hotels searchhouse, bookhouse
Services book_stylist_appointment, find_stylist_provider, book_therapist_appointment, find_therapist_appointment
Restaurant reserverestaurant, findrestaurants
Movies buymovietickets, findmovies, gettimesformovie, reviewmovies
Trains gettraintickets, findtrains
Events findevents, buyeventtickets
Travel findattractions
Buses findbus, buybusticket
Flights searchonewayflight, searchroundtripflights
Payment requestpayment, makepayment
Music playmedia, lookupmusic
Weather getweather

Table 8: List of All Apps and their corresponding APIs in the MetaBench.

Your task is to determine the required App list according
the description of each App and user requirements.

Here is the information about all accessible Apps:
{app_desc}

Make your response short and concise. Your ONLY need
to return needed app names and your output MUST follow
this format: [app1, app2, ...]

User Instruction: {user_instruction}

Table 9: Prompts to select APP first.

15334

Your task is to generate App name and corresponding API
calls to complete the user requirements according to given
descriptions of all Apps and APIs.

Here is the information about all accessible Apps and
corresponding APIs. {app_api_list}

Your output should follow the format as follows:
app1: [returned_argument1, returned_argument2, ... =
app1_api1(#argument1=value1, #argument2=value2, ...)]
app1: [returned_argument1, returned_argument2, ... =
app1_api2(#argument1=value1, #argument2=value2, ...)]
app2: [returned_argument1, returned_argument2, ... =
app2_api1(#argument1=value1, #argument2=value2, ...)]

Here are explanations:
1. API Naming Convention
– The API call format is [returned_argument1, re-
turned_argument2, ... = app1_api1(#argument1=value1,
#argument2=value2, ...)].
– app1 signifies the name of app1, and app1_api1 signifies
the name of api1 in the app1.

2. Arguments
– argument1 is the first input arguments for the correspond-
ing api, and so on.
– returned_argument1 is the first output arguments from
the corresponding api, and so on.
– Input arguments include both required and optional argu-
ments as described in the corresponding API description
of App.
– The order and names of input and returned arguments
must exactly match the given description.

3. Values of Input Arguments
– If specified by the user, replace the placeholder with the
actual value.
– If not specified by the user, omit the optional arguments
from the API call.
– If an argument value is dependent on another API’s
output, use the name of the returned argument as the value.
– There are no default values for any arguments. All re-
quired arguments must be provided by the user or through
dependencies on other APIs’ outputs.
– You should be careful about the date value, you need to
infer it based on current date "2019-03-01".

4. Order of Execution:
– Execute APIs in a sequence that respects their dependen-
cies. For example, if api2 requires an output from api1,
ensure api1 is executed before api2.
– Handle cases where multiple APIs’ outputs are required
for a single API’s input by waiting for all dependent APIs
to execute before calling the dependent API.

Example:
If api2 in app1 depends on the output of api1 in app1 and
an optional argument is not provided by the user:
app1: [output1 = app1_api1(#argument1=value1)]
app1: [output2 = app1_api2(#argument2=output1)]

If api3 in app2 requires outputs from both api1 in app1
and api2 in app1:
app1: [output1 = app1_api1(#argument1=value1)]
app1: [output2 = app1_api2(#argument2=output1)]
app2: [output3 = app2_api3(#argument3=output1, #argu-
ment4=output2)]

User Instruction: {user_instruction}

Table 10: Prompts to generate the final planning path to
fulfill the user instruction. 15335

Models SS SM MS MM
APP API APP API APP API APP API

Mistral-7B 27.27 14.14 19.50 4.50 1.50 1.00 2.00 0.00
Vicuna-13B 31.82 21.21 7.00 3.00 1.50 0.50 0.00 0.00
LLaMA3-8B 47.98 47.47 19.00 17.50 12.50 9.50 4.50 5.50
LLaMA3-70B 60.94 58.33 51.00 49.00 12.00 6.50 16.00 8.50
QWen1.5-7B 28.28 12.63 11.50 4.00 2.50 0.50 4.00 1.50
QWen1.5-14B 56.57 41.92 10.50 10.00 5.60 4.00 1.50 1.50
QWen1.5-72B 71.88 32.29 38.50 9.50 2.47 1.85 4.50 3.50
GPT-3.5 44.44 52.02 30.50 31.00 31.00 19.00 18.50 19.50
GPT-4o 79.59 78.06 55.50 51.50 35.50 26.50 29.50 24.00

Table 11: The Exact Match (EM) results of different LLMs on MetaBench. Bold highlights the best score among
all models, and underline underscores the best score under the same model scale

15336

