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Abstract

Table entity linking (TEL) aims to map entity
mentions in the table to their corresponding
entities in a knowledge base (KB). The core
of this task is to leverage structured contexts,
specifically row and column contexts, to en-
hance the semantics of mentions in entity dis-
ambiguation. Most entity linking (EL) meth-
ods primarily focus on understanding sequen-
tial text contexts, making it difficult to adapt to
the row and column structure of tables. Addi-
tionally, existing methods for TEL indiscrimi-
nately mix row and column contexts together,
overlooking their semantic differences. In this
paper, we explicitly distinguish the modeling
of row and column contexts, and propose a
method called RoCEL to capture their distinct
semantics. Specifically, for row contexts in ta-
bles, we take the attention mechanism to learn
the implicit relational dependencies between
each cell and the mention. For column contexts
in tables, we employ a set-wise encoder to learn
the categorical information about the group of
mentions. At last, we merge both contexts to
obtain the final mention embedding for link
prediction. Experiments on four benchmarks
show that our approach outperforms the state-
of-the-art (SOTA) baseline by about 1.5% on
the in-domain dataset, and by 3.7% on average
across three out-of-domain datasets.

1 Introduction

TEL is an important task in natural language pro-
cessing (NLP), which serves as a building block of
table understanding. It benefits many downstream
table-oriented tasks. For instance, in table question
answering (Chemmengath et al., 2021), it helps
locate the answer for entity-centric questions. In
knowledge base population (Zhang et al., 2020a), it
aids in mining relationships between entities from
the tables. The task of TEL is to map the mentions
in a table to their referent entities in a given KB.

*Corresponding author

Best-selling albums of the 21st century, 13—19 million copies:

Release Worldwide sales

Year Album Artist/s Nationality (in millions)
2008 The Fame Lady Gaga United States 18.0
2003 Evanescence | United States 17.0
2002 Let Go Avril Lavigne Canada 16.0
Fallen (Q155612) | Fallen (Q16635665) | Fallen (Q2452425)

WIKIDATA

2003 album by
Evanescence

2016 film by Scott

Hicks
X

Figure 1: An example of table entity linking. The blue
texts represent entity mentions.

2009 novel by
Lauren Kate x

Figure 1 shows an example, where the mention
“Fallen” is linked to the entity “Fallen (Q155612)”
in WikiData.

The major challenge of TEL is how to make
use of the structured contexts in tables to help link
mentions to their corresponding entities. Most of
the existing works have focused on text EL, which
aims to model the sequential context of the men-
tion (Ledell Wu, 2020; De Cao et al., 2021; Tom Ay-
oola, 2022). However, tables often exhibit differ-
ent structures and relationships between mentions
and contexts compared to text. Firstly, the context
in tables is presented in a two-dimensional struc-
ture, i.e., row and column, whereas in text, it is
displayed in a one-dimensional sequential form.
Secondly, the row context typically includes de-
scriptional information about the mention, and the
column context contains similar entities to the men-
tion. However, the sequential context in texts is
often natural language sentences with syntactic and
grammatical constraints. In this way, the TEL en-
tails a more complex structured context, rendering
it more challenging than the text.

Recently, some works have tried to model the
structured context in tables. For example, Herzig
et al. (2020) proposes a pretrained language model
TAPAS for table question answering, and Sui et al.
(2024) adopts markup languages to leverage large
language model (LLM) for table-to-text generation.

15284

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 15284—15298
November 12-16, 2024 ©2024 Association for Computational Linguistics



The most relevant works to ours are TURL (Deng
et al., 2020) and NPEL (Wu et al., 2024), where
TURL employs a Transformer with a masked self-
attention mechanism, and NPEL uses GCN to en-
code row and column contexts. However, neither
method can well distinguish the semantic differ-
ences between row and column contexts. This re-
sults in a coarse representation of table information,
and limits the accuracy of TEL.

In fact, the row and column in the table usu-
ally provide contexts of different aspects about the
mention (Liu et al., 2023), which calls for distinct
modeling strategies. In the row context, each cell is
either the properties or related objects to the men-
tion. For example in Figure 1, the row context
of the mention “Fallen” contains the release year
(i.e., “2003”), the performer (i.e., “Evanescence”),
the nationality (i.e., “United States”) and the sales
(i.e., “17.0”). In the column context, each cell typ-
ically represents an entity similar to the mention,
all belonging to the same category specified by the
column header. As is shown in Figure 1, the col-
umn context of the mention “Fallen” includes other
albums such as “The Fame” and “Let Go™.

In this study, we propose Row-Column differ-
entiated table Entity Linking (RoCEL) to learn the
distinct context in the row and column of the men-
tion. Specifically, (1) to learn the descriptional
information of mentions, we serialize row contexts
with implicit dependencies, and encode them with
the self-attention mechanism. (2) To capture the
categorical information of mentions, we treat a col-
umn of independent mentions as an unordered set,
and learn the category through a set-wise encoder.
(3) Finally, we fuse the representation of both con-
texts to obtain the mention embedding, and link it
to the target entity in the KB.

To evaluate the effectiveness of our method, we
conduct experiments on four benchmark datasets.
The results demonstrate that our method outper-
forms all SOTA baselines, including cell-based,
text-based, and table-based methods. Further ex-
periments show that our method can effectively
utilize row and column contexts on both in-domain
and out-of-domain data. Additionally, we evalu-
ate the open-sourced LLM Llama-3 (AI@Meta,
2024b) on this task, and find it challenging for the
model to leverage the structured contexts for TEL.

The contribution of this work is as follows:

e We propose a novel table entity linking method
RoCEL, which highlights the semantic difference
between row and column contexts.

e We conduct systematic experiments on four
benchmarks, showing that RoCEL outperforms
all SOTA baselines on both in-domain and out-of-
domain datasets.

2 Preliminary

Table Contexts. In this paper, the term “table”
refers to “relational table” (Liu et al., 2023), which
is similar to a table in a database. It contains multi-
ple rows and columns, where each row represents
an individual record and each column represents a
field of the records. Given a table 1" with [ rows
(excluding headers) and J columns, as illustrated
in Figure 2, we denote: (1) T'9 as the metadata of
T, such as its title, caption, or surrounding text;
(2) T; as the cell at the ¢-th row and j-th column,
1 <e< 1,1 <5 < J; (3) Ty as the i-th row
(excluding headers); (4) T; as the j-th column; (5)
T'yj as the header of the j-th column; (6) Ty, as
the set of all headers.

Metadata { The caption of this table: Ty
Headers { Ty, Ty; — Ty«
T” le
Cells
T;_[ oes ]"y oes —»T;_*
I—,T

Figure 2: An illustration of table contexts.

Table Entity Linking. In this task, we only
link cells that are entity mentions. For example,
in Figure 1, the cell “Fallen” is a mention, while
the cell “17.0” is not. Given a table 1", a mention
cell T3;, and an entity base &, the task is to find the
corresponding entity e;; € & for Tj;.

3 Method

In this section, we will give a detailed introduc-
tion to our model, namely RoCEL. Figure 3 shows
an overview of the RoCEL, which comprises of
three major components: (1) Row Context Encod-
ing, aiming to represent the descriptional informa-
tion from row contexts; (2) Column Context Encod-
ing, aiming to represent the categorical information
from column contexts; and (3) Semantics Fusion
& Entity Linking, which fuses the embeddings of
row and column contexts into a final mention em-
bedding, and links it to the target entity.
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f—— 2003 | Fallen | Evan... USA : : eij (Q155612)
2008 || The Fame | Lady ... USA
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V. .
T;.* [ 2003 Fallen Evan ... USA ]——I Row Encoder z ij ot
X — — Fallen
2002 Let Go Avril ... | Canada Column Encoder = argmax
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T*j The Fame — — Type::Album —— Entity Ue,
Let Go : Embeddings

@ Column Context Encoding

Ueyey

Figure 3: An overall architecture of the proposed RoCEL. “Fallen” is the mention cell T;; to be linked.

3.1 Row Context Encoding

We first encode the row context of a mention to
represent its descriptional information, including
its properties and related objects. This information
is provided by the implicit and relational depen-
dencies between the mention and other cells. Fig-
ure 4 shows an example of the dependencies, where
“2008” is the release year of “The Fame”, not of
“Lady Gaga”. To capture the implicit dependencies,
we serialize the row context into a sequential text,
and encode it using BERT (Devlin et al., 2019).
This approach aims to (1) capture dependencies be-
tween tokens through the self-attention mechanism,
thereby approximating the dependencies between
cells, and (2) understand the texts of headers and
cells with the linguistic knowledge of BERT.

property .t T _property
3 " Telationshipq, relationship 4
et Album Artist/s Nationality Wo.rldv‘jld.e sales
Year (in millions)

2008 The Fame Lady Gaga | United States 18.0

Figure 4: An example of the implicit dependencies
within the row context.

Following Deng et al. (2020), the metadata
is also provided for better performance. For-
mally, given a mention cell Tj;, a row of cells
Ti1,...,Ty5 € Ty, headers Ty, ..., Ty € THx,
and metadata T'g, we first convert each pair of
(Thg, Tix) into a text piece p,;, then concatenate
them with T'g to obtain the sequential text txt;;:

Ty : [START] Ty, [END], k = j,

Pir = .

’ Ty = T, k # j,
(1)

where 1 < k < J, characters “|”, “:”, and ;" are
delimiters. [START] and [END] mark the men-

tion 7;;. Finally, we encode txt; using BERT,

and take [CLS] vector in the last layer as the row-

contextualized mention embedding v7;* € R™:
Vg-lr = BERT[CLS] (tXtZ‘j) y

where n is the hidden size of the embedding. v
integrates the descriptional information of row T},
into the embedding of mention T7; .

3.2 Column Context Encoding

After encoding the row context, we encode the col-
umn context for categorical information. Column
contexts are looser than row contexts. Specifically,
column cells are dependence-free and equal, with
the only commonality sharing the same type (which
is also called the column type'). As a result, we
treat a column of cells as an unordered set, and
represent it through a set-wise encoder. We choose
FSPool (Zhang et al., 2020b) as the encoder, and
the reason will be discussed in Section 3.4.
Specifically, given a column of mentions
Tij,...,T; € Ty and the set of their row-

. . 2
contextualized embeddings {v‘};r, ces v?}r}, we

use FSPool to aggregate them into a column em-
bedding vi € R™:

v§ = FSPool ({Vv},...,Vvii'}).

vj is expected to capture the type of column T,
However, in the early stages of training, the ran-
domly initialized encoder struggles to extract mean-
ingful information and may introduce noise. To
address this issue, we introduce auxiliary tasks
to warm up the column encoder at the beginning,
which will be introduced in Section 3.4.

'The name of the column type often differs from the col-
umn header. For further discussion, see Appendix B.

*We use row-contextualized mention embeddings rather
than the embeddings of each mention cell, because the latter
contains too little information.
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3.3 Semantics Fusion & Entity Linking

After obtaining the embeddings of row and col-
umn contexts, we fuse them together. Specifi-
cally, for a mention 73;, we concatenate the row-
contextualized embedding v3;* with the column
embedding v§ and mix them through a multi-layer
perceptron (MLP):
V¢ = MLP (V%“, v;:) ,

where v;i*® € R™ is the final mention embedding
of T};, and it incorporates the descriptional infor-
mation from the row context and categorical infor-
mation from the column context.

Finally, we link T}; to the most similar entity
through dense retrieval. Specifically, given a knowl-
edge base £, the number of entities |£|, we also
obtain an embedding’ u, for each entity e € &.
Then we compute the similarity score s;; (€) € R
using dot product:

Sij (6) = Vg_lrc * Ue,

e;j = argmax s;; (e) ,
ecf
where e;; is the predicted entity for 73;. The loss
LF" for entity linking is ranking cross-entropy:

sy = Softmax (s (e1) ..., 54 (ee))

L = CrossEntropy (s, y3") ,

where s‘ij c Rl is the vector of softmax-
normalized scores, and y" € {0, 1Y€l is the vec-
tor of one-hot label.

3.4 Warm-up of the Column Encoder

To better represent categorical information, we take
two auxiliary tasks to warm up the column encoder.
The first and most straightforward task is to train
column typing in a supervised manner, where col-
umn types can be distant-labeled using the shared
types of target entities (Deng et al., 2020). Specif-
ically, given the set of all types {2, the number of
types |{2|, the column T, the column embedding
v, and the vector of multi-hot label y;-jT e RI¥I
for column typing, we use Linear and Sigmoid to
obtain the scores s;'" € RI¥l for each type, and the
loss LT for column typing is binary cross-entropy:
s5" = Sigmoid (Linear (v§)),
LT = BinaryCrossEntropy (s§", y$™) .

3We utilize the entity embeddings generated by Ledell Wu

(2020), which are obtained by encoding the Wikipedia de-

scriptions of entities using BERT. These embeddings are kept
frozen during training.

However, sometimes even distant supervision
is still challenging, for example, if types of tar-
get entities are not provided. In such cases, we
can employ an unsupervised warm-up task instead.
We choose a set reconstruction task based on auto-
encoder, as extracting shared types from mentions
is a form of information compression. The auto-
encoder should satisfy: (1) Compress-restore: The
encoder aggregates I elements into an intermediate
vector, and the decoder reconstructs it back into 1
elements; (2) Order-invariance: The intermediate
vector does not change with the order of input ele-
ments; (3) Order-preservation: The input elements
and the reconstructed elements maintain the same
order. To meet the above conditions, we choose
FSPool and its inversion FSUPool as the set-wise
encoder and decoder, respectively (Zhang et al.,
2020b). Formally, given a column embedding v
encoded from FSPool, we decode it to a set of |
, \71}]“} through FSUPool , where

Vi € R" is the reconstructed embedding of v,
then we use mean-square loss as the loss £5% for
set reconstruction:

omr
vectors {vjj oo

Vi, ..V} = FSUPool (v§)
I
L5 =37 (v — v

i=1

The complete training process is as follows:
First, we warm up the column encoder using ei-
ther the column typing or set reconstruction task.
During this stage, BERT is frozen, and only the
column encoder (FSPool) and auxiliary modules
(i.e., Linear for column typing, and FSUPool for
set reconstruction) are trained until convergence.
The loss function is either £°" or £5%. Next is
the training of entity linking, where auxiliary mod-
ules are removed, and all remaining parameters are
finetuned. The loss at this stage is only £L*".

4 Experimental Settings

In this section, we will introduce our experimental
datasets, baselines, and implementation details.

4.1 Datasets

We conduct experiments on four benchmarks of ta-
ble entity linking: TURL-Data (Deng et al., 2020),
T2D (Lehmberg et al., 2016), Wikilinks-LARGE
(Wikilinks-L) (Wu et al., 2024), and Wikilinks-
RANDOM-2020 (Wikilinks-R) (Wu et al., 2024).
Note that tables in T2D come from various web-
sites, while tables in other datasets are sourced
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from Wikipedia. We use the largest dataset TURL-
Data for training, validation, and testing. The other
three datasets are small and only for out-of-domain
testing. Unless otherwise specified, ablation exper-
iments are conducted on TURL-Data by default.
Moreover, some columns in TURL-data are an-
notated with types, which are used in the column
typing warm-up. More statistics and other details
of the datasets are listed in Appendix A.

4.2 Baselines

We consider three types of SOTA baselines, based
on how they utilize contexts:

Cell-based: These baselines rely solely on the
mention cell, without using any other contexts: (1)
Wikidata API (WK): the Wikidata Lookup service,
taking mentions as input; (2) OSS (OS) (Zhang
et al., 2020a), a random forest with manual features
between mentions and entities.

Text-based: There are four SOTA baselines de-
signed for text EL: (1) BLINK (BL) (Ledell Wu,
2020): a two-stage method, with a bi-encoder
for generating candidates, and a cross-encoder
for reranking; (2) GENRE (GE) (De Cao et al.,
2021): an auto-regressive method; (3) ReFinED
(RE) (Tom Ayoola, 2022): a bi-encoder method;
(4) ExtEnD (EX) (Barba et al., 2022): an extrac-
tive method. To adapt the input of these models,
we serialize the table contexts into sequential texts,
which is shown in Section 5.2.

Table-based: There are two baselines which di-
rectly process the structured context of tables: (1)
TURL (TU) (Deng et al., 2020) encodes row and
column contexts indiscriminately with a variant
Transformer; (2) NPEL (NP) (Wu et al., 2024) en-
codes row and column contexts separately with
GCN, and calibrates the predictions differently
through a heuristic post-processing.

We use the official implementations of the base-
lines for our experiments, except for OSS and
NPEL whose codes are unavailable. We imple-
ment OSS ourselves, and report the performance
of NPEL from their paper directly.

Additionally, the performance of LLMs on this
task is shown in Section 5.5. Due to the budget
constraints, we only test on sampled data rather
than the full.

4.3 Implementation Details

We initialize the BERT of RoCEL using BERT-
large-uncased with 340M parameters. We employ
the Adam (Kingma and Ba, 2015) optimizer with

batch_size=16. We train the warm-up tasks with
a learning rate of 2 x 10~ for 4 epochs, and the
entity linking task with a learning rate of 2 x 107>
for 4 epochs. For model input, we use a maximum
context length of 32 tokens. For Llama-3, we con-
duct experiments on a single 80GB A800 GPU,
while for other models, we use four 32GB V100
GPUs. Hyper-parameters are determined through
grid search. Experimental results are averaged over
3 different random seeds.

S Experimental Results

In this section, we will conduct experiments to
answer the following research questions:

e RQ1: How does our method perform com-
pared to the SOTA baselines on both in-domain
and out-domain datasets?

e RQ2: How does each kind of context affect
the linking performance?

¢ RQ3: How should row and column contexts
be best encoded?

e RQ4: How does the warm-up task for the
column encoder contribute to our model?

e RQS5: How do LLMs perform on table entity
linking?

5.1 Main Results

To answer RQ1, we compare the linking perfor-
mance of our method with all the baselines. Follow-
ing Wu et al. (2024), we report the accuracy (Acc).
The result is shown in Table 1, where RoCEL is
warmed up with set reconstruction (R-S), column
typing (R-C), and both tasks together (R-SC), re-
spectively.

Firstly, the cell-based methods perform relatively
poorly, indicating that utilizing context is essen-
tial for this task. For the text-based methods, they
all outperform the cell-based methods, but none
of them could consistently outperform the others
across all datasets.

Secondly, among the four table-based methods,
although TURL surpasses the cell-based methods,
it inferiors to the text-based methods. This stems
from its coarse representation of table contexts,
where row and column contexts are blended to-
gether. On the other hand, although the uncali-
brated NPEL achieves only 69.4% and 74.0% accu-
racy on Wikilinks-R and Wikilinks-L respectively,
the predictions with distinct calibrations for rows
and columns surpass all text-based methods. This
demonstrates the importance of context modeling
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Dataset Cell-based Text-based Table-based
WK OS | BL GE RE EX | TU NP R-S R-C R-SC
In-domain TURL-Data | 59.7 653 | 85.0 854 843 812|659 - 863 869 86.6
T2D 74.8 78.2 1913 87.5 91.5 89.1 |88.1 - 922 92.6 92.6
Out-of- Wikilinks-R | 62.6 64.6 | 76.6 79.2 80.0 754|752 81.1 844 84.0 843
domain Wikilinks-L | 69.1 69.9 | 81.4 80.6 80.5 76.6|77.8 84.8 86.5 84.8 85.7
Average |68.8 709 |83.1 824 84.0 804|804 - 877 87.1 875

Table 1: Accuracy on four table entity linking benchmarks. Bold and underline indicate the best and second-best

performance respectively.

by distinguishing the row context and the column
context for TEL.

Finally, our method outperforms almost all
SOTA baselines. Specifically, it outperforms the
best baseline by 1.5% (e.g., 86.9% versus 85.4%
) on in-domain dataset TURL-Data, and by 3.7%
(i.e., 87.7% versus 84.0%) on the average of three
out-of-domain datasets. The better performance
compared to NPEL shows the effectiveness of
our proposed RoCEL in learning table contexts,
without a heuristic calibration. Furthermore, for
RoCEL warmed up with different tasks, the one
with column typing achieves better in-domain per-
formance, while the other with set reconstruc-
tion performs better on average on out-of-domain
datasets, indicating better generalization. The per-
formance of using both warm-up tasks together
(R-SC) lies between the performance of using each
task individually. The reason might be that the op-
timization objectives of the two warm-up tasks are
generally consistent, but have slight conflicts.

5.2 Study of different contexts

To answer RQ2, we conduct ablation studies with
different combinations of contexts, and investigate
the impact on linking performance.

Ablation Study on Our Method. To investi-
gate the contribution of each kind of context (rows,
columns, metadata, and headers) to our model, we
remove one context at a time while keeping the oth-
ers. When the row/column context is removed, the
table remains only one column/row that contains
the mention.

We report the accuracy on TURL-Data and T2D,
as shown in Table 2. It can be observed that remov-
ing each kind of context leads to a performance
drop. The removal of rows causes a greater per-
formance decrease than columns, indicating that
descriptional information in row contexts is more
important for TEL than categorical information in

column contexts. Additionally, metadata also con-
tributes to the performance, since the non-tabular
information can complement the table itself.

Context TURL-Data T2D
all contexts 86.9 92.6
- metadata 814 924
- headers 80.8 89.8
- TOWS 83.2 88.7
- columns 84.0 91.8

Table 2: Accuracy of RoCEL (warmed up with column
typing), with the removal of different contexts.

Ablation study on Text-based Methods. To
investigate the adaptability of text-based methods
to tables, we provide surrounding cells of a mention
in four layouts: (1) one-row: the row containing
the mention; (2) one-column: the mention itself,
along with k cells above and below; (3) cross: the
combination of one-row and one-column; (4) multi-
row: the row containing the mention, along with &
rows above and below them. Constrained by input
length, we set & = 2. Figure 5 visualizes these
layouts. Metadata and headers are also provided.
The structured contexts are serialized into texts by
Equation 1, where each row is separated by “|”.

One-row One-column  Cross Multi-row

Figure 5: The layouts of the table contexts for text-based
methods. Yellow cells are mentions, and blue cells are
other provided cells.

The experimental results are shown in Table 3.
It is observed that (1) The performance of one-row
is better than one-column, further confirming that
descriptional information is more important than
categorical information for this task; (2) The per-
formance of cross and multi-row is worse than one-
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row, indicating that these models struggle to utilize
additional row and column contexts. We attribute
this to the misalignment of cells when flattening a
two-dimensional table into one-dimensional text,
making it difficult to restore the table semantics.

Layout Method
BL GE RE EX
One-row 85.0 854 843 81.2
One-column | 81.4 81.8 83.1 79.7
Cross 84.2 85.1 84.1 81.0
Multi-row | 83.4 84.7 84.0 80.5

Table 3: Accuracy of text-based methods, with contexts
of different layouts.

5.3 Study of Row and Column Encoders

To answer RQ3, we apply set-wise and attention-
based encoders in different combinations to row
and column contexts. Specifically,

e When applying an attention-based encoder on
the column context, we convert it into a sequential
text like the row context:

k=1,
k # i,
1P [ENDJ,

Ty - Thy,

o~ {THj . [START] T},; [END] ,
txt;; = [CLS] T | pyj ;-
,where 1 < k < I.

e When applying set-wise encoder on the
row context, the metadata T, the mention
“[CLS] Ty, : [START] T;; [SEP]”, and the other
pairs “[CLS]Tyy : Tix [SEP]” (k # j) in the row
context, are firstly encoded into vectors. Then we
treat the vectors as an unordered set, and aggregate
them into a single vector using FSPool.

Table 4 shows the performance of different row
and column encoders, including using different en-
coders, using the same encoder, and using each
encoder separately. It can be observed that: (1)
Applying an attention-based encoder to column
contexts yields slightly better results than without
a column encoder, but it is not as effective as a set-
wise encoder. This indicates that column contexts
are better modeled as unordered sets rather than
sequential texts. (2) Applying a set-wise encoder
to row context performs worse than without a row
encoder. The reason is that the set-wise encoder
equally treats each cell in the row context, mak-
ing it difficult to distinguish necessary information
from noise. The column encoder then takes these

noisy embeddings as input, further increasing the
encoding difficulty. Therefore, it is better to encode
row contexts with an attention-based encoder.

Row- — Column- |0y bt T2D
encoder encoder
attention  set-wise 86.9 92.6
attention X 84.0 91.8
attention  attention 85.2 92.1
X set-wise 83.2 88.7
set-wise  set-wise 79.5 81.1

Table 4: Accuracy of RoCEL (warmed up with column
typing), with different row and column encoders.

5.4 Impact of Column Encoder Warm-up

We answer RQ4 from two aspects: (1) whether
the warm-up tasks enhance linking performance;
and (2) whether they help to capture categorical
information in column contexts. To this end, we
use 1%, 10%, and 100% of the data to warm up the
column encoder and auxiliary modules.

Impact on Entity Linking. Figure 6 shows the
linking accuracy of using two warm-up tasks and
without warm-up. We find that: (1) Compared to
no warm-up, both tasks can enhance linking per-
formance, and the improvement increases with the
amount of warm-up data. (2) Column typing is
more data-efficient than set reconstruction. The for-
mer achieves higher accuracy with only 1% distant-
labeled data compared to the latter with 100% un-
labeled data. However, set reconstruction remains
valuable when the types are unknown.

1%

Warm-up Data

Figure 6: Linking accuracy of ROCEL. NW, SR, and CT
stand for no warm-up, set reconstruction, and column
typing, respectively.

Impact on Column Representation. We use
the column typing task to evaluate the represen-
tation of categorical information in columns. For
column typing warm-up, we directly report the
classification F}. For set reconstruction warm-up,
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we freeze BERT and the column encoder after the
warm-up, replace the set decoder FSUPool with a
Linear layer, and train it until convergence with the
loss £L°T and 1% of column typing data. The exper-
imental results are shown in Figure 7. The F; of
both models reach around 80% or higher, showing
they can somewhat capture column types.

W 904 20 SR s CT

8

e 81,8
E 80+ 2 ' 2//
= :
s /A ..... 7

Warm-up Data

Figure 7: Column typing F; of RoCEL. SR and CT
stand for set reconstruction and column typing, respec-
tively.

5.5 LLM Performance

To answer RQS, we evaluate the capability of a rep-
resentative LLM Llama-3-8B-Instruct (Al@Meta,
2024b) on this task, specifically in the following
three aspects:

o Context Utilization. To investigate whether
Llama-3 can effectively utilize table contexts, we
provide contexts with one-row and multi-row lay-
outs as described in Section 5.2. Metadata and
headers are also provided.

e Table Format. Since Llama-3 is a text-based
method, we follow Sui et al. (2024) to explore
which format of the sequential text is more suitable
for serializing tables. For the multi-row layout,
we include four formats: plain-text (same as the
input of other text-based methods in Section 5.2),
JSON:-lines, Markdown, and HTML. For the one-
row layout, we only consider plain-text.

e Task Modeling. Following Anonymous
(2024), we model the task in two ways: (1) generat-
ing the Wikipedia URL directly, which contains the
entity name; (2) reranking top-10 candidates from
the retriever of BLINK. The prompts are shown in
tables 10 and 11 in Appendix C.

We sample one mention from each table, result-
ing in a total of 4k mentions, each has a ground
truth entity within the candidates. We do inference
only, and report the accuracy in Table 5. Note that
in over 97.5% of cases, Llama-3 successfully fol-
lows instructions and provides meaningful predic-

Modeling
Layout Format Generate Rerank
One-row Plain-text 58.7 52.5
Plain-text 57.3 41.1
Multi-row JSON-Lines 58.5 40.7
Markdown 54.1 28.6
HTML 52.1 33.7

Table 5: Accuracy of Llama3 across different context
layouts, table formats, and task modelings.

tions. We can observe that: (1) For context utiliza-
tion, the performance under multi-row shows a sig-
nificant decline compared to one-row. It indicates
that Llama-3 also struggles to utilize table contexts
like other text-based methods. (2) For table formats
under multi-row layout, plain-text and JSON-lines
perform similarly, and are significantly better than
HTML and Markdown. This indicates that in this
task, it is easier for Llama-3 to understand simple
and natural-language-like formats, rather than com-
plex and markup-language-like formats. (3) For
task modeling, the accuracy of generating URLs is
higher than reranking candidates, which is consis-
tent with Anonymous (2024). One possible reason
is that the reranking prompts are longer and more
complex, making them harder to understand. More-
over, Llama-3 performs significantly worse than
task-specific methods.

Model Accuracy Finetuned

RoCEL 86.9 v
Llama3 52.5 X
Llama3 (Generate) 58.7 X
Llama2* 31.8 X
TableLlama* 93.7 v
GPT-3.5* 72.2 X
GPT-4* 90.8 X

Table 6: The comparison with various LLMs. Results
marked with * are cited from Zhang et al. (2024a).

We also compare RoCEL with other LLMs.
Most of the results are cited from a recent work,
TableLlama (Zhang et al., 2024a). It is a finetuned
Llama2-7B (Al@Meta, 2024a) using various ta-
ble tasks (including TEL). The performance on
TURL-data is shown in Table 6. All models rerank
candidate entities except for Llama3 (Generate),
which directly generates Wikipedia URLs. It can
be seen that although RoCEL is not as good as GPT-
4 and the finetuned TableLLaMA, it outperforms
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GPT-3.5, and non-finetuned Llama2 and Llama3.
Additionally, RoCEL has fewer parameters than the
LLMs (0.34B vs >7B) and faster inference speed,
making it competitive in low-resource scenarios.

6 Related Works

Early work on TEL typically employs heuristic
methods or traditional machine learning models.
For example, Ritze et al. (2015) proposes a rule-
based approach that iteratively maps entity men-
tions or column types to a knowledge base. Bha-
gavatula et al. (2015) introduces a graph-based
method. Efthymiou et al. (2017) presents a hy-
brid linking method that combines rule-based exact
matching and embedding-based semantic match-
ing. Zhang et al. (2020a) trains a random forest
with lexical and semantic features. However, these
methods rely heavily on human expertise to utilize
table contexts, thus lacking flexibility.

Recently, several neural networks have been
proposed for automatically understanding tables
(Dong et al., 2022). These methods can be di-
vided into two categories, namely text-based and
table-based methods. Text-based methods serial-
ize tables into sequential texts to leverage models
for textual data. For example, TableGPT (Gong
et al., 2020) employs GPT-2 (Radford et al., 2019)
and convert tables into natural language sentences
through templates; GPT4Table (Sui et al., 2024)
adopts GPT-4 (OpenAl, 2023) and serializes tables
into markup languages, such as HTML and JSON.
In contrast, table-based methods are specialized
model architectures for structured tables. For ex-
ample, TAPAS (Herzig et al., 2020) is a variant
of Transformer with row and column position em-
beddings, which can mark the coordinates of each
cell; TUTA (Wang et al., 2021) is another variant
with a bi-dimensional tree. These methods target
different tasks, such as table classification (Wang
etal., 2021), table question answering (Herzig et al.,
2020; Sui et al., 2024), and table-to-text generation
(Gong et al., 2020). However, none of them can
handle all these tasks.

The most relevant works to our research are
TURL (Deng et al., 2020) and NPEL (Wu et al.,
2024), both are table-based methods for TEL.
TURL is a variant of Transformer with a masked
self-attention mechanism. In this model, each cell
interacts only with the cells in its row and column,
thus implicitly encoding the structure of a table.
However, it does not distinguish whether the cells

are from the same row or column, which ignores
their semantic differences. NPEL, a contempora-
neous work with ours, recognizes this issue but ad-
dresses it through a non-learnable post-processing.
Specifically, it represents row and column contexts
separately, but employs GCN (Kipf and Welling,
2017) uniformly as the encoder. Then in the post-
processing stage, it heuristically calculates entity
coherence within rows and columns in two different
ways, thereby globally calibrating the predictions.
In contrast, we deal with semantic differences by
encoding rows and columns in different manners
from the beginning, without post-processing.
Some works try to employ LLMs in table-related
tasks, such as TableQA (Zhang et al., 2024b), table
entity matching (Li et al., 2024), and table-to-text
generation (Sundararajan et al., 2024). The survey
(Lu et al., 2024) summarizes the application of
LLM:s on tabular data. However, there are very few
works targeting on TEL. The most relevant LLM-
based work to ours is TableLlama (Zhang et al.,
2024a). It constructs a dataset with various table-
related tasks including TEL, and finetunes LLama2
(Al@Meta, 2024a) to obtain the TableLlama.

7 Conclusion

In this work, we propose a table entity linking
method RoCEL, in which the row and column
contexts are encoded in two manners due to their
semantic differences. Our approach outperforms
all SOTA baselines on four benchmark datasets,
demonstrating its better utilization for table con-
texts. In contrast, further evaluations of text-based
methods including Llama-3 indicate their difficulty
in leveraging table contexts.

For future work, we plan to achieve a global
entity linking method by imposing different con-
straints on the predictions within rows and columns.
Additionally, the warming up of the row encoder
remains to be explored, since we only warm up the
column encoder.

8 Limitations

There are some limitations of this work in method-
ology and experiments:

Methodology: (1) We focus only on relational
tables with simple structures, and do not extend
to more complex tables in the real world, such as
nested tables. (2) The cells within a row are order-
irrelevant. However, an order is introduced to the
cells when the row context is serialized into text.
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This partially contradicts the nature of tables.
Experiments: (1) Due to computational and
accessibility limitations, we only evaluate Llama-
3-8B-instruct, and do not include other LLMs like
GPT-4 (OpenAl, 2023) and Mistral (Jiang et al.,
2023). (2) As the emphasis of this work is not on
LLMs, we only conduct basic evaluations without
further prompt engineering or tool augmentation.

9 Ethical Considerations

In this section, we briefly discuss the ethical con-
siderations of our work.

Privacy. Entity linking involves real-world
named entities, including people, places, and or-
ganizations, which cannot be anonymized in this
study. The datasets are created by Deng et al.
(2020); Lehmberg et al. (2016); Wu et al. (2024),
which are widely adopted in previous research.
These datasets are collected from publicly available
Internet, including Wikipedia and various other
websites. However, it is not guaranteed that these
public data are free from privacy breaches.

Languages. The data in this study is in English.

Intended use. Our method is intended for table
entity linking and other related tasks, such as table
question answering, table retrieval, and knowledge
base population. The datasets we used are all cre-
ated for table entity linking. All baselines are com-
patible with this study, although some are designed
for table EL and others for text EL.

Environmental Impact. The training and infer-
ence of models result in energy consumption and
carbon emissions. However, compared to LLMs,
our method has fewer parameters and requires less
computation, thus consuming less energy.

Licenses and terms. The licenses of the knowl-
edge base (KB), codes, and datasets discussed in
this paper are listed in Table 7.
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A Dataset Details

Statistics of the datasets are shown in Table 8, in-
cluding the table resources, usage, and table num-
ber of each dataset.

Deng et al. (2020) distantly annotate the types of
certain columns in the TURL-data dataset. Specif-
ically, they only consider columns with at least
three linkable mentions. For such a column, they
retrieve the FreeBase types of each target entity.
The shared types of these entities are then labeled
as the types of the column. These columns involve
a total of 255 FreeBase types. Since an entity can
have multiple types, a column can also have multi-
ple types. This makes column typing a multi-class,
multi-label classification task.

Dataset Table Table
Resource Number
train 570k
TURL-data  Wikipedia  valid S5k
test Sk
2D Web pages  test 233
Wikilinks-R Wikipedia  test 168
Wikilinks-L. ~ Wikipedia  test 2.3k

Table 8: Dataset statistics.

B Headers and Column Types

The relationships between headers and column
types are diverse and complex. Table 9 are some
examples of real-world tables, each annotated with

the column types. In these examples, we can dis-
cover several patterns in the relationship between
headers and types (not limited to these patterns):

e The header is the same as the type name, such
as the header and the type “Album” in Table 9c.

e The header is semantically similar to the type
name, but in different words. For instance, the
header “Nationality” in Table 9c, where the stan-
dard type name is “Country”.

e The granularity of the header is coarser than
the type. For example, the header “Artist/s” in
Table 9¢c, where the column type is finer-grained
“Musician/s”.

e The header itself is completely unrelated to
the type. For instance, the header “Name” with the
type “Museum” in Table 9a, and the header “From”
with the type “Football Team” in Table 9b.

C LLM Prompts

Our prompts are adapted from Anonymous (2024),
which are originally proposed for text EL rather
than table EL. Table 10 and 11 show examples of
our prompts and responses of Llama-3. The prompt
in Table 10 directly generates the Wikipedia URL,
while the prompt in Table 11 reranks the top-10
retrieved candidates. Each prompt consists of a
description of the task, three in-context examples
(only one is shown), and a query. The in-context
example and query share similar formats, both in-
cluding the serialized table contexts and table cap-
tion. The in-context example additionally contains
an answer (and an explanation for the reranking
prompt), while the query does not include an an-
swer or explanation.
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Museum Town/City

Name Town/City Type
Alnwick Castle Alnwick Multiple
Aydon Castle Aydon Historic house
Bailiffgate Museum  Alnwick Local

(a) List of museums in Northumberland.

Football Player Football Team Sports League

Player From League from Date
Adrian Caceres Perth Glory A-League 13 February 2006
Claudinho Atlético Paranaense Brazil Serie A 24 May 2006

Fred Guarani Brazil Serie B 24 May 2006

(b) 200607 Melbourne Victory season. Transfers.

Album Musician/s Country
Release Year  Album Artist/s Nationality Wo.rldelt!e sales
(in millions)
2008 The Fame  Lady Gaga  United States 18.0
2003 Fallen Evanescence  United States 17.0
2002 Let Go  Avril Lavigne Canada 16.0

(c) List of best-selling albums of the 21st century, 13—19 million copies:

Table 9: Some examples of real-world tables. Ifalics and bold indicate the types and headers respectively. Non-entity
columns are not labeled with types.
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Prompt:
<Ibegin_of_textl><Istart_header_idl>system<lend_header_idl>

Gives a JSONLINES-like format table, the caption of the table, and a mention within the table
highlighted by <MENTION> and </MENTION>.Please give which page in Wikipedia this mention
is most likely to be? Please answer me directly in this form: “mention”:”Wikipedia page url”.

Table:

{’home team’: *Collingwood’, ’venue’: ’Victoria Park’, *crowd’: ’22,519’, *date’: - - - }
{’home team’: ’Richmond’, *venue’: ’<MENTION> MCG </MENTION>’, °date’: -- - }
{’home team’: "Melbourne’, *'venue’: *VFL Park’, *crowd’: *31,535’, ’date’: - - - }

{’home team’: "Hawthorn’, venue’: ’Princes Park’, ’crowd’: *15,081’, ’date’: - - - }

{’home team’: *Geelong’, *venue’: ’Kardinia Park’, ’crowd’: ’26,574’, *date’: - - - }

Caption: 1984 VFL season. Round 4.
Answer: "MCG”: "https://en.wikipedia.org/wiki/Melbourne_Cricket_Ground”

<leot_idI><Istart_header_idl>user<lend_header_idl>

Table:
{’year’: ’1956’, ’coach’: ’Forest Evashevski’, ’overall record’: - - - }
{’year’: ’1958’, *coach’: *Forest Evashevski’, *overall record’: - - - }

{’year’: ’1960’, ’coach’: >’<MENTION> Forest Evashevski </MENTION>", ’overall record’:
s}

{’year’: ’1981°, ’coach’: "Hayden Fry’, ’conference record’: ’6-2-0’, *overall record’: - - - }
{’year’: ’1985’, ’coach’: "Hayden Fry’, ’conference record’: *7-1-0’, overall record’: - - - }
Caption: lowa Hawkeyes football. Conference championships.

Answer:

<leot_idlI><Istart_header_idl|>assistant<lend_header_id|>

Response:
Forest Evashevski”: "https://en.wikipedia.org/wiki/Forest_Evashevski

Table 10: An example of the prompt and model response that directly generates the Wikipedia URL.
*<MENTION> ... </MENTION>" marks the mentions.
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Prompt:
<Ibegin_of_textl><Istart_header_idI>system<lend_header_idl>

Gives a JSONLINES-like format table, the caption of the table, and a mention within the table
highlighted by <MENTION> and </MENTION > .Please select from the options below which
Wikipedia page this mention is most likely to be from? Please answer me directly in this form:
”(letter): Wikipedia entity name and url. And I also want you to give an explanation in the next line.

Options:
(a): [’Docklands Stadium’, *https://en.wikipedia.org/wiki?curid=541428’, ’stadium in Melbourne,
Victoria, Australia’]

(j): [’'Melbourne Cricket Ground’, ’https://en.wikipedia.org/wiki?curid=19765’, ’Stadium in
Melbourne, Victoria, Australia’]

Table:

{’home team’: *Collingwood’, ’venue’: ’Victoria Park’, *crowd’: ’22,519’, °date’: - - - }
{’home team’: ’Richmond’, *venue’: ’<MENTION> MCG </MENTION>’, °date’: - - - }
{’home team’: ’Melbourne’, ’venue’: *VFL Park’, *crowd’: *31,535’, ’date’: - - - }

{’home team’: "Hawthorn’, venue’: ’Princes Park’, ’crowd’: *15,081’, ’date’: --- }

{’home team’: ’Geelong’, ’venue’: ’Kardinia Park’, *crowd’: ’26,574’, °date’: - - - }

Caption: 1984 VFL season. Round 4.

Answer: (j): ['Melbourne Cricket Ground’, https://en.wikipedia.org/wiki?curid=19765’]
Explanation: For mention of <MENTION> MCG </MENTION>, the most similar option is (j)
Melbourne Cricket Ground. MCG is the abbreviation for (j) Melbourne Cricket Ground. Moreover,
this table is about sport events, with MCG as a venue, and (j) Melbourne Cricket Ground is a sports
stadium, matching the type with MCG, making it the most likely source.

<leot_idI><Istart_header_idl>user<lend_header_idl>

Options:
(a): ['Forest Evashevski’, "https://en.wikipedia.org/wiki?curid=5779566’, ’ American football player
and coach’]

(j): [Ed Stefanski’, "https://en.wikipedia.org/wiki?curid=14556015", ’ American basketball player’]
Table:

{’year’: ’1956’, ’coach’: ’Forest Evashevski’, ’overall record’: - - - }

{’year’: ’1958’, *coach’: *Forest Evashevski’, "overall record’: - - - }

{’year’: ’1960’, ’coach’: >’<MENTION> Forest Evashevski </MENTION>", *overall record’:

-

{’year’: ’1981’, ’coach’: "Hayden Fry’, ’conference record’: ’6-2-0’, *overall record’: - - - }
{’year’: ’1985’, "coach’: "Hayden Fry’, ’conference record’: *7-1-0’, overall record’: - - - }
Caption: lowa Hawkeyes football. Conference championships.

Answer:

<leot_idlI><Istart_header_idl|>assistant<lend_header_id|>

Response:

(1): [’Forest Evashevski’, "https://en.wikipedia.org/wiki?curid=5779566’]

Explanation: For mention of <MENTION> Forest Evashevski </MENTION >, the most suitable
option is (i) Forest Evashevski. The mention Forest Evashevski can exactly match option (i) Forest
Evashevski. Moreover, this table is about the lowa Hawkeyes football team, and Forest Evashevski was
the coach of the team, making it the most likely source.

Table 11: An example of the prompt and model response that reranks the top-10 retrieved candidates.
><MENTION> ... </MENTION>" marks the mentilqug9 3




