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Abstract
This paper introduces a novel, entity-aware
metric, termed as Radiological Report (Text)
Evaluation (RaTEScore), to assess the qual-
ity of medical reports generated by AI models.
RaTEScore emphasizes crucial medical enti-
ties, such as diagnostic outcomes and anatomi-
cal details. Moreover, it is robust against med-
ical synonyms and sensitive to negation ex-
pressions. Technically, we developed a com-
prehensive medical NER dataset, RaTE-NER,
and trained an NER model specifically for this
purpose. This model enables the decomposi-
tion of complex radiological reports into con-
stituent medical entities. The metric itself is
derived by comparing the similarity of entity
embeddings, obtained from a language model,
based on their types and relevance to clini-
cal significance. Our evaluations demonstrate
that RaTEScore aligns more closely with hu-
man preference than existing metrics, validated
both on established public benchmarks and our
newly proposed RaTE-Eval benchmark.

1 Introduction
With the general advancement in natural language
processing (OpenAI, 2023; Anil et al., 2023; Qiu
et al., 2024; Wu et al., 2024) and computer vi-
sion (Li et al., 2023; Alayrac et al., 2022; OpenAI;
Zhang et al., 2023; Wu et al., 2023a; Zhou et al.,
2024), the pursuit of generalist medical artificial
intelligence has grown increasingly promising and
appealing (Moor et al., 2023; Wu et al., 2023b; Tu
et al., 2024; Zheng et al., 2023; Zhao et al., 2023),
leading to the development of free-text generative
foundation models capable of understanding and in-
terpreting radiology imaging studies. Yet, the com-
plexity and specialized nature of clinical free-form
texts, such as radiology reports and discharge sum-
maries, present substantial challenges in evaluating
model performance. There is an urgent need for
a robust and lightweight free-text evaluation met-
ric to better monitor the development of medical

Figure 1: Existing evaluation metrics. We illustrate
the limitations of current metrics. Blue boxes represent
ground-truth reports; red and yellow boxes indicate cor-
rect and incorrect generated reports, respectively. The
examples show that these metrics fail to identify oppo-
site meanings and synonyms in the reports and are often
disturbed by unrelated information.

generative foundation models and drive advance-
ments in the field of generalist medical artificial
intelligence.

In the existing literature, four main types of
metrics have been adopted to assess the similar-
ity between free-form texts in medical scenarios,
as shown in Figure 1. These include: (i) Word
Overlap Metrics, such as BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004). While intuitive,
these metrics fail to capture negation or synonyms
in sentences, thus neglecting the semantic fac-
tuality; (ii) Embedding Similarity Metrics, like
BERTScore (Zhang et al., 2020), provide better
semantic awareness but fail to emphasize key med-
ical terms, leading to overlooking errors in criti-
cal conclusions; (iii) Metrics based on Named En-
tity Recognition (NER), such as RadGraph F1 (Yu
et al., 2023a) and MEDCON (Yim et al., 2023). Al-

15004

https://angelakeke.github.io/RaTEScore/


though tailored for the medical domain, they strug-
gle with synonym unification and are typically re-
stricted to analyzing Chest X-ray reports; (iv) Met-
rics relying on large language models (LLMs) (Wei
et al., 2024; Liu et al., 2023). While these metrics
are better aligned with human preferences, they
suffer from potential subjective biases and are pro-
hibitively costly for large-scale evaluation.

In this study, we aim to develop a metric that
prioritizes key medical entities such as diagnostic
outcomes and anatomical features, while exhibiting
robustness against complex medical synonyms and
sensitivity to negation expressions. We present two
contributions: First, we introduce RaTEScore, a
novel evaluation metric specifically designed for
radiology reports. This metric emphasizes entity-
level assessments across various imaging modal-
ities and body regions. Specifically, it starts by
identifying medical entities and their types (e.g.,
anatomy, disease) from each sentence. To address
the challenges associated with medical synonyms,
we compute entity embeddings using a synonym
disambiguation module and assess their cosine sim-
ilarities. RaTEScore then calculates a final score
based on weighted similarities that emphasize the
clinical importance of the entity types involved.

Second, we have developed a comprehensive
medical named-entity recognition (NER) dataset,
RaTE-NER, which encompasses data from 9
modalities and 22 anatomical regions, derived from
MIMIC-IV and Radiopaedia. In addition, we in-
troduce RaTE-Eval, a novel benchmark designed
to assess metrics across various clinical texts. This
benchmark is structured around three sub-tasks:
Sentence-level Human Rating, Paragraph-level Hu-
man Rating, and Comparison of Synthetic Reports,
each targeting specific evaluation challenges. Both
the RaTE-NER dataset and the RaTE-Eval bench-
mark have been made publicly available, aiming to
foster the development of more effective evaluation
metrics within the field of medical informatics.

Our extensive experiments demonstrate the supe-
riority of RaTEScore. We initially tested our met-
ric against others on the public dataset ReXVal (Yu
et al., 2023a), and it shows superior alignment with
human preference. Considering ReXVal’s limi-
tation to chest X-ray reports, further testing was
conducted on the diverse sub-tasks of RaTE-Eval,
where RaTEScore consistently outperformed other
metrics. We also conduct ablation studies to vali-
date the effectiveness of different individual com-
ponents in our pipeline.

2 Methods

In this section, we start by properly formulating
the problem, and introducing the pipeline of our
metric (Sec. 2.1). Then, we detail each of the
modules for our metric computation, i.e., medi-
cal named entity recognition (Sec. 2.2), synonym
disambiguation encoding (Sec. 2.3), and the final
scoring procedure (Sec. 2.4). Lastly, we present
the implementation details at each stage.

2.1 General Pipeline
Given two radiological reports, one is the ground
truth for reference, denoting as x, and the other
candidate for evaluation as x̂. We aim to define a
new similarity metric S(x, x̂), that enables compar-
ison of two radiological reports at the entity level,
thus better reflecting their clinical consistency.

As shown in Figure 2, our pipeline contains three
major components: namely, a medical entity recog-
nition module (ΦNER(·)), a synonym disambigua-
tion encoding module (ΦENC(·)), and a final scor-
ing module (ΦSIM(·)). First, we extract the medi-
cial entities from each piece of radiological text,
then encode each entity into embeddings that are
aware of medical synonym, formulated as:

F = ΦENC(ΦNER(x)) (1)

where F contains a set of entity embeddings. Simi-
larly, we can get F̂ for x̂. Then, we can calculate
the final similarity on the entity embeddings as:

S(x, x̂) = ΦSIM(F, F̂) (2)

In the following sections, we will detail each of the
components.

2.2 Medical Named Entity Recognition
In the medical named entity recognition module,
our goal is to decompose each radiological report
by identifying a set of entities:

ΦNER(x) = {e1, e2, . . . , eM}
= {(n1, t1), (n2, t2), . . . (nM , tM )}

Similarly, we can also get ΦNER(x̂) = {ê1, ê2, . . . ,
êN}, where M,N denote the total number of en-
tities extracted from each text respectively. Each
entity ei is defined as a tuple (ni, ti), where ni

is the name of the entity and ti denotes its corre-
sponding type. For instance, the tuple (‘pneumo-
nia’, ‘Disease’) represents the entity ‘pneumonia’
categorized under the entity type ‘Disease’.
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Figure 2: Illustration of the Computation of RaTEScore. Given a reference radiology report x, a candidate
radiology report x̂, we first extract the medical entity and the corresponding entity type. Then, we compute the
entity embedding and find the maximum cosine similarity. The RaTEScore is computed by the weighted similarity
scores that consider the pairwise entity types.

Data Source Train Set Dev Set Test Set

MIMIC-IV 10588 1323 1324
Radiopaedia 30005 3600 3529

Total Reports 40593 4923 4853

Table 1: RaTE-NER Dataset Statistics (Report-level): The
number of sentences from medical reports of each data source.

Overall, we categorize the entity types into
five distinct groups within radiological contexts:
{Anatomy, Abnormality, Disease, Non-Abnormality,
Non-Disease}. Specifically, ‘Abnormality’ refers
to notable radiological features such as masses, ef-
fusion, and edema. Conversely, ‘Non-Abnormality’
denotes cases where such abnormalities are negated
in the context, as illustrated by the classification
of ‘pleural effusion’ in the statement ‘No evidence
of pleural effusion’. Compared to ‘Abnormality’,
‘Disease’ in radiology reports are more high-level,
mainly about final main professional diagnosis
conclusions, terms such as ‘pneumonia’ or ‘lym-
phadenopathy’.
RaTE-NER Dataset. To support the develop-
ment of our medical entity recognition module, we
have constructed the RaTE-NER dataset, a large-
scale, radiological named entity recognition (NER)
dataset, including 13,235 manually annotated sen-
tences from 1,816 reports within the MIMIC-IV
database, that spans 9 imaging modalities and 23
anatomical regions, ensuring comprehensive cov-
erage. Given that reports in MIMIC-IV are more
likely to cover common diseases, and may not well
represent rarer conditions, we further enriched the
dataset with 33,605 sentences from the 17,432 re-
ports available on Radiopaedia (Rad), by leverag-
ing GPT-4 and other medical knowledge libraries

MIMIC-IV

Train Set Dev Set Test Set

Anatomy 9034 (4314) 1188 (828) 1140 (765)

Abnormality 5579 (4047) 760 (657) 605 (513)

Non-Abnormaliy 4182 (1528) 479 (274) 514 (253)

Disease 1675 (1220) 189 (169) 178 (164)

Non-Disease 3482 (965) 424 (268) 457 (264)

Radiopaedia

Train Set Dev Set Test Set

Anatomy 34110 (14051) 4145 (2629) 4471 (2889)

Abnormality 33863 (23352) 4021 (3386) 4265 (3365)

Non-Abnormaliy 3878 (2280) 473 (325) 605 (420)

Disease 9639 (7385) 1118 (1044) 741 (659)

Non-Disease 2467 (1540) 268 (220) 183 (142)

Total Entities 107909 (60682) 13065 (9800) 13159 (9434)

Table 2: RaTE-NER Dataset Statistics (Entity-level): The
numbers outside and inside the brackets denote the total num-
ber of entities for each type, and the number of non-duplicate
entities, respectively.

to capture intricacies and nuances of less common
diseases and abnormalities. More details can be
found in the Appendix A.2. We manually labeled
3,529 sentences to create a test set. As shown in
Table 2 and Table 1, the RaTE-NER dataset offers
a level of granularity not seen in previous datasets,
with comprehensive entity annotations within sen-
tences, that enables to train models for medical
entity recognition within our analytical pipeline.

2.3 Synonym Disambiguation Encoding
To address the challenge from synonyms in the
evaluation process, such as reconciling terms like
“lung” and “pulmonary”, we propose to map each
entity name into embedding space, where syn-
onyms are positioned closely together, utilizing
a medical entity encoding module trained with ex-
tensive medical knowledge. This module, repre-
sented as: fi = ΦENC(ni), with fi denotes the
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vector embedding for the entity name. Conse-
quently, we compile these into a set of entity em-
beddings: F = {(f1, t1), (f2, t2), . . . }. A simi-
lar set, F̂, is constructed for the candidate text us-
ing the same methodology. For this encoding pro-
cess, We adopt an off-shelf retrieval model, namely,
BioLORD (Remy et al., 2024), which is trained
specifically on medical entity-definition pairs and
has proven effective in measuring entity similarity.

2.4 Scoring Procedure

Upon obtaining the encoded entity set from each
decomposed radiological report, we proceed to the
final scoring procedure. We first define the simi-
larity metric between a candidate entity and a ref-
erence report, that is established by selecting an
entity from the referenced text based on the cosine
similarity of their name embeddings:

i∗ = argmax
i≤M

cos(fi, f̂j) (3)

where cos(fi, f̂j) measures the cosine similarity
between two entity name embeddings. The entity
ei∗ , which best matches êj from the reference text,
is chosen for further comparison. The overall simi-
larity score, S(x, x̂), is then computed as follows:

S(x, x̂) =

∑
j W (ti∗ , tj) · sim(ei∗ , êj)∑

j W (ti∗ , tj)
(4)

Here, W is a learnable 5×5 affinity matrix between
the five entity types, where W (ti, tj) represents an
element of the matrix, and sim(ei, êj) is an entity-
wise similarity function, defined as:

sim(ei, êj) =

{
p cos(fi, f̂j), if ti ̸= tj

cos(fi, f̂j), if ti = tj
(5)

where we generally follow the cosine similarity
on the name embedding, with a learnable penalty
value p to punish the type mismatch. For ex-
ample, when comparing entities with identical
names but different types—such as (‘pleural effu-
sion’, ‘Abnormality’) and (‘pleural effusion’, ‘Non-
Abnormality’)—the penalty term p is applied to
adjust the similarity score appropriately.

Additionally, the similarity between different en-
tity types may be weighted differently in medical
scenarios due to their clinical significance. For
example, the similarity between two ‘Abnormal-
ity’ entities is of much greater importance than the
similarity between two ‘Non-abnormality’ entities.
This is because all body parts are assumed to be

normal in radiology reports by default, and minor
expression errors in normal findings will not criti-
cally impact the report’s correctness. Therefore, we
introduce W to account for this clinical relevance.

Finally, due to the order of performing max
indexing for selecting referenced entities and
weighted sum pooling on all candidate entities,
the final similarity metric S(x, x̂) does not com-
ply with the commutative law. S(x, x̂) and S(x̂, x)
can be analogous to precision and recall respec-
tively. Thus, our final RaTEScore is defined as the
harmonic mean of S(x, x̂) and S(x̂, x), following
classical F1-score format:

RaTEScore =

{
0, if S(x, x̂) + S(x̂, x) = 0,

2× S(x,x̂)×S(x̂,x)
S(x,x̂)+S(x̂,x) , otherwise.

2.5 Implementation Details

In this section, we describe the implementation
details for the three key modules. First, for med-
ical named entity recognition, we train a BERT-
liked model on RaTE-NER dataset with two
main-stream NER architectures, namely, Span-
based and IOB-based models. For the Span-based
method, we follow the setting of PURE (the Prince-
ton University Relation Extraction system) entity
model (Zhong and Chen, 2021) and for the IOB-
based method, we follow DeBERTa v3 (He et al.,
2022, 2020). We show more detailed implemen-
tation parameters for the two training schemes in
Appendix A.9. Additionally, we also try to initial-
ize the NER model with different pre-trained BERT.
More comparison of the two training schemes and
different BERT initializations will be present in the
ablation study. Second, For the synonym disam-
biguation encoding, we directly use the off-shelf
BioLORD-2023-C model version. Ablation stud-
ies are also conducted in Section 4. Third, for the
final scoring module, we learn the affinity matrix
W and negative penalty factor p leveraging TPE
(Tree-structured Parzen Estimator) (Bergstra et al.,
2011) with a small set of human rating data.

3 RaTE-Eval Benchmark

To effectively measure the alignment between au-
tomatic evaluation metrics and radiologists’ assess-
ments in medical text generation tasks, we have
established a comprehensive benchmark, RaTE-
Eval, that encompasses three tasks, each with its
official test set for fair comparison, as detailed be-
low. The comparison of RaTE-Eval Benchmark
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Number Type Scoring Principle Data Source Modality Anatomy

ReXVal Dataset 200 Sent. + Para. Error Count MIMIC_CXR 1 (X-ray) 1 (Chest)

Ours
Sent. level 2215 Sent. Error Count / Potential Errors

MIMIC_IV 9 22Para. level 1856 Para. 5-Point Scoring System
Sim. Report 847 Sent. Mistral 8*7B

Table 3: Comparison of RaTE-Eval Benchmark and existed radiology report evaluation Benchmark.

and existed radiology report evaluation Benchmark
is listed in Table 3.

Sentences-level Human Rating. Existing stud-
ies have predominantly utilized the ReXVal
dataset (Yu et al., 2023b), which requires radiolo-
gist annotators to identify and count errors in var-
ious potential categories. The metric’s quality is
assessed by the Kendall correlation coefficient be-
tween the total number of errors and the result from
the automatic metric. The possible error categories
are as follows:

1. False prediction of finding;
2. Omission of finding;
3. Incorrect location/position of finding;
4. Incorrect severity of finding;
5. Mention the comparison that is absent
from the reference impression;
6. Omission of comparison describing a
change from a previous study.

Building on this framework, we introduce two
improvements to enhance the robustness and appli-
cability of our benchmark: (1) normalization of
error counts: recognizing that a simple count of er-
rors may not fairly reflect the informational content
in sentences, we have adapted the scoring to anno-
tate the number of potential errors. Specifically,
we computed the sum of both correct and incor-
rect findings in the reference sentence. This sum
represents the total number of potential errors that
could occur. This approach normalizes the counts,
ensuring a more balanced assessment across vary-
ing report complexities. (2) diversification of
medical texts: unlike existing benchmarks that
are limited to Chest x-rays from the MIMIC-CXR
dataset (Johnson et al., 2019), our dataset includes
2215 reports spanning 9 imaging modalities and 22
anatomies from the MIMIC-IV dataset (Johnson
et al., 2020), the involving imaging modalities and
anatomies are listed in Appendix A.3.

Specifically, our annotation process is as follows:
First, we divide the MIMIC-IV dataset into 49 sub-
sets based on modality and anatomy. To conduct

sentence-level evaluation, we split the report para-
graphs into individual sentences by periods and
remove the duplicates. Next, we randomly sample
25 sentences from each subset to create a refer-
ence report list and sample another 1000 reports
to form a candidate report list. Subsequently, we
use several evaluation metrics—BLEU, ROUGE,
BERTScore, CIDEr, and our proposed RaTEScore
to identify the most similar one from the candidate
report list for each report in the reference report list.
We take the union of all the metric results as the
report pairs for manual annotations. Finally, each
case in the annotation reports was annotated by
two experienced radiologists with over five years of
clinical practice. For each candidate report and the
corresponding reference report, they are required
to count errors in six provided categories as well
as the number of potential errors, where the error
refers to the candidate report’s error based on the
reference report.

The final human rating result is computed by di-
viding the total error count by the the number of po-
tential errors. The final sentence-level benchmark
is composed of 2215 reference report sentences,
candidate report sentences and their rating score.
For parameter search (Sec. 2.5), we divided all re-
ports into a training set and a test set at an 8:2 ratio,
to identify the most effective parameters that align
with human scoring rules.

Paragraph-level Human Rating. Given that med-
ical imaging interpretation commonly involves the
evaluation of lengthy texts rather than isolated
sentences, we also incorporate paragraph-level as-
sessments into our analysis, from the MIMIC-IV
reports. However, as it is challenging for hu-
mans to completely count all errors in long para-
graphs accurately, we established a 5-point scor-
ing system for our evaluations, following the Rad-
PEER (Goldberg-Stein et al., 2017) - an internation-
ally recognized standard for radiologic peer review.
They defines "Concur with Interpretation" as "cor-
rect diagnosis". In our annotation process, due to
the difficulty of counting errors in paragraph-level
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reports (too detailed and some errors are not of
great clincial significance), we instructed the radi-
ologists to approximate the ratio of correct diag-
nosess based on their clinical judgement, following
the ‘RadPEER’ standard, which is more aligned
with the human rating system for report writing in
clinical.

The scores range from 5, denoting a perfectly ac-
curate report, to 0, that indicates the report without
any correct observations. Detailed scoring criteria
are provided in Appendix A.4, guiding radiologists
on how to assign scores at different levels.

Specifically, our annotation process is as follows:
first, we divide the MIMIC-IV dataset into 49 sub-
sets based on modality and anatomy. Next, we
sample 20 reports from each subset to create a ref-
erence list and 500 reports to form a candidate
list. The report selection process is the same as
sentence-level human rating. For each candidate
report and the corresponding reference report, the
radiologists are required to give a 5-point score.

The final benchmark in paragraph-level is com-
posed of 1856 reference reports, candidate reports
and their rating score. Similarly, for parameter
search (Sec. 2.5), we also divide all reports into
training set and a test set at an 8:2 ratio.

Rating on the Synthetic Reports. Here, we aim
to evaluate the sensitivity of our metric on han-
dling synonyms and negations using synthetic data.
Specifically, we employed Mixtral 8x7B (Jiang
et al., 2024), a sophisticated open-source Large
Language Model (LLM), to rewrite 847 reports
from the MIMIC-IV dataset. The rewriting was
guided by two tailored prompts:

You are a specialist in medical report writing, please
rewrite the sentence, you can potentially change the
entities into synonyms, but please keep the meaning
unchanged.

On the other hand, opposite reports were gener-
ated with:

You are a specialist in medical report writing, please
rewrite the following medical report to express the
opposite meaning.

This process results in a test set comprising tri-
ads of reports: the original, a synonymous version,
and an anonymous version, detailed further in Ap-
pendix A.5. Ideally, effective evaluation metrics
should demonstrate higher scores for synonymous
reports compared to anonymous reports, thereby

RadGraph F1 BERTScore CheXbert BLEU Ours

Kendall τ 0.515* 0.511* 0.499* 0.462* 0.527

Table 4: Results in ReXVal dataset: * denotes the result
report in (Yu et al., 2023a).

more accurately reflecting the true semantic content
of the reports.

4 Experiments

In this section, we start by introducing the baseline
evaluation metrics. Later, we compare the differ-
ent metrics with our proposed RaTEScore on both
ReXVal and RaTE-Eval benchmarks. Lastly, we
present details for the ablation studies.

4.1 Baselines

We use the following metrics as baseline compar-
isons: BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005),
CheXbert (Smit et al., 2020; Yu et al., 2023a),
BERTScore (Zhang et al., 2020), SPICE (Anderson
et al., 2016) and RadGraph F1 (Yu et al., 2023a).
Detailed explanations of these metrics can be found
in the Appendix A.6.

4.2 Results in ReXVal dataset

Our initial evaluation adopts the public ReXVal
dataset, where we calculated the Kendall correla-
tion coefficient to measure the agreement between
our RaTEScore and the average number of errors
identified by six radiologists. Our analysis was
conducted under identical conditions to those of
baseline methods. Given that the reports in ReXVal
vary significantly in length, predominantly featur-
ing longer documents, we applied a type weight
matrix with parameters specifically fine-tuned on
our long-report benchmark training set. As detailed
in Table 4, RaTEScore demonstrated a Kendall cor-
relation coefficient of 0.527 with the error counts,
surpassing all existing metrics.

While further examining instances with notable
deviations in Appendix A.7, a primary observa-
tion was that ReXVal’s protocol tends to count six
types of errors uniformly, without accounting for
variations in report length. This approach leads to
discrepancies where a single-sentence report with
one error type and a twenty-sentence report with
the same error count receive equivalent scores. To
address this issue, our RaTE-Eval benchmark can
be better suited to distinguish such variations, by
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RadCliQv1 (𝜏 = 0.46) RadGraphF1 (𝜏 = 0.44) BERTScore (𝜏 = 0.40)

BLEU (𝜏 = 0.27) CheXbert (𝜏 = 0.25)

RaTEScore  ( 𝜏 = 0.54)

ROUGE L (𝜏 = 0.34）METEOR (𝜏 = 0.39)

SPICE (𝜏 = 0.40)

CIDEr (𝜏 = 0.25)

Figure 3: Results in RaTE-Eval Benchmark: Correlation Coefficients with Radiologists Results ( sentence-
level ). our metric exhibits the highest Pearson correlation coefficient with the radiologists’ scoring. Note that the
scores on the horizontal axis are experts counting various types of errors normalized by the potential error types that
could occur in the given sentence, and subtracting this normalized score from 1 to achieve a positive correlation.

normalising the total error counts with potential
error counts.

4.3 Results in RaTE-Eval benchmark

On Sentence-level Rating. As illustrated in Fig. 3,
our model achieved a Pearson correlation coef-
ficient of 0.54 on the RaTE-Eval short sentence
benchmark, significantly outperforming the exist-
ing baselines. These results underscore the inade-
quacy of methods that predominantly rely on term
overlap for evaluations within a medical context.
While entity-based metrics like RadGraph F1 show
notable improvements, they still do not reach the
desired level of efficacy on an extensive benchmark
encompassing multi-modal, multi-region reports.
This shortfall largely attributes to the limited scope
of training vocabulary in these methods.

On Paragraph-level Rating. From the results
in Table 5, it can be observed that RaTEScore
shows a significantly higher correlation with radi-
ology experts compared to other existing metrics,
across various measures of correlation. Metrics
that focus on identifying key entities, such as Rad-
Graph F1, SPICE, and ours, consistently demon-
strate stronger correlations than those reliant on
mere word overlap, thereby supporting our primary
assertion that critical statements in medical reports
are paramount. Furthermore, metrics that accom-
modate synonyms, such as METEOR, outperform
those that do not, such as BLEU and ROUGE.
Significantly, RaTEScore benefits from a robust
NER model trained on our comprehensive dataset,
RaTE-NER, which spans multiple modalities and

Paragraph-level Correlations Simulations
Pearson τ Kendall τ Spearman τ Acc

RadGraph 0.624 0.439 0.582 0.463
BERTScore 0.599 0.413 0.555 0.140

CheXbert 0.496 0.294 0.403 0.666
BLEU 0.409 0.289 0.404 0.119

ROUGE_L 0.572 0.396 0.567 0.117
SPICE 0.623 0.453 0.605 0.140

METEOR 0.599 0.422 0.567 0.168

Ours 0.653 0.462 0.608 0.670

Table 5: Results in RaTE-Eval Benchmark: Correlation
coefficients with radiologists and accuracy for whether
the synonym sentence can achieve higher scores than
the antonymous one on Synthetic Reports.

anatomical regions, not just Chest x-rays, resulting
in markedly higher correlations.

Results on Synthetic Reports. To further show-
case the effectiveness of our proposed RaTEScore,
we examined its performance on the synthetic test
set. This dataset, being synthesized, allows us
to use accuracy (ACC) as a measure to evaluate
performance. Specifically, we assess whether the
synonymously simulated sentences received higher
scores than their antonymous counterparts. The
results, presented in Table 5, demonstrate that our
model excels in managing synonym and antonym
challenges, affirming its robustness in nuanced lan-
guage processing within a medical context.
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Initialized BERT Pre Recall F1 Acc

IOB.
DeBERTa_v3 0.567 0.575 0.571 0.754
Medical-NER 0.559 0.572 0.565 0.759

Span.

BiomedBERT 0.556 0.676 0.610 0.730
SapBERT 0.560 0.658 0.605 0.731
BlueBERT 0.554 0.657 0.601 0.726
MedCPT-Q-Enc. 0.470 0.682 0.556 0.678
BioLORD-2023-C 0.555 0.664 0.605 0.727

Table 6: Ablation Study on NER Model Schemes.

4.4 Ablation Study

In this ablation section, we investigate the pipeline
from two aspects: namely, the design of NER
model, the effect of different off-the-shelf synonym
disambiguation encoding module.

4.4.1 NER Module Discussion
Here, we discuss the performance of our NER mod-
ule in three parts: training schemes, initialization
models, and data composition.

Training Schemes. To select the most suitable
NER model for training, we compare IOB-based
and Span-based NER training schemes on the
whole RaTE-NER test set. As shown in Table 6, the
IOB scheme overall extracts more comprehensive
entities, but the recall is lower against the Span-
based approach.

Initialization Models. Additionally, as shown in
Table 6, we also try a sequential pre-trained BERT
model for initialization, i.e., DeBERTa_v3 (He
et al., 2022), Medical-NER (Clinical-AI-Apollo,
2023), BioMedBERT (Chakraborty et al., 2020),
BlueBERT (Peng et al., 2019), MedCPT-Q-
Enc. (Jin et al., 2023), and BioLORD-2023-
C (Remy et al., 2024). Detailed description for
each model can be found in Appendix A.8. We
apply various models in different training schemes
based on their pre-training tasks. For example,
Medical-NER is pre-trained with IOB-based NER
tasks on other tasks thus we still finetune it in the
same setting. Comparing Medical-NER and De-
BERTa_v3, pretraining on other NER datasets does
not improve much. Different types of BERT also
perform fairly for the Span-based method. Based
on the results, our final scores are all based on the
IOB scheme with DeBERTa_v3.

Data Ablation. Our RaTE-NER data is composed
of two distinct parts, and we conducted experi-
ments to highlight the necessity of both. As shown
in Table 7, ‘R.’ denotes data from Radiopaedia,

while ‘M.’ refers to the data from MIMIC-IV. By
combining these two parts (denoted as ‘R.+M.’),
we observe a significant improvement in the final
NER performance, with an increase of 0.030 in F1
and 0.010 in ACC. This underscores the importance
of incorporating each dataset component.

Training Data Pre Recall F1 Acc

R. 0.525 0.558 0.541 0.727
M. 0.515 0.550 0.531 0.744

R. + M. 0.567 0.575 0.571 0.754

Table 7: Ablation Study on NER Training Data. R.
denotes data from Radiopaedia and M. denotes data
from MIMIC-IV.

4.4.2 Entity Encoding Module Discussion
For the evaluation of Entity Encoding Module,
we compare several off-the-shelf entity encod-
ing models trained using different approaches
on the sentence-level correlation task of RaTE-
Eval. BioLORD-2023-C (Remy et al., 2024)
is trained on medical entity concepts, MedCPT-
Query-Encoder (Jin et al., 2023) is trained on
PubMed user click search logs, while Rad-
BERT (Chambon et al., 2023), CXR-BERT (Boeck-
ing et al., 2022), and BioViL-T (Bannur et al.,
2023) are pre-trained on a large corpus of radi-
ology texts. As shown in Table 8, BioLORD, due
to its original training goal covering medical en-
tity normalization, which aligns with our needs
in the Entity Encoding module, achieved the best
performance. Based on these results, we selected
BioLORD-2023-C as the base model for our Entity
Encoding Module.

BioLORD MedCPT RadBERT CXR-BERT BioViL-T

Pearson τ 0.540 0.498 0.519 0.368 0.465

Table 8: Ablation Study on Pretrained Model of Entity
Encoding Module.

5 Related Work
5.1 General Text Evaluation Metric

Automated scoring methods allow for a fair evalua-
tion of the quality of generated text. BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004) was origi-
nally designed for machine translation tasks, focus-
ing on word-level accuracy. METEOR (Banerjee
and Lavie, 2005) adopts a similar design, taking
into account synonym matching and word order.
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SPICE (Anderson et al., 2016) uses the key objects,
attributes, and their relationships to compute the
metric. BERTScore (Zhang et al., 2020), a model-
based method, assigns scores to individual words
and averages these scores to evaluate the text’s over-
all quality, facilitating a more detailed analysis of
each word’s contribution.

5.2 Radiological Text Evaluation Metric

With the advancement of medical imaging anal-
ysis, researchers have recognized the importance
of evaluating the quality of radiology text gener-
ation. Metrics such as CheXbert F1 (Smit et al.,
2020) and RadGraph F1 (Yu et al., 2023a) are
based on medical entity extraction models. How-
ever, CheXbert can only annotate 14 chest abnor-
malities, and RadGraph F1 (Jain et al.) is only
trained on chest X-ray modality. MEDCON (Yim
et al., 2023) expands the extraction range by Quick-
UMLS package (Soldaini and Goharian, 2016),
which relies on a string match algorithm that is
not flexible. RadCliQ (Yu et al., 2023a) performs
ensembling with BLEU, BERTScore, CheXbert
vector similarity, and RadGraph F1 for a compre-
hensive yet less interpretable evaluation. These
metrics calculate the overlap between reference
and candidate sentences while overlooking the is-
sue of synonymy. Recently, metrics using Large
Language Models (LLMs) such as GPT-4, such as
G-Eval (Liu et al., 2023), LLM-as-a-Judge (Zheng
et al., 2024), and LLM-RadJudge (Wang et al.,
2024) have emerged, closely mimic human eval-
uation levels. However, these methods are unex-
plainable and may have potential subjective bias.
Besides, their high computational cost also limits
them for statistic robust large-scale evaluation.

5.3 Medical Named-Entity Recognition

The MedNER task targets extracting medical-
related entities from given contexts. Great efforts
have been made in this domain (Jin et al., 2023;
Monajatipoor et al., 2024; Keloth et al., 2024; Li
and Zhang, 2023; Chen et al., 2023). Inspired by
the success of this work, we believe MedNER mod-
els are strong enough to simplify and structure com-
plex clinical texts, thus reducing the difficulty of
automatically comparing two clinical texts. The
most related work to ours is RadGraph (Jain et al.)
which trained an NER model for Chest X-ray re-
ports while we are targeting more general clinical
reports regardless of their type.

6 Conclusion
In this work, we propose a new lightweight, ex-
plainable medical free-form text evaluation metric,
RaTEScore, by comparing two medical reports
on the entity level. In detail, first, we build up a
new medical NER dataset, RaTE-NER targeting
a wide range of radiological report types and train
a NER model on it. Then, we adopt this model
to simplify the complex radiological reports and
compare them on the entity embedding level lever-
aging an extra synonyms disambiguation encoding
model. Our final RaTEScore correlates strongly
with clinicians’ true preferences, significantly out-
performing previous metrics both on the former
existing benchmark and our new proposed RaTE-
Eval, while maintaining computational efficiency
and interpretability.

Limitations

Although our proposed metric, RaTEScore, has
performed well across various datasets, there are
still some limitations. First, in the synonym disam-
biguation module, we evaluated the performance
of several existing models and directly ultilized
them without fine-tuning specifically for the evalu-
ation scenario, which could be enhanced in the
future. Furthermore, while we expanded from
single-modality radiological report evaluation to
multimodal whole-body imaging, we still only con-
sidered the issues within the radiological report
scenario and did not extend to other medical con-
texts beyond radiology, nor to the evaluation of
other medical tasks, like medical QA, summariza-
tion task. These areas require more exploration.

Acknowledgements

This work is supported by the National Key R&D
Program of China (No. 2022ZD0160702).

References
ICD-10-CM. https://www.icd10data.com/
ICD10CM/Codes. Accessed: Dec.2023.

Radiopaedia.org. https://radiopaedia.org. Ac-
cessed: May 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in Neural
Information Processing Systems, 35:23716–23736.

15012

https://www.icd10data.com/ICD10CM/Codes
https://www.icd10data.com/ICD10CM/Codes
https://radiopaedia.org


Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. Spice: Semantic propositional
image caption evaluation. In Proceedings of Euro-
pean Conference on Computer Vision (ECCV), pages
382–398.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the Acl Workshop on Intrinsic and Extrinsic Evalu-
ation Measures for Machine Translation and/or Sum-
marization, pages 65–72.

Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fer-
nando Perez-Garcia, Maximilian Ilse, Daniel C Cas-
tro, Benedikt Boecking, Harshita Sharma, Kenza
Bouzid, Anja Thieme, et al. 2023. Learning to
exploit temporal structure for biomedical vision-
language processing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15016–15027.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. 2011. Algorithms for hyper-parameter
optimization. Advances in Neural Information Pro-
cessing Systems, 24.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic Acids Research, 32(suppl_1):D267–
D270.

Benedikt Boecking, Naoto Usuyama, Shruthi Bannur,
Daniel C Castro, Anton Schwaighofer, Stephanie
Hyland, Maria Wetscherek, Tristan Naumann, Aditya
Nori, Javier Alvarez-Valle, et al. 2022. Making the
most of text semantics to improve biomedical vision–
language processing. In Proceedings of European
Conference on Computer Vision (ECCV), pages 1–21.
Springer.

Kathi Canese and Sarah Weis. 2013. Pubmed: the bibli-
ographic database. The NCBI Handbook, 2(1).

Souradip Chakraborty, Ekaba Bisong, Shweta Bhatt,
Thomas Wagner, Riley Elliott, and Francesco
Mosconi. 2020. Biomedbert: A pre-trained biomedi-
cal language model for qa and ir. In Proceedings of
the 28th international conference on computational
linguistics, pages 669–679.

Pierre Chambon, Tessa S Cook, and Curtis P Lan-
glotz. 2023. Improved fine-tuning of in-domain
transformer model for inferring covid-19 presence
in multi-institutional radiology reports. Journal of
Digital Imaging, 36(1):164–177.

Peng Chen, Jian Wang, Hongfei Lin, Di Zhao, and Zhi-
hao Yang. 2023. Few-shot biomedical named entity

recognition via knowledge-guided instance genera-
tion and prompt contrastive learning. Bioinformatics,
39(8):btad496.

Clinical-AI-Apollo. 2023. Clinical-AI-Apollo Medical-
NER. HuggingFace.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Kevin Donnelly et al. 2006. Snomed-ct: The advanced
terminology and coding system for ehealth. Studies
in Health Technology and Informatics, 121:279.

Hannah Eyre, Alec B Chapman, Kelly S Peterson, Jian-
lin Shi, Patrick R Alba, Makoto M Jones, Tamara L
Box, Scott L DuVall, and Olga V Patterson. 2021.
Launching into clinical space with medspacy: a new
clinical text processing toolkit in python. In AMIA
Annual Symposium Proceedings, volume 2021, page
438.

Christiane Fellbaum. 2010. Wordnet. In Theory and
Applications of Ontology: Computer Applications,
pages 231–243.

Shlomit Goldberg-Stein, L Alexandre Frigini, Scott
Long, Zeyad Metwalli, Xuan V Nguyen, Mark Parker,
and Hani Abujudeh. 2017. Acr radpeer committee
white paper with 2016 updates: revised scoring sys-
tem, new classifications, self-review, and subspecial-
ized reports. Journal of the American College of
Radiology, 14(8):1080–1086.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2022.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. In The Eleventh International Conference on
Learning Representations.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Saahil Jain, Ashwin Agrawal, Adriel Saporta, Steven
Truong, Tan Bui, Pierre Chambon, Yuhao Zhang,
Matthew P Lungren, Andrew Y Ng, Curtis Langlotz,
et al. Radgraph: Extracting clinical entities and re-
lations from radiology reports. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

15013

https://huggingface.co/Clinical-AI-Apollo/Medical-NER
https://huggingface.co/Clinical-AI-Apollo/Medical-NER


Qiao Jin, Won Kim, Qingyu Chen, Donald C Comeau,
Lana Yeganova, W John Wilbur, and Zhiyong Lu.
2023. Medcpt: Contrastive pre-trained transformers
with large-scale pubmed search logs for zero-shot
biomedical information retrieval. Bioinformatics,
39(11):btad651.

Alistair Johnson, Lucas Bulgarelli, Tom Pollard,
Steven Horng, Leo Anthony Celi, and Roger Mark.
2020. Mimic-iv. PhysioNet. Available online at:
https://physionet. org/content/mimiciv/1.0/(accessed
August 23, 2021), pages 49–55.

Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz,
Nathaniel R Greenbaum, Matthew P Lungren, Chih-
ying Deng, Roger G Mark, and Steven Horng.
2019. Mimic-cxr, a de-identified publicly available
database of chest radiographs with free-text reports.
Scientific Data, 6(1):317.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H
Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi,
and Roger G Mark. 2016. Mimic-iii, a freely accessi-
ble critical care database. Scientific Data, 3(1):1–9.

Vipina K Keloth, Yan Hu, Qianqian Xie, Xueqing Peng,
Yan Wang, Andrew Zheng, Melih Selek, Kalpana
Raja, Chih Hsuan Wei, Qiao Jin, et al. 2024. Advanc-
ing entity recognition in biomedicine via instruction
tuning of large language models. Bioinformatics,
40(4):btae163.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In International Conference on Ma-
chine Learning, pages 19730–19742.

Mingchen Li and Rui Zhang. 2023. How far is lan-
guage model from 100% few-shot named entity
recognition in medical domain. arXiv preprint
arXiv:2307.00186.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74–81.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval: Nlg
evaluation using gpt-4 with better human alignment.
In Processing of the 2023 Conference on Empirical
Methods in Natural Language (EMNLP).

Masoud Monajatipoor, Jiaxin Yang, Joel Stremmel,
Melika Emami, Fazlolah Mohaghegh, Mozhdeh
Rouhsedaghat, and Kai-Wei Chang. 2024. Llms in
biomedicine: A study on clinical named entity recog-
nition. arXiv preprint arXiv:2404.07376.

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein
Abad, Harlan M Krumholz, Jure Leskovec, Eric J
Topol, and Pranav Rajpurkar. 2023. Foundation mod-
els for generalist medical artificial intelligence. Na-
ture, 616(7956):259–265.

OpenAI. Gpt-4v(ision) system card.

OpenAI. 2023. GPT-4 Technical Report. arXiv preprint
arXiv:2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019. Trans-
fer learning in biomedical natural language process-
ing: An evaluation of bert and elmo on ten bench-
marking datasets. In Proceedings of the 18th BioNLP
Workshop and Shared Task, pages 58–65.

Pengcheng Qiu, Chaoyi Wu, Xiaoman Zhang, Weix-
iong Lin, Haicheng Wang, Ya Zhang, Yanfeng Wang,
and Weidi Xie. 2024. Towards building multilin-
gual language model for medicine. arXiv preprint
arXiv:2402.13963.

François Remy, Kris Demuynck, and Thomas De-
meester. 2024. Biolord-2023: semantic textual repre-
sentations fusing large language models and clinical
knowledge graph insights. Journal of the American
Medical Informatics Association, page ocae029.

Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuj Pa-
reek, Andrew Y Ng, and Matthew Lungren. 2020.
Combining automatic labelers and expert annotations
for accurate radiology report labeling using bert. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1500–1519.

Luca Soldaini and Nazli Goharian. 2016. Quickumls:
a fast, unsupervised approach for medical concept
extraction. In MedIR Workshop, Sigir, pages 1–4.

Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaek-
ermann, Mohamed Amin, Pi-Chuan Chang, Andrew
Carroll, Charles Lau, Ryutaro Tanno, Ira Ktena, et al.
2024. Towards generalist biomedical ai. NEJM AI,
1(3):AIoa2300138.

Zilong Wang, Xufang Luo, Xinyang Jiang, Dongsheng
Li, and Lili Qiu. 2024. Llm-radjudge: Achieving
radiologist-level evaluation for x-ray report genera-
tion. arXiv preprint arXiv:2404.00998.

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu,
Nathan Hu, Dustin Tran, Daiyi Peng, Ruibo Liu,
Da Huang, Cosmo Du, et al. 2024. Long-form fac-
tuality in large language models. arXiv preprint
arXiv:2403.18802.

Chaoyi Wu, Jiayu Lei, Qiaoyu Zheng, Weike Zhao,
Weixiong Lin, Xiaoman Zhang, Xiao Zhou, Ziheng
Zhao, Ya Zhang, Yanfeng Wang, et al. 2023a. Can
gpt-4v (ision) serve medical applications? case
studies on gpt-4v for multimodal medical diagnosis.
arXiv preprint arXiv:2310.09909.

15014

https://openai.com/index/gpt-4v-system-card


Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang,
Weidi Xie, and Yanfeng Wang. 2024. Pmc-llama:
toward building open-source language models for
medicine. Journal of the American Medical Infor-
matics Association, page ocae045.

Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang,
and Weidi Xie. 2023b. Towards generalist foundation
model for radiology by leveraging web-scale 2d&3d
medical data. arXiv preprint arXiv:2308.02463.

Wen-wai Yim, Yujuan Fu, Asma Ben Abacha, Neal
Snider, Thomas Lin, and Meliha Yetisgen. 2023. Aci-
bench: a novel ambient clinical intelligence dataset
for benchmarking automatic visit note generation.
Scientific Data, 10(1):586.

Feiyang Yu, Mark Endo, Rayan Krishnan, Ian Pan,
Andy Tsai, Eduardo Pontes Reis, Eduardo Kaiser
Ururahy Nunes Fonseca, Henrique Min Ho Lee,
Zahra Shakeri Hossein Abad, Andrew Y Ng, et al.
2023a. Evaluating progress in automatic chest x-ray
radiology report generation. Patterns, 4(9).

Feiyang Yu, Mark Endo, Rayan Krishnan, Ian Pan,
Andy Tsai, Eduardo Pontes Reis, EKU Fonseca, Hen-
rique Lee, Zahra Shakeri, Andrew Ng, et al. 2023b.
Radiology report expert evaluation (rexval) dataset.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Weix-
iong Lin, Ya Zhang, Yanfeng Wang, and Weidi
Xie. 2023. Pmc-vqa: Visual instruction tuning for
medical visual question answering. arXiv preprint
arXiv:2305.10415.

Ziheng Zhao, Yao Zhang, Chaoyi Wu, Xiaoman Zhang,
Ya Zhang, Yanfeng Wang, and Weidi Xie. 2023. One
model to rule them all: Towards universal segmen-
tation for medical images with text prompts. arXiv
preprint arXiv:2312.17183.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Qiaoyu Zheng, Weike Zhao, Chaoyi Wu, Xiaoman
Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie.
2023. Large-scale long-tailed disease diagnosis on
radiology images. arXiv preprint arXiv:2312.16151.

Zexuan Zhong and Danqi Chen. 2021. A frustratingly
easy approach for entity and relation extraction. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 50–61.

Xiao Zhou, Xiaoman Zhang, Chaoyi Wu, Ya Zhang,
Weidi Xie, and Yanfeng Wang. 2024. Knowledge-
enhanced visual-language pretraining for computa-
tional pathology. arXiv preprint arXiv:2404.09942.

15015



A Appendix

A.1 Scoring Example

In this section, we will show an example of calcu-
lating RaTEScore. Given a radiology report pair:

Referenced x: A Foley catheter is in situ.
Candidate x̂: A Foley catheter is not in
place.

For simplicity, we will only describe the calculation
procedure for S(x, x̂) in text, and the calculation
procedure for S(x̂, x) is similar.

We first conduct Medical Named Entity Recog-
nition to decompose the natural text into enti-
ties. For the referenced report, the entities list
is: {(“Foley catheter”, Anatomy), (“in situ”, Non-
Abnormality) } and for the candidate report is
{(“Foley catheter”, Anatomy), (“not in place”, Ab-
normality) }. Subsequently, these extracted entities
are processed through the Synonym Disambigua-
tion Encoding Module, which encodes the “Fo-
ley catheter” and “in situ” into feature embedding.
Finally, during the Scoring Procedure, we pick
out the most similar entity in the referenced re-
port for each entity in the candidate report, i.e.,
“Foley catheter” paired with “Foley catheter” in
the reference, and “not in place” with “in situ”.
Then, we get two cosine similarity scores based on
the text embedding, 1.0 for “Foley catheter” and
0.83 for “not in place”. The similarity score be-
tween (“not in place”, Abnormality) and (“in situ”,
Non-Abnormality) will be further multiplied with
a penalty factor p as 0.37 while the other similarity
is maintained since they have the same entity type.
At Last, we calculate the weighted combination of
the two. The weights are derived from a learnable
attribution matrix W corresponding to these type
combinations, as 0.91 and 0.94 respectively. The
calculation formulation is as follows:

S(x, x̂) =
0.91× 1 + 0.94× 0.83× 0.36

0.91 + 0.94

= 0.644.

Similarly, we can get the other similarity:

S(x̂, x) =
0.91× 1 + 0.83× 0.83× 0.36

0.91 + 0.83

= 0.666.

Notably, the only difference between the two simi-
larity scores in this case lies in the weight between

(“in situ”, Non-Abnormality) and (“not in place”,
Abnormality). Due to the comparison directions,
in S(x, x̂), W (Non-Abnormality,Abnormality)
as 0.94 is adopted and in the other hand,
W (Abnormality,Non-Abnormality) as 0.83 is
adopted. The final score is computed as follows:

RaTEScore = 2× S(x, x̂)× S(x̂, x)

S(x, x̂) + S(x̂, x)
= 0.676.

A.2 Automatic Annotation Approach
Here, we introduce our automatic approach to con-
struct a part of our RaTE-NER dataset, sourced
from 19,263 original reports obtained from Ra-
diopaedia (Rad) and covering 9 modalities and 11
anatomies. As shown in Figure 4, leveraging the
latest LLM GPT-4 combined with other compre-
hensive medical knowledge bases, we develop a
new automated medical NER and relation extrac-
tion dataset construction pipeline.

Specifically, we manually annotate several re-
ports at the required granularity and adopt few-shot
prompts with GPT-4 to initially establish an NER
dataset.

GPT-4 prompt:
You are an AI assistant specializing in radi-
ology reports reading. You are provided with
a medical caption. Extract the entities and
decide their type from organ, abnormal de-
scription or disease. Collect the organ and
description together if the description mod-
ifies the organ. Leave disease alone. Make
sure that the description is about the abnor-
mality but not position.
The output should follow this format: [or-
gans; abnormal description] or [disease].
All words in [] should belong to the original
sentence.

Few-shot examples:
’context’: "The sentence is: Hetergeneous
and nodular enhancement of the liver with
pre-contrast HU of -4 (!) indicating hepatic
steatosis.",
’response’: " [ liver; Hetergeneous and nodu-
lar enhancement ] [ liver; pre-contrast HU
of -4 ] [ hepatic steatosis ] "

Following this, we build a robust medical en-
tity library, integrating UMLS (Bodenreider, 2004),
Snomed CT (Donnelly et al., 2006), ICD-10 (ICD),
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Figure 4: Data Curation Procedure.

and other knowledge bases, then, compare all ex-
tracted entities using the MedCPT (Jin et al., 2023)
model for similarity. During the comparison pro-
cess, entities with cosine similarity lower than 0.83
were filtered out. Most entities below this threshold
did not meet our requirements. Subsequently, we
removed sentences with an entity annotation den-
sity lower than 0.7 at the sentence level. Finally,
we use medspaCy (Eyre et al., 2021) and also key
negative words detection in reports, such as “no”,
“without”, “unremarkable”, “intact”, to determine
the positive or negative polarity of each word in the
sentence.

A.3 Involving Anatomies and Modalities in
MIMIC-IV Data

In this section, we detail the imaging modalities
and anatomies involved in MIMIC-IV dataset.

Anatomy List: NECK, TEETH, BRAIN,
HEAD, CHEST, PELVIS, ABDOMEN, CAR-
DIAC, HEAD-NECK, SOFT TISSUE, UP-EXT,
OB, EXT, HIP, BREAST, SPINE, MAMMO,
BRAIN-FACE-NECK, LOW-EXT, BONE, VAS-
CULAR, BLADDER.

Modality List: CT, CTA, Fluoroscopy, Mammog-
raphy, MRA, MRI, MRV, Ultrasound, X-Ray.

A.4 Guidelines for Radiologists
Referencing RadPEER (Goldberg-Stein et al.,
2017), we set up a five-point scoring criteria, as
shown in Table 9. During the annotation process,

each report is compensated with $1 per report, with
five reference reports separately.

A.5 Example for Simulation Reports

In this section, we give an example for the simula-
tion report generation:

GT: The appendix is well visualized and air-
filled.
REWRITE: The appendix is seen and con-
tains gas.
OPPOSITE: The appendix is poorly visual-
ized and not air-filled.

A.6 Baselines

Herein, we will introduce the considered baselines:

• BLEU (Papineni et al., 2002) measures the
precision of generated text by comparing n-
gram overlap between the generated report
and reference reports.

• ROUGE (Lin, 2004) focuses on the recall of
generated text by measuring the overlap of
n-grams, similar to BLEU.

• METEOR (Banerjee and Lavie, 2005) com-
bines precision, recall, and a penalty for frag-
mented alignments, while also considering
words order and synonyms through Word-
Net (Fellbaum, 2010).
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Score Meaning Explaination

5 Correct Most of the diagnosis results are correct. Most descriptions are the same. Some
wrong description unlikely to be clinically significant.

4 Almost Correct 75% of the diagnosis results are correct. Most descriptions are the same. Some
wrong description likely to be clinically significant.

3 Partly Correct 50% of the diagnosis results are correct.
2 Partly Incorrect 25% of the diagnosis results are correct
1 Major Errors Present Incorrect diagnosis. Maybe some negative descriptions are the same.
0 Total Different No overlap for the descripted information.

Table 9: 5-point scoring system For Radiologists to Rate in Paragraph-level Human Rating of RaTE-Eval Benchmark

• CheXbert (Smit et al., 2020; Yu et al.,
2023a) computes the cosine similarity be-
tween CheXbert model embedding of the ref-
erence report and candidate report.

• BERTScore (Zhang et al., 2020) utilizes a pre-
trained BERT model to calculate the similarity
of word embeddings between candidate and
reference texts.

• SPICE (Anderson et al., 2016) extracts key ob-
jects, attributes, and their relationships from
descriptions to build a scene graph, and com-
pares the two texts on the scene graph level.

• RadGraph F1 (Yu et al., 2023a) extracts the
radiology entities and relations for Chest X-
ray modality and computes the F1 score on
the entity level.

A.7 Failure Cases in ReXVal Dataset

In this section, in order to better demonstrate the
drawbacks of ReXVal dataset, we will give a failure
case where two reports with different entity-wise
errors while achieve the same scores.

Report Pair 1:

GT: ET tube within 1 cm of the carina.
This was discussed with Dr. ___ at 4 p.m.
on ___ by Dr. ___ at time of interpretation.
Pred: ET tube terminates approximately 3 .
5 cm from the carina.
Total Errors: 1.33

Report Pair 2:

GT: In comparison with the study of xxx,
there is again enlargement of the cardiac
silhouette with elevation of pulmonary ve-
nous pressure. Opacification at the right
base again is consistent with collapse of the
right middle and lower lobes RECOMMEN-
DATION(S): The tip of the right IJ catheter
is in the mid to lower SVC.
Pred: In comparison with the study xxx,
there is little change in the appearance of
the monitoring and support devices. Con-
tinued substantial enlargement of the car-
diac silhouette with relatively mild elevation
of pulmonary venous pressure. Opacifica-
tion at the right base silhouettes the hemidi-
aphragm and is consistent with collapse of
the right middle and lower lobes.
Total Errors: 1.33

As shown in the examples, case 1 with only
two entity errors scores 1.3, and the report that
describes more than ten different entity errors also
scores 1.3. Moreover, reports length less than
10 words commonly has zero errors in ReXVal,
whereas reports longer than 25 words had an av-
erage error count greater than 3, simply because
the texts are longer and may contain more poten-
tial errors. Therefore, ignoring normalization and
directly using absolute error counting numbers as
the score like ReXVal may present severe bias that
longer sentences scoring lower and shorter sen-
tences scoring higher.

A.8 Pretrained BERT Model Introduction

In this section, we will introduce our considered
pre-trained BERT models in detail:

• DeBERTa_v3 (He et al., 2022) is an advanced
version of the DeBERTa (He et al., 2020)
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model, which improves upon the BERT and
RoBERTa models by incorporating disentan-
gled attention mechanisms, enhancing perfor-
mance on a wide range of natural language
processing tasks.

• Medical-NER (Clinical-AI-Apollo, 2023) is a
fine-tuned version of DeBERTa to recognize
41 medical entities. The specific training data
is not publicly available.

• BioMedBERT (Chakraborty et al., 2020) pre-
viously named "PubMedBERT", pretrained
from scratch using abstracts and full-text arti-
cles from PubMed (Canese and Weis, 2013).

• BlueBERT (Peng et al., 2019) is a BERT
model pre-trained on PubMed abstracts and
clinical notes (MIMIC-III) (Johnson et al.,
2016).

• MedCPT-Q-Enc. (Jin et al., 2023) is pre-
trained by 255M query-article pairs from
PubMed search logs, and achieve SOTA per-
formance on several zero-shot biomedical IR
datasets.

• BioLORD-2023-C (Remy et al., 2024) is
based on a sentence-transformers model and
further finetuned on the entity-concept pairs.

A.9 NER Module Implementation Details
In the Medical Named Entity Recognition Mod-
ule training scheme, we train the model on one
NVIDIA GeForce GTX 3090 GPU with a batch
size of 96 for 10 epochs while adopt different learn-
ing rates for different training schemes. For the
Span-based method, we follow the setting of PURE
entity model (Zhong and Chen, 2021), which uses
a pre-trained BERT model to obtain contextualized
representations and then fed into a feedforward net-
work to predict the probability distribution of the
entity. It combines a BERT (Devlin et al., 2019)
model and a 3-layer MLP with head hidden dimen-
sion of 3096 for span classification. The span max
length is 8. In the training stage, we set the learn-
ing rate as 6e-6. For the IOB-based method, each
token is labeled as ’B-’ (beginning of an entity),
’I-’ (inside an entity), or ’O’ (outside of any en-
tity). We directly fine-tune the pre-trained BERT
to perform a token classification task. Specifically,
we add a linear layer to the output embedding of a
BERT-liked model, which is fine-tuned utilizing a
corpus of annotated entity data to predict the entity
label for each token. We use a learning rate of 1e-5
for the IOB-based training scheme.
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