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Abstract

The image-based multimodal automatic speech
recognition (ASR) model enhances speech
recognition performance by incorporating
audio-related image. However, some works
suggest that introducing image information to
model does not help improving ASR perfor-
mance. In this paper, we propose a novel ap-
proach effectively utilizing audio-related im-
age information and set up VHASR, a mul-
timodal speech recognition system that uses
vision as hotwords to strengthen the model’s
speech recognition capability. Our system uti-
lizes a dual-stream architecture, which firstly
transcribes the text on the two streams sep-
arately, and then combines the outputs. We
evaluate the proposed model on four datasets:
Flickr8k, ADE20k, COCO, and OpenImages.
The experimental results show that VHASR
can effectively utilize key information in im-
ages to enhance the model’s speech recognition
ability. Its performance not only surpasses uni-
modal ASR, but also achieves SOTA among
existing image-based multimodal ASR.1

1 Introduction

ASR model (Chan et al., 2015) takes audio as in-
put and produces corresponding transcription. One
effective method to improve the model’s ASR per-
formance is to increase both the volume of training
data and the number of model parameters. We are
now in the era of large language models (LLMs)
(Brown, 2020; Li et al., 2023), which have been de-
veloped across various domains (Yang et al., 2024;
Zhang et al., 2023). In the speech domain, there
are also many LLMs that demonstrate impressive
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No. 72074171, No. 72374161), the Natural Science Foun-
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1Our code is available at https://github.com/193746/
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a girl is holding teddy bare toy in her arms

a girl is holding teddy bear toy in her armscorrect transcription:
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hotword embedding: …
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correct transcription:

unimodal ASR result:

hotword embedding:

a cat is sleeping on top of a blanket on a bed

a cat is sitting on top of a blanket on a bed

Text Hotwords

Vision Hotwords

Figure 1: Comparison between text hotwords and the
vision hotwords proposed in this paper. Text hotwords
are a set of custom keywords that are prone to errors,
while image hotwords refer to patches of an image. The
hotword with a darker rectangle indicates that it is more
relevant to transcription.

ASR capabilities (Chu et al., 2023; Radford et al.,
2023). However, this approach can be expensive. A
more cost-effective alternative is to introduce addi-
tional information related to speech into the model.
This information can be presented in either tex-
tual or visual forms. The ASR system that utilizes
audio-related information from various modalities
is referred to as multimodal ASR.

Hotwords, which are terms in certain profes-
sional fields or words that are easily confused with
other homonyms, are common textual cues. There
have been many studies on how to freely customize
hotwords and improve the recall of hotwords (Han
et al., 2021; Shi et al., 2024). It is also possible
to use captions as textual information (Moriya and
Jones, 2018; Han et al., 2023).

Visual cues can be in the form of video or im-
age. Audio-Visual Speech Recognition (AVSR)
enhances the accuracy of speech recognition by
capturing lip movement information of characters
in video (Ivanko et al., 2023). Image-based mul-
timodal ASR extracts visual feature from image
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associated with speech to correct transcription er-
rors. We abbreviate image-based multimodal ASR
as IBSR. Because the lip movement information of
video’s role is closely linked to his speech, it influ-
ences nearly every word in the transcribed text. In
contrast, IBSR only impacts a subset of the words
as the image is only associated with specific audio
clips (Oneat, ă and Cucu, 2022). IBSR currently
lacks a universal and effective method for utilizing
image information, leading to various experimental
results in different studies. Some works (Sun et al.,
2016; Srinivasan et al., 2020a,c) have a positive
effect by incorporating image information, while
others (Srinivasan et al., 2020b; Oneat, ă and Cucu,
2022; Han et al., 2023), have the opposite effect.

In this paper, we propose a novel approach ef-
fectively utilizing audio-related image information
and set up VHASR, a multimodal speech recog-
nition system that utilizes vision hotwords to en-
hance the model’s speech recognition capability. It
calculates the similarity between different modal-
ities to improve the effectiveness of cross-modal
fusion. Drawing inspiration from text hotwords,
we utilize Vision Transformer (ViT) to partition
images into multiple visual tokens and consider
each visual token as a vision hotword. Our system
adopts a dual-stream architecture. One stream is
the ASR stream, which receives audio information
and produces transcribed text. The other stream is
the vision hotwords (VH) stream, which receives
vision hotwords and audio hidden features, and
generates corresponding text. In the VH stream,
we calculate the similarity between audio and vi-
sion hotwords to reduce the weight of vision hot-
words with low similarity. This process helps to
extract fine-grained image information. When in-
ferring, VHASR first transcribes the text separately
from the ASR stream and the VH stream, and then
merges the outputs. We ensure the high accuracy
of the merged output by comparing the similarity
of different modalities. Specifically, we first calcu-
late the audio-image similarity to discard the VH
stream if the similarity is low. Then, we calculate
the image-text token similarity to compare the ASR
stream and VH stream outputs by tokens. Finally,
tokens with higher similarity are selected for the
merged output.

We evaluate the proposed model on four datasets:
Flickr8k, ADE20k, COCO, and OpenImages. The
experimental results show that VHASR can effec-
tively utilize critical information in images to im-
prove the model’s ASR performance. Its perfor-

mance is not only better than ordinary unimodal
ASR models but also surpasses existing IBSR mod-
els. The contributions of this paper are as follows:

(1) We demonstrate that through our idea of vi-
sion hotwords, injecting audio-related image
into the ASR model can help the model cor-
rect transcription errors.

(2) We propose VHASR, by utilizing a dual-
stream architecture and calculating the cross-
modal similarity, it promotes effective utiliza-
tion of visual information in vision hotwords.

(3) The proposed model achieves SOTA on
Flickr8k, ADE20k, COCO, and OpenImages.

2 Related Work

Image-based multimodal ASR. Sun et al. (2016)
introduce a multimodal speech recognition scenario
which utilizes images to assist the language model
in decoding the most probable words and rescor-
ing the top hypotheses. Caglayan et al. (2019)
propose an end-to-end multimodal ASR system im-
plemented by LSTM (Graves and Graves, 2012).
They apply visual adaptive training (Palaskar et al.,
2018) to finetune a pretrained ASR model with
visual data, and leverage visual information to ini-
tialize model’s encoder and decoder. Srinivasan
et al. (2020b) present a model for multimodal ASR
that utilizes visual feature from object proposals.
They integrate the features of object proposals into
a visual representation by utilizing their attention
distribution as weights, and incorporate this visual
representation into the model via a hierarchical at-
tention mechanism. Oneat, ă and Cucu (2022) com-
bine speech and visual embeddings using two fu-
sion approaches. One approach fuses along the
embedding dimension, and another fuses along the
sequence dimension. They find that the first method
performs better. Han et al. (2023) propose a novel
multimodal ASR model called ViLaS, which is
based on the continuous integrate-and-fire (CIF)
mechanism (Dong and Xu, 2020). It can integrate
image and caption information simultaneously or
separately to facilitate speech recognition. Chang
et al. (2023) propose a multimodal ASR system for
embodied agents. Their model is based on Trans-
former (Vaswani et al., 2017), where the visual fea-
ture vector is concatenated to the decoder’s input
word embedding at every timestep of generation.
Function of image information. Srinivasan et al.
(2020a) conduct the experiment called audio cor-
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Figure 2: The structure of our proposed model, VHASR. The green dashed box contains the modules of the ASR
stream, while the blue dashed box contains the modules of the VH stream. The data flow in the ASR part is indicated
by green and red lines. It only passes through the red lines during ASR model’s second pass of training. The VH
stream’s data flow is denoted by blue lines. The data flow for calculating audio-image similarity is represented by
yellow lines. The purple lines illustrate the data flow when merging two streams.

ruption, in which they mask the words related to
nouns and places with silence and white noise,
respectively. The study demonstrates that visual
representations help in recovering words that are
masked in the input acoustic signal. Srinivasan
et al. (2020c) think the previous work has only
masked a fixed set of words in the audio, which is
an unrealistic setting. So, they propose a method
called RandWordMask, where masking can occur
for any word segment to improve the audio corrup-
tion experiment. Kumar et al. (2023) propose two
effective ASR error correction methods: one em-
ploys a gated fusion method to concatenate visual
and textual features, while the other utilizes im-
age’s caption as correction model’s prompt. Both
methods demonstrate that visual information helps
restoring incorrect words in transcription. In short,
image information helps to recover incorrect words
in transcription that are caused by masked acoustic
signals or ASR model’s error.

3 VHASR

3.1 ASR Stream
Follow Gao et al. (2022), we adopt this paral-
lel Transformer for non-autoregressive end-to-end
speech recognition as the basic framework of our
ASR stream. As shown in green dashed box of
Figure 2, the adopted framework consists of four
parts: speech encoder, predictor, sampler, and de-

coder. The framework adopts two-pass training and
one-pass inference.

3.1.1 Acoustic Representation Learning
Let X be a speech sequence with T frames, X =
{x1, x2, x3, . . . , xT }. Y is a sequence of tokens,
and its length is N . Each token is in the vocabulary
V , Y = {y1, y2, y3, . . . , yN | yi ∈ V }.

The speech encoder adopts the SAN-M (Gao
et al., 2020) structure, which is a special Trans-
former Layer that combines self-attention mecha-
nism with deep feed-forward sequential memory
networks (DFSMN). It converts the input X1:T to
the hidden representation HE

1:T .

HE
1:T = SpeechEncoder(X1:T )

The predictor is a two-layer Deep Neural Net-
works (DNN) model that aligns speech and text
based on CIF. It is used to predict the length of
sentences N

′
and extract acoustic representation

Ea
1:N ′ from the speech encoder’s hidden represen-

tation HE
1:T .

N
′
, Ea

1:N ′ = Predictor(HE
1:T )

The sampler does not contain learnable parame-
ters and is only applied when training. It strength-
ens acoustic representation to semantic representa-
tion by incorporating text features, aiming to better
train the context modeling ability of the speech
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decoder. The Ec
1:N ′ denotes the embedding of Y .

The sampler initially identifies tokens in Y
′
A with

transcription errors, and subsequently combines the
correct embeddings of these error tokens in Ec

1:N ′

into Ea
1:N ′ to generate the semantic features Es

1:N ′ .
Not every error token’s correct embedding will be
incorporated into Ea

1:N ′ , this is determined by the
mixing ratio λ, λ ∈ (0, 1).

Es
1:N ′ = Sampler(Ea

1:N ′ , Ec
1:N ′ , ⌈λ

N
′

∑

i=1

(y
′
i ̸= yi)⌉)

3.1.2 Decoding Process
The speech decoder adopts the bidirectional SAN-
M structure. In the first pass of training, the hid-
den representation HE

1:T obtained by the speech
encoder and the acoustic representation Ea

1:N ′ gen-
erated by the predictor are input to the speech de-
coder to obtain the initial decoding result Y

′
A.

Y
′
A = SpeechDecoder(HE

1:T , N
′
, Ea

1:N ′ )

In the second pass of training, the hidden rep-
resentation HE

1:T and the semantic representation
Es

1:N
′ obtained by the sampler are input to the

speech decoder to obtain the second decoding re-
sult Y

′′
A

Y
′′
A = SpeechDecoder(HE

1:T , N
′
, Es

1:N ′ )

During the first pass, no gradient backpropaga-
tion is performed, and Y

′
A is only used to determine

the sampling number of the sampler. Y
′′
A obtained

in the second pass is used to calculate the ASR loss.
In inference, the model directly takes Y

′
A as output

and does not calculate Y
′′
A .

3.2 Vision Hotwords Stream
3.2.1 Vision Representation Learning
In the VH stream, we need to extract visual features
from images by the vision encoder firstly. A naive
idea is to extract the features from the entire image.
Because most of the information in the image is
unrelated to the audio, especially the background
of the image. The introduction of irrelevant infor-
mation may cause the visual features to become
noise. Therefore, we should consider a strategy to
extract fine-grained image information.

The vision encoder is essentially ViT (Dosovit-
skiy et al., 2020). ViT uses Transformer to ex-
tract visual features. It follows the application of

the Transformer in natural language processing by
initially dividing the image into multiple patches,
considering each patch as a token, embedding the
positional information, and then feeding visual to-
kens (Peng et al., 2024) into the Transformer. The
features outputted by ViT are the features of each
visual token. If the downstream task of ViT is clas-
sification, a trainable CLS token can be added in
front of the visual token. The score on the CLS to-
ken can then be utilized for classification. It would
be a good choice if we utilize each visual tokens’
features instead of entire image’s features. At the
token granularity level, we can diminish the im-
pact of tokens unrelated to audio and amplify the
influence of tokens related to audio.

So, our strategy is to calculate the features of
each visual token and then adjust the weight of vi-
sual tokens. For the ASR model with text hotwords,
it is often necessary to consider how to capture in-
volved hotwords and exclude unrelated hotwords
when there are many customized hotwords. This is
similar to our consideration, so we call each visual
token an vision hotword. Let Z be the input image.
First, utilize the vision encoder to transform it into
token-level visual features HV

0:K , where K repre-
sents the number of vision hotwords. The initial
features of HV

0:K , corresponds to the features of
the CLS token, while others are vision hotwords’
features.

HV
0:K = VisionEncoder(Z)

HV
CLS = HV

0:K [ 0 ] ;HV
1:K = HV

0:K [ 1 :K ]

We determine the correlation between each vi-
sion hotword and audio by calculating their cosine
similarity. Specifically, the first step is to input
HV

1:K into the vision adapter, which is composed

of a linear layer, to obtain HV
′

1:K . Next, we add
the embedding of a trainable CLS token to the be-
ginning of the acoustic features HE

1:T , resulting in
HE

0:T . This HE
0:T is then fed into the speech adapter,

which consists of a Transformer layer, to produce
the complete audio features HE

′
.

HV
′

1:K = VisionAdapter(HV
1:K)

HE
′
= SpeechAdapter(HE

0:T )[0]

Then, calculate cosine similarity between vision
hotwords and audio, denoted as SV ′A.

SV ′A = cos(HV
′

1:K , HE
′
)
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Finally, we adjust the weight of HV
1:K by SV ′A.

HV
1:K = HV

1:K × SV ′A

CLS

Audio Encoder & Adapter

Vision Encoder & Adapter

𝐻𝑐𝑙𝑠
𝑉′

𝐻1:𝐾
𝑉′

𝐻𝐸′
 

ℒ𝑉𝐴 & 𝑆𝑉𝐴 𝑆𝑉′ 𝐴

Figure 3: Using vision hotword-audio similitude and
image-audio similitude to learn fine visual representa-
tion.

In order to enhance the effectiveness of
similarity-based weight adjustment, an additional
loss needs to be introduced to train the adapters.
We utilize the acoustic features and the CLS token’s
features of the image to calculate the image-audio
contrastive loss LV A to optimize the adapters. The
reason for using image-audio contrastive loss in-
stead of vision hotwords-audio contrastive loss is
that the former has a coarser granularity, making
it easier to converge. Moreover, during inference,
we need to use image-audio similarity for decoding
optimization, which will be explained at length in
Section 3.3. Figure 3 illustrates in detail our opti-
mization of visual representation by calculating the
similitude between vision hotwords and audio, as
well as the similitude between image and audio.

HV
′

CLS = VisionAdapter(HV
CLS)

LV A = ContrastiveLoss(HV
′

CLS , H
E

′
)

3.2.2 Decoding Process
The blue line in Figure 2 illustrates the data flow
of the VH module. After extracting the fine visual
representation of HV

1:K , we further refine it using
an LSTM-based VH encoder to obtain HE

1:K .

HE
1:K = VHEncoder(HV

1:K)

The next step is to use a text decoder to obtain
the probability distribution of each token. Obvi-
ously, if we only use HE

1:K which just contains

image information as input, it will result in a sig-
nificant deviation in the probability distribution of
tokens, and the VH stream’s outcome will be com-
pletely inconsistent with the correct transcription.
So, we need to incorporate certain hidden features
of the ASR stream to modify the output of the VH
stream. Drawing lessons from the idea of Shi et al.
(2024), we integrate the acoustic features vector
Ea

1:N ′ outputted by the predictor and the hidden fea-
tures HD

1:N ′ outputted by the speech decoder with

HE
1:K separately to derive Ea

′

1:N ′ and HD
′

1:N ′ , which
have been influenced by image information. The
VH decoder adopts the same bidirectional SAN-M
architecture as the speech decoder.

Ea
′

1:N
′ = VHDecoder(Ea

1:N
′ , HE

1:K)

HD
′

1:N ′ = VHDecoder(HD
1:N ′ , HE

1:K)

The final input to the VH output layer is the
average of Ea

′

1:N ′ and HD
′

1:N ′ .

Y
′
V = argmax

yi∈V
(W V

1:V

(Ea
′

1:N ′ +HD
′

1:N ′ )

2
+ bV1:V )

3.3 Dual-stream Merging
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Figure 4: The specific process of decoding optimization.

In this section, we will discuss how to merge the
outputs of the ASR stream and the VH stream. A
straightforward approach is to add the probability
distributions of tokens from two modules by assign-
ing a specific weight, denoted as M1. The formula
for M1 is as follows, where pA, pV , and pM are the
tokens’ probability distributions of the ASR stream,
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VH stream, and merged result. α is the proportion
of pA, and α ∈ (0, 1).

pM = αSoftmax(pA) + (1− α)Softmax(pV )

Y
′
M1

= argmax
yi∈V

(pM )

The M1 has low flexibility, making it difficult to
achieve good results in practice. Figure 4 illustrates
a merging method based on image-token similar-
ity, referred to as M2. The vision encoder and
adapter are used to calculate the visual features of
the image, HV

′

CLS , and the text encoder and adapter
are used to calculate the features of each token,
HT

′

1:N ′ . The formula for HV
′

CLS has been provided

in Section 3.2.1, and the formula for HT
′

1:N ′ is as
follows. The text encoder consists of Transformer
layers, the text adapter consists of a linear layer,
and Embedding is a additional embedding layer.

HT
1:N ′ = TextEncoder(Embedding(Y

′
))

HT
′

1:N ′ = TextAdapter(HT
1:N ′ )

Based on HV
′

CLS and HT
′

1:N ′ , the cosine similarity
of the image and tokens, SV T ′ , can be calculated.

SV T ′ = cos(HV
′

CLS , H
T

′

1:N ′ )

When calculating Y
′
M2

, we first calculate the text
features of the ASR stream output Y

′
A and the VH

stream output Y
′
V , respectively, namely H

T
′
A

1:N ′ and

H
T

′
V

1:N ′ . Then calculate their cosine similarities with

HV
′

CLS separately, namely SA
V T ′ and SV

V T ′ . Finally,
a token by token comparison of the dual-stream is
conducted according to SA

V T ′ and SV
V T ′ . Specif-

ically, the value of these two similarities at any
position represents the similarity score between the
token at that position and the image. At the same
position, Y

′
A and Y

′
V may obtain different tokens.

We determine which token to choose as the final
result by judging the value of SA

V T
′ and SV

V T
′ at

that position. If SA
V T ′ > SV

V T ′ , we take the to-
ken on Y

′
A, and vice versa. After completing N

′

comparisons, Y
′
M2

can be obtained.
In Section 3.2.1, to achieve an fine-grained

visual representation, we additionally introduce
speech and vision adapters in VHASR to compute
the similarity between vision hotwords and audio.
Then, to train the adapter, we calculate contrastive

loss between the image and audio. In the inference
stage, we can further utilize the trained adapter to
optimize M2 by calculating image-audio similarity.
Specifically, we calculate the image-audio similar-
ity SV A for a batch of data. If the audio of a piece
of data does not match its own image, it is consid-
ered that the correlation between this image and
audio is low. Therefore, for this data, the output
of the VH stream is discarded, and the output of
the ASR stream is directly used as the final output.
We introduce a novel merging method called M3.
It involves initially filtering data with low image
and audio correlation using SV A, followed by dual-
stream merging as outlined in M2. We will conduct
a detailed comparative experiment on these three
merging methods in Section 4.

4 Experiment

4.1 Configuration
Table 1 shows all the datasets used in this paper,
with Flickr8k, ADE20k, COCO, and OpenImages
used for training and testing, and SpokenCOCO
used for pre-training. Flickr8k is from Harwath
and Glass (2015) and SpokenCOCO is from Hsu
et al. (2021). ADE20k, COCO and OpenImages
are from Local Narratives proposed by (Harwath
et al., 2016). In order to shorten the experimental
period, we filter data with audio exceeding 40s in
ADE20k, and with more than 40 tokens or an audio
duration of more than 20 seconds in COCO and
OpenImages. We use word error rate (WER) as an
evaluation metric to evaluate the speech recognition
performance of ASR stream, VH stream, M1, M2,
and M3.

Dataset Train Validation Test
Flickr8k 30,000 5,000 5,000
ADE20k 17,067 1,672 -
COCO 49,109 3,232 -
OpenImages 269,749 27,813 -
SpokenCOCO 592,187 25,035 -

Table 1: Datasets used in experiments.

Our baseline is 220M English Paraformer. In
Flickr8k, we compare our model with Acoustic-
LM-RNN proposed by Sun et al. (2016), model
utilizing object features as visual information (ab-
breviated as Multimodal (object) in the paper) from
Srinivasan et al. (2020a), Weighted-DF in Srini-
vasan et al. (2020c), MAG proposed by Srinivasan
et al. (2020b), model fusing the two modalities
along the sequence dimension (abbreviated as Mul-

14796



Dataset Baseline VHASR

WER (↓) Pretrain WERASR (↓) WERVH (↓) WERM1 (↓) WERM2 (↓) WERM3 (↓)

Flickr8k 3.86 ✕ 3.84 3.94 3.82 3.62 3.60
✓ 3.55 3.51 3.54 3.22 3.21

ADE20k 10.51 ✕ 10.33 10.52 10.38 9.80 9.60
✓ 10.27 10.37 10.32 9.62 9.53

COCO 10.44 ✕ 10.35 10.34 10.28 9.63 9.61
✓ 10.25 10.36 10.28 9.60 9.59

OpenImages 8.72 ✕ 8.61 8.58 8.58 7.73 7.71
✓ 8.58 8.63 8.59 7.70 7.68

Table 2: Main results of proposed model in four datasets. The WERASR and WERVH represent the result of the
ASR stream and VH stream, respectively. M1 combines the outcomes of two streams with designated weights,
whereas M2 merges by assessing the similarity between image and text tokens. Building on M2, M3 evaluates the
similarity between images and audio to eliminate unrelated images.

timodal (emb) in the paper) from Oneat, ă and Cucu
(2022) and ViLaS in Han et al. (2023).

The modules in CLIP-Base (Radford et al., 2021)
is utilized to construct the vision encoder and vision
adapter for the VH stream, as well as the vision en-
coder and text encoder for M2. The vision module
of the VH stream freeze parameters during training,
and the M2’s modules do not require training. The
220M English Paraformer is chosen as the founda-
tional framework for ASR stream, initialized with
the same parameters as the baseline. λ of sampler
is set to 0.75 and α of M1 is set to 0.5. The exper-
imental environment is constructed using Funasr
(Gao et al., 2023) and ModelScope. We trained the
models until convergence, and consistently utilize
the Adam optimizer with a learning rate of 5e-5.

4.2 Main Result

Table 2 presents the results of the proposed method
and baseline on four datasets. For the ASR stream
and VH stream, the WER of the ASR stream is
lower. The VH stream can acquire the ability of
transcribing by utilizing the hidden layer’s fea-
tures of the ASR stream as VH decoder’s input.
Among the three merge methods, M3 has the best
results, followed by M2, and finally M1. This is
consistent with our expected results. M1 has lim-
ited flexibility, and the fixed weight proportion is
not applicable to all data. By calculating image-
token similarity, comparing the results of the ASR
stream and VH stream token by token, and result-
ing in a final output with the highest similarity, M2

achieves WER that are better than both WERASR
and WERVH. Furthermore, by calculating audio-
image similarity in addition and excluding the VH
stream with low similarity, M3 reduces the tran-
scription error compared to M2. For the base-

line and ASR stream, ASR stream performs better,
indicating that joint training of the ASR stream,
VH stream, and audio-image pairing improves the
unimodal ASR’s performance. For the baseline
and M3, M3 outperforms the baseline on all four
datasets, demonstrating the effectiveness of our
method. In addition, pre-training with large-scale
corpora can further strengthen the performance of
the model. We use SpokenCOCO, which contains
the largest amount of data, to pre-train the proposed
model, resulting in improvements in all five metrics
of the model across all four datasets.

4.3 Ordinary Multimodal Fusion vs Hotword
Level Multimodal Fusion

Model
Word Error Rate (↓)

w/o vision w vision

Acoustic-LM-RNN (Sun et al., 2016) 14.75 13.81 (↓ 0.94)

Multimodal (object) (Srinivasan et al., 2020a) 16.40 14.80 (↓ 1.60)

Weighted-DF (Srinivasan et al., 2020c) 13.70 13.40 (↓ 0.30)

MAG (Srinivasan et al., 2020b) 13.60 13.80 (↑ 0.20)

Multimodal (emb) (Oneat, ă and Cucu, 2022) 3.80 4.30 (↑ 0.50)

ViLaS (Han et al., 2023) 3.40 3.40 (↓ 0)

VHASR 3.86 3.21 (↓ 0.65)

Table 3: Comparison results with benchmarks in F8k.

The comparison results are shown in the Tabel
3. Without vision information, Vilas (Han et al.,
2023) performs better than our VHASR since they
have done sufficient pretraining. With vision in-
formation, VHASR’s ASR performance has been
significantly enhanced and it achieves the lowest
WER. Obviously, our experimental results indicate
that the incorporation of visual information aids
in rectifying tokens for ASR transcription errors
and decreasing WER. However, Srinivasan et al.
(2020b), Oneat, ă and Cucu (2022) and Han et al.
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Dataset Mask Ratio Baseline VHASR

WER (↓) RR (↑) WERASR (↓) RRASR(↑) WERM2 (↓) RRM2 (↑)

Flickr8k
30% 29.36 80.75 27.39 83.22 22.36 83.29
50% 46.79 69.80 45.01 72.84 38.35 73.38
70% 62.66 58.83 63.43 60.60 55.04 61.34

ADE20k
30% 24.79 92.02 24.40 92.51 19.96 92.60
50% 34.16 89.18 32.95 89.86 26.91 90.06
70% 42.30 86.33 40.70 87.45 33.39 87.46

COCO
30% 25.60 92.02 24.23 92.85 20.13 92.87
50% 35.59 89.42 33.22 91.05 27.06 91.05
70% 44.00 87.76 41.35 89.26 33.84 89.32

Table 4: Experimental results of audio corruption with AWGN.

(2023) argue that the speech in Flickr8k is suf-
ficiently clear, making it challenging to enhance
transcription performance by incorporating addi-
tional information from other modalities.

MAG (Srinivasan et al., 2020b) utilize global
visual features, which may introduce a significant
amount of information unrelated to audio and po-
tentially impact the model’s ASR performance.
They considered this issue and proposed MAOP,
which utilizes multiple fine-grained image features
extracted from object proposals. But in terms of
clean Flickr8k, MAOP’s performance is not as
good as MAG’s. Oneat, ă and Cucu (2022) take
a sequence of image features vectors from the layer
preceding the global average pooling layer in the
vision encoder, for leveraging more fine-grained
characteristics of the image. However, they did
not consider that some image vectors in the se-
quence have low correlation with the audio. Intro-
ducing these vectors fully into the backbone will
still impact the model’s recognition ability. Han
et al. (2023) use ViT as a vision encoder and uti-
lizes the image tokens for visual representation,
which aligns with our approach. However, they do
not reduce the weight of visual tokens with low
importance, as we do. This resulted in the intro-
duction of visual information not improving the
recognition performance of the model. Compared
to these works that use ordinary multimodal fusion
approach, our proposed method, which injects vi-
sual modality information by vision hotwords, have
made improvements in refining image representa-
tion and eliminating irrelevant image information.
Therefore, our proposed model can enhance perfor-
mance using visual features even when the dataset
is of high quality and the baseline is strong.

4.4 Audio Corruption
To further demonstrate that introducing image in-
formation related to audio can reduce transcription
errors in proposed model, we conduct an audio cor-
ruption experiment proposed by Srinivasan et al.
(2020a). We first use the timestamp prediction
model proposed by Shi et al. (2023) to align audio
and transcribed text. Then, we mask the words in
the audio to a certain proportion by replacing the
audio segments corresponding to the masked words
with Additive White Gaussian Noise (AWGN). We
use the recovery rate (RR) defined in Srinivasan
et al. (2020a) to calculate the proportion of masked
words recovered in the model transcription results.
Unlike Srinivasan et al. (2020a), our approach only
masks the test data, while the training data remains
unchanged.

We conduct this experiment on Flickr8k,
ADE20k, and COCO, and the experimental results
are shown in Table 4. In terms of baseline and
ASR stream, regardless of the mask ratio, the ASR
stream has lower WER and higher RR on all three
datasets. This suggests that the jointly trained ASR
stream exhibits stronger noise resistance and audio
content prediction abilities compared to unimodal
ASR. In terms of ASR stream and M2, by incorpo-
rating image information, M2 significantly reduces
WER and enhances RR, as evidenced by the mask
ratio across the three datasets. This indicates that
image information can assist the model in capturing
image-related words in audio, enabling the model
to accurately transcribe these words even if their
corresponding audio is masked. Furthermore, we
can argue that on normal unmasked data, image in-
formation can assist the model in correcting words
related to image but with transcription errors.
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4.5 Ablation Result
To demonstrate that the refined image representa-
tion extracted by the method proposed in Section
3.2.1 is more effective than the full image represen-
tation, we conduct the ablation experiments. The
experimental results are presented in Table 5. On
four datasets, whether it is M1 or M2, the model
using refined image representation has better per-
formance. This not only shows the effectiveness
of the method described in Section 3.2.1 but also
offers one of reasons why our model is stronger
than other benchmarks.

Dataset
WERM1 (↓) WERM2 (↓)

w/o refine w refine w/o refine w refine
Flickr8k 3.88 3.82 3.67 3.62
ADE20k 10.67 10.38 10.17 9.80
COCO 10.46 10.28 9.64 9.63
OpenImages 8.73 8.58 7.81 7.73

Table 5: Experimental results of ablation studies.

In order to showcase the strength of our baseline,
we evaluate its ASR performance against Whisper.
The experimental results are presented in the Table
6. As the table shows, Whisper excels on F8k. This
is attributed to: (1) Whisper’s utilization of a large
amount of data for pretraining, which we did not
employ. (2) F8k being a high-quality dataset where
many IBSR works achieve superior results without
using visual information (refer to Table 3). Never-
theless, our approach can enhance the ASR capa-
bility of the model by effectively leveraging visual
information. In ADE20k, a dataset with more noise,
our baseline demonstrates stronger noise resistance
and performs better than Whisper. In essence, our
baseline is on par with Whisper. Furthermore, our
system’s ASR module is adaptable and we will
explore which ASR module can achieve optimal
performance for VHASR in the future.

Model Params Trained Flickr8k ADE20k
Whisper 244M ✓ 3.38 14.28
Whisper 1.5B ✕ 3.05 14.08
Baseline 220M ✓ 3.86 10.51
VHASR 333M ✓ 3.21 9.53

Table 6: WER of Whisper, our baseline and VHASR on
FLickr8k and ADE20k. The 1.5B Whisper is version
V3.

5 Conclusion

We propose VHASR, a multimodal speech recog-
nition system that utilizes vision hotwords to
strengthen the model’s speech recognition abil-
ity. Our system features a dual-stream architec-
ture, consisting of an ASR stream and a VH stream
that firstly transcribe separately and then combine
their outputs. By leveraging vision hotwords, the
VH stream concentrates on key visual informa-
tion, allowing for precise transcription of words
associated with images. In the merging phase,
the VH stream assists the ASR stream in correct-
ing any mis-transcribed words related to images,
thereby ensuring high accuracy in the final tran-
scription. We conduct comprehensive experiments
on Flickr8k, ADE20k, COCO, and OpenImages,
which showcase the effectiveness of vision hot-
words and the robust ASR performance of VHASR.

Limitations

The Limitations of VHASR include: (1) currently,
VHASR can only introduce image information to
enhance the model’s speech recognition ability,
which does not have sufficient versatility. In the
future, we will enable VHASR to support input of
audio-related text information (such as hotwords, ti-
tles) and video information, enabling the model to
extract feature beneficial for speech recognition
from multiple modal information, and building
a more versatile multimodal speech recognition
model. (2) we have only demonstrated that vision
hotwords is a effective way to utilize image infor-
mation, and there may be other applicable methods.
We will design more in-depth experiments in the
following work to explore more feasible ideas.
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A Appendix

A.1 Case Study
In Section 4.4, we demonstrated that VHASR can
use image information to correct words which is
related to images and has transcription errors. In
this section, we will use examples to explain how
VHASR achieves this.

Figure 5 shows three examples from Flickr8k.
"A" refers to the transcription of the ASR stream,
"V" refers to the transcription of the VH stream,
"M" refers to the transcription obtained by M3, and
"T" refers to the real transcription. We extract the
attention score matrix from the last layer of the
VH decoder and create a heatmap. The horizon-
tal axis of the heatmap represents the subtoken,
while the vertical axis represents the number of
vision hotwords. We identify the subtokens that
are transcribed incorrectly by the ASR stream but
corrected by the VH stream. Then, we extract the
top 5 vision hotwords that have the highest atten-
tion scores with them. Chosen vision hotwords are
marked on the original image.

In the first example, the ASR stream incorrectly
transcribes "grey" as "gry", while the VH stream
doesn’t make this mistake. The combination of the
two streams helps correct the error. specifically,
the subtokens corresponding to "grey" focus on six
vision hotwords, five of which are background, and
one includes the grey pants of the dancer. There-
fore, the vision encoder successfully extracts infor-
mation about "grey" and helps the VH stream tran-
scribe "grey" accurately. Furthermore, by merging
the ASR stream and VH stream with M3, error in
the ASR stream is rectified. In the second example,
the ASR stream incorrectly transcribes "girls" as
"girl", which was also corrected by the accurate VH
stream. Among the vision hotwords corresponding
to "girls", three are related to background, and two
include the heads of the girls, so the VH stream
successfully identified "girls". In the third example,
the ASR stream incorrectly transcribes "river" as
"room", but the VH stream correctly transcribes
"river" by utilizing the information about "river"
contained in the vision hotwords. By merging, the
VH stream helps correct error in the ASR stream.
These examples are not unique, and the same phe-
nomenon occurs in many utterances. In Figure 6,
we show another three examples from COCO for
readers’ reference.

Although the VH stream of VHASR has less
speech recognition ability than the ASR stream, it

can extract features from key vision hotwords and
capture keywords in transcription, thereby correctly
identifying words that may be difficult for the ASR
stream to recognize. After token-by-token merging
based on visual-token similarity, the VH stream
can correct some transcription errors in the ASR
stream, leading to a more accurate transcription.
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A: The break dancer is wearing a white shirt and gry 
pants.

V: The break dancer is wearing a white shirt and grey 
pants.

T: The break dancer is wearing a white shirt and grey 
pants.

M: The break dancer is wearing a white shirt and grey 
pants.

A: Little girl sitting in a circle on wooden floor 
surrounded by observer area.

V: Little girls sitting in a circle on wooden floor 
surrounded by observer area.

T: Little girls sitting in a circle on wooden floor 
surrounded by observer area.

M: Little girls sitting in a circle on wooden floor 
surrounded by observer area.

A: A man fly fishes in a large room.
V: A man fly fishes in a large river. T: A man fly fishes in a large river.

M: A man fly fishes in a large river.

Figure 5: Three examples about how VH stream helps to rectify ASR stream’s error.
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A: There is a train running on the railway track. For the train, there 
are handles, wipers, lights, doors, windows. On the two sides, there 
are grasses and trees, also there is a mirror for the tree.

V: There is a train running on the railway track. For the train, there 
are handles, wipers, lights, doors, windows. On the two sides, there 
are grasses and trees, also there is a mirror for the train.

T: There is a train running on the railway track. For the train, there 
are handles, wipers, lights, doors, windows. On the two sides, there 
are grasses and trees, also there is a mirror for the train.

M: There is a train running on the railway track. For the train, there 
are handles, wipers, lights, doors, windows. On the two sides, there 
are grasses and trees, also there is a mirror for the train.

A: In this picture there is a boy wearing a red shirt, blue track and 
holding a disk. in the background there is a wooden fence.

V: In this picture there is a boy wearing a red shirt, blue track and 
holding a disc. in the background there is a wooden fence.

T: In this picture there is a boy wearing a red shirt, blue track and 
holding a disc. in the background there is a wooden fence.

M: In this picture there is a boy wearing a red shirt, blue track and 
holding a disc. in the background there is a wooden fence.

A: As we can see, in the image there is a glass. On gas, there is a 
bowl. In bowl, there are carrot and onion pieces.

V: As we can see, in the image there is a gas. On gas, there is a 
bowl. In bowl, there are carrot and onion pieces.

T: As we can see, in the image there is a gas. On gas, there is a 
bowl. In bowl, there are carrot and onion pieces.

M: As we can see, in the image there is a gas. On gas, there is a 
bowl. In bowl, there are carrot and onion pieces.

Figure 6: More examples about case study.
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