Scalable Efficient Training of Large Language Models with
Low-dimensional Projected Attention

Xingtai Lv!, Ning Ding'*, Kaiyan Zhang', Ermo Hua'!, Ganqu Cui*?, Bowen Zhou'**
'Department of Electronic Engineering, Tsinghua University, ?Shanghai Al Laboratory
3Department of Computer Science and Technology, Tsinghua University
lvxt24@mails. tsinghua.edu.cn, {dn97, zhoubowen}@tsinghua.edu.cn

Abstract

Improving the effectiveness and efficiency of
large language models (LLMs) simultaneously
is a critical yet challenging research goal. In
this paper, we find that low-rank pre-training,
normally considered as efficient methods that
will compromise performance, can be scal-
ably effective when reduced parameters are
precisely targeted. Specifically, applying the
low-dimensional module only to the attention
layer — resolves this issue and enhances both
effectiveness and efficiency. We refer to this
structure as Low-dimensional Projected Atten-
tion (LPA) and provide an explanatory analysis.
Through extensive experimentation at parame-
ter scales of 130M, 370M, and scaling up to 3B,
we have validated the effectiveness and scala-
bility of LPA. Our results show that LPA model
can save up to 12.4% in time while achieving an
approximate 5% improvement in test perplexity
(ppl) and on downstream tasks compared with
the vanilla Transformer.

1 Introduction

Improving large language models’ (LLMs) (Bom-
masani et al., 2021; Han et al., 2021; Brown
et al., 2020; Touvron et al., 2023; Zhou and
Ding, 2024) effectiveness and efficiency simultane-
ously presents challenges due to inherent trade-
offs, which remains a critical research goal in
the research field. Among series methods pro-
posed to alleviate this issue, parameter-efficient
fine-tuning (Houlsby et al., 2019; Li and Liang,
2021; Zaken et al., 2021; Ding et al., 2023b) of-
fer valuable insights. Notably, low-rank or low-
dimension techniques such as LoRA (Hu et al.,
2021) demonstrate on-par or even enhanced perfor-
mance over traditional full-parameter fine-tuning
with reduced computational resources.

Intuitively, besides the fine-tuning phase, adapt-
ing LoRA’s principles to the pre-training phase

*corresponding authors

through low-rank decomposition is both viable and
promising, which can yield substantial benefits if
effectiveness is maintained. However, existing stud-
ies have found that the direct low-rank pre-training
often compromises the effectiveness. To reduce
such effects, strategies such as iteratively accumu-
lating low-rank updates (Lialin et al., 2023) or in-
tegrating low-rank decomposition directly into the
gradient (Zhao et al., 2024) have been suggested.
Whether it’s the original LoRA or these improved
methods, they all involve performing low-rank de-
composition and updates on "amounts of change"
(weights or gradients), and do not reduce the num-
ber of parameters in the model itself, which face
obstacles in maintaining efficiency during subse-
quent inference and fine-tuning stages. Therefore,
an ideal scenario would be permanently reducing
the number of parameters (computational load)
through efficient methods, without compromising
or even enhancing the performance of pre-trained
models.

To achieve this goal, is it feasible to directly
perform low-rank decomposition on the matrices
in the model itself, rather than on the changes?
Current limited research suggests that existing low-
rank pre-training methods experience performance
losses and uncertainties (Lialin et al., 2023; Zhao
et al., 2024), with even fewer studies exploring
more direct approaches. However, in this paper, we
demonstrate that such direct low-rank pre-training
is feasible, provided that the parameters to be re-
duced are more precisely targeted. Specifically, we
describe the reduction of parameters as replacing
the original matrices with low-dimensional mod-
ules. We find that using low-dimensional modules
in the feed-forward neural (FFN) layers or across
all layers negatively impacts the model’s effective-
ness. However, we observe that employing them in
the attention layers consistently allows the model
to outperform the original Transformer. We refer
to this structure as Low-dimensional Projected At-

14588

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 14588—14599
November 12-16, 2024 ©2024 Association for Computational Linguistics

tention (LPA), provide an explanation, and experi-
mentally demonstrate its ability to reliably enhance
both the efficiency and effectiveness of the model.
We validate the effectiveness of the LPA model
on two Transformer model configurations, assess-
ing both pre-training and downstream task perfor-
mance. With a particular focus on the scalability
of LPA model, we observe that it remains effec-
tive even when the model parameters scale up to
3B. Furthermore, our study explores the effects
of the hyperparameter on LPA, the necessity of
integrating the low-dimensional module into ev-
ery sublayer of the attention layer, and how to
distribute any extra parameters effectively. The
code of this work will be publicly available at
https://github.com/TsinghuaC3I/LPA.

2 Related Work

Low-rank Parameter-efficient Fine-tuning.
Parameter-efficient fine-tuning optimize only a tiny
portion of parameters while keeping the majority
of the neural network frozen (Houlsby et al., 2019;
Li and Liang, 2021; Lester et al., 2021; Hu et al.,
2021; Zaken et al., 2021; Ding et al., 2023a),
saving significant time and computational costs
and achieving performance comparable to full
parameter fine-tuning on many tasks (Ding et al.,
2023b). Low-rank adaptation (LoRA) is one of the
most effective and influential parameter-efficient
fine-tuning methods, having found widespread
application (Dettmers et al., 2023). The LoRA
method involves freezing the weights W of the
pre-trained model while training two low-rank
decomposition matrices W,, and W, resulting in
the output of the LoORA module being represented
as z <+ Woyx + W, W;x. We drew inspiration
from LoRA and its improvement works, adapting
them to the pre-training process to enhance
effectiveness and efficiency of the model.

Low-rank Pre-training for Neural Network.
Some efforts have focused on making pre-training
more efficient by reducing the number of train-
able parameters (Lin et al., 2020; Yuan et al.,
2020), and after finding that modules with low-
dimension often yield poor results (Bhojanapalli
et al., 2020), many works have concentrated on
combining two low-rank matrices to reduce the pa-
rameter count while keeping the module dimension-
ality constant (Schotthofer et al., 2022; Idelbayev
and Carreira-Perpindn, 2020; Zhao et al., 2023;
Thangarasa et al., 2023). Current research has

predominantly emphasized refining pre-training
methods for CNN networks (Sui et al., 2024; Jader-
berg et al., 2014) or employing smaller language
models (Kamalakara et al., 2022). However, some
studies have found that low-rank pre-training can
negatively impact model performance and train-
ing effectiveness, leading to the use of low-rank
updates to train high-rank networks or the intro-
duction of low-rank decomposition in gradient for
optimization (Lialin et al., 2023; Zhao et al., 2024).
Additionally, Liu et al. 2024 introduces low-rank
latent states in the attention layer, successfully op-
timizing the KV cache.

We discover that the unsatisfactory performance
of the direct low-rank pre-training stems from
the lack of precise parameter reduction placement.
This insight guides our further exploration into the
impact of low-dimensional modules and their ap-
plications at various locations within the model on
both effectiveness and efficiency.

3 Low-dimensional Projected Attention

We use a low-dimensional module for replacing
the original weight matrix, and observe the vary-
ing effects of incorporating the low-dimensional
structure in different modules. We provide an ex-
planatory analysis of these findings and propose
the Low-dimensional Projected Attention (LPA).
Additionally, we examine the efficiency of this ap-
proach.

3.1 Low-dimensional Module

The low-dimensional module is constructed by se-
quentially connecting two low-dimensional matri-
ces. Specifically, given a predetermined hyper-
parameter r, which is typically less than %,
the low-dimensional module comprises two ma-
trices W4 € R%n*" and Wy € R"*%u where
din and dgy represent the input and output di-
mensions of the parameter matrix, respectively.
The input data x € RL*%n passes through W 4
and W p sequentially, and the forward propaga-
tion of the low-dimensional module is expressed
as z < Wp(Wy(x)). The low-dimensional
module is employed to displace the weight met-
ric W € R% ¥dou in linear layers of the original
model, such as the weight in the Query sublayer of
the attention layer.

For the classic Transformer architecture, the for-
ward propagation formula for the original attention

14589

https://github.com/TsinghuaC3I/LPA

Wo1 he Wos Q Q KT
H %
o %__.%.-,53} . B
nout " © Softmax (| g X
nput x
P Wit A Wi, Vd
1, %__.%--.53}
h S h, Output z
W1 4 Wy, 4 Wo1 - Wo,

Low Dimensional Space

——» Down-Projection ~ --—--- + Up-Projection

Figure 1: An illustration of the Low-dimensional Projected Attention (LPA). The calculations in softmax function

measure the relationships between input tokens.

layer is:

T T
s S (XWQWKX
Vid

where Wq, Wi, Wy and Wy are the parame-
ter matrices of the Query, Key, Value, and Output
layers, S is the softmax function, and d is the di-
mension of the attention layer. When applying low-
dimensional module to the attention layer, the cor-
responding parameters for the Query, Key, Value,
and Output layers are W1, W2, Wik, Wia,
W1, Wyo, Weoi and W9, where the matrices
with subscript 1 correspond to the W 4 matrix of
the low-dimensional module, and the matrices with
subscript 2 correspond to the W g matrix. The for-
ward propagation formula for the attention layer
with the low-dimensional module is:

7 S (XWQ1WQ2W£2W%1XT)
Vid
xWyiWyaWo1Wea. (2)

) xWyWp, (1)

Similarly, the forward propagation formula for the
original FFN layer is:

Z <490 (XWU) WD, (3)

where Wy and Wp are the up-projection and
down-projection matrices of the FEN layer, and J is
the non-linear activation function. When applying
the low-dimensional module to the FFN layer, the
corresponding parameters for the up-projection and
down-projection matrices are W1, Wy, Wpy
and W po. The forward propagation formula for
the FEN layer with the low-dimensional module is:

Z <90 (XWU1WU2) WD1WD2- (4)

3.2 Position Optimization of Low-dimensional
Module

The model performance may be influenced by the
position of the low-dimensional module within the
model, a phenomenon akin to what has been widely
observed in the field of parameter-efficient finetun-
ing (Zaken et al., 2021; Hu et al., 2022; Zhang et al.,
2023; Ding et al., 2023a). In order to validate this
influence and ascertain the appropriate position, we
apply the low-dimensional module separately in the
attention layers, FFN layers, and across all layers.
The resulting models are based on the 135M and
369M Transformers, and we adjust the hyperparam-
eter r to ensure that the parameter count of these
models remains approximately consistent across
these three position settings.

To confirm the robustness of the optimal low-
dimensional module position, we apply it in two
different Transformer model settings, each con-
taining only decoders. The Model Setting 1 em-
ploys the Layer Normalization (Ba et al., 2016)
and the "ATTN(FFN)-Norm-Add" regularization
process, with ReLU (Fukushima, 1975) as the acti-
vation function. The corresponding models are pre-
trained on the WikiText-103 dataset (Merity et al.,
2016), which contains 0.1B tokens. The Model Set-
ting 2 uses RMS Normalization and the same FFN
layer as in LLaMA (Touvron et al., 2023), along
with the "Norm-ATTN(FFN)-Add" regularization
process. The corresponding models are pre-trained
on the Pile dataset (Gao et al., 2020), using 2.6B
tokens for the 130M parameter model and 6.8B
tokens for the 370M parameter model.

The perplexities of these pre-trained models on

14590

o Takeaway 1: Applying low-dimensional module in
attention layer enhances model's efficiency, whereas the
opposite conclusion is observed in FFN layer.

test datasets are presented in Table 1. The models
with low-dimensional modules employed across
all layers perform worse than the original Trans-
formers, consistent with the findings of Lialin et al.
2023. Applying the low-dimensional module to the
attention layers yields a considerable improvement
in pre-training performance compared to its appli-
cation to FEN layers and across all layers. Notably,
for the 370M parameter model, the performance
of the model with low-dimensional modules in at-
tention layers even surpasses that of the original
Transformer model, which suggests that employing
the low-dimensional module in the attention layers
can serve as a beneficial strategy.

Transformer ‘ Low Attn Low FFN Low All

Model Setting 1

14.61(135M) | 14.66(125M) 15.25(125M) 15.00(126M)

13.65(369M) | 12.89(319M) 14.12(325M) 13.14(318M)
Model Setting 2

18.84(134M) | 18.95(115M) 20.43(116M) 20.64(117M)

12.10(368M) | 11.68(318M) 12.77(318M) 12.68(314M)

Table 1: Test perplexities for models with low-
dimensional module integration at various positions
and the original Transformer models. Low Attn, Low
FFN, and Low All separately mean applying the low-
dimensional module in the attention layers, FFN layers,
and across all layers. The model size is provided in
parentheses.

3.3 Explanation for Position Optimization

Our preliminary experiments indicate that the op-
timal position for low-dimensional modules in the
Transformer architecture is the attention layer. Fur-
ther detailed observations reveal that applying low-
dimensional modules to the FFN layers diminishes
the model’s effectiveness compared to the original
Transformer model, whereas applying them to the
attention layers enhances the model’s performance,
particularly in the 370M parameter setting.

o Takeaway 2: The differences in whether the atten-
tion and FFN layers can independently map individual
tokens or rely on high-dimension space are the reasons
behind the contrasting effects observed when applying
the low-dimensional modules to these layers.

On one hand, according to Lemma 1 and

Lemma 2, the attention layer cannot independently
map individual tokens, whereas the FFN layer per-
forms computations for each input token indepen-
dently. On the other hand, the FFN layer typi-
cally projects inputs to a high-dimensional space,
while the attention layer does not engage in simi-
lar operations. We posit these differences are the
primary reasons for the positive effect of applying
low-dimensional modules within the attention layer,
contrasted with their negative impact in the FFN
layer. Detailed empirical explanations are provided
in Appendix B, based on the perspective of viewing
the introduction of low-dimensional modules as a
two-step projection.

Lemma 1. In the attention layer, for the input vec-
tor x; € RY™n of the i-th input token, the corre-
sponding output z; € R % satisfies

zW WT T
z; — S <XQ\/EZKX> Wy Wo, ()

indicating that z; is dependent on all the vectors in
the input x, especially for the computation in the
Key, Value layers.

Lemma 2. In the FFN layer, the output z; €
R%dou corresponding to x; € RV % satisfies

z; < 0 (x;Wy) Wp, (6)

implying that z; is only dependent on x; instead of
other vectors in the input x.

However, when the original model has a low
parameter count, applying low-dimensional mod-
ules to the attention layer degrades the effect of
projection, leading to a noticeable decline in the
model’s capacity to fit the data. As a result, this
method is effective only for models with a larger
parameter count, with a critical threshold between
130M and 370M parameters, as identified in our
pre-experiments in Section 3.2

Therefore, applying low-dimensional modules to
the attention layer is the optimal strategy in Trans-
former models. This essentially involves two-step
projection through a low-dimensional space within
the attention layer, and we term this model architec-
ture Low-dimensional Projected Attention (LPA).

3.4 Methodological Efficiency

The core architecture of the LPA model is com-
posed of low-dimensional modules. Because of
the lower parameter number in these modules,
pre-training LPA model reduces memory con-
sumption and is more conducive to large-scale

14591

training. Moreover, unlike other low-rank pre-
training approaches (Schotthofer et al., 2022; Lialin
et al., 2023) and methods that involve pre-training
with full parameters followed by finding the ap-
proximate low-dimensional matrices during infer-
ence (Chen et al., 2021), our LPA model maintains
a low-dimensional structure in both the pre-training
and subsequent inference and fine-tuning stages,
implying sustained efficiency throughout the en-
tire lifecycle of the model. Theoretically, com-
pared to the original linear layer, where the input
x € RE*4n undergoes forward computation with
floating point operations (flops) at O(L - dip - dout),
utilizing the low-dimensional module reduces this

to O(L - 7 - (din + dout)), considering r < %.

o Takeaway 3: LPA is efficient, as its use can reduce
the computation time and GPU memory occupation.

In order to experimentally verify the method-
ological efficiency, we conduct tests on 135M,
369M, and 3.23B Transformers with Model Set-
ting I and the corresponding LPA models during
the evaluation stage, measuring the clock time and
GPU memory consumption on the WikiText-103
dataset (for 135M and 369M models) and the Pile
dataset (Gao et al., 2020) (for 3.23B models) with
identical compute infrastructure and batch size.
Theoretically, applying low-dimensional module
to the attention layers reduces flops from 8L - dj, -
dout +2L? - dou t0 8L - 7 - (din + dout) + 2L? - dous.-
As presented in Table 2, both the evaluation time
and GPU memory consumption of the LPA model
are smaller compared to the corresponding Trans-
former, demonstrating the methodological effi-
ciency. Furthermore, the LPA model offers the
potential to reduce the KV cache, as the hidden
states projected into the low-dimensional space can
be stored in place of the KV cache.

4 [Experiments

Extensive experiments are conducted to validate
the effectiveness of LPA across models of various
scales, particularly emphasizing its efficacy with
the 3.23B models. Furthermore, we investigate the
impact of hyperparameter on LPA, whether apply-
ing the low-dimensional module to all sublayers in
the attention layer is necessary, and the allocation
of surplus parameters.

Time GPU
Params

pre Step memory

Transformer 135M 153.4ms 2302MiB
LPA 125M 150.6ms 2276MiB
Transformer 369M 351.0ms 4648MiB
LPA 319M 3229ms 4464MiB
Transformer | 3.23B 6.923s 71.94GiB
LPA 2.43B 6.066s 70.26GiB

Table 2: The average evaluation time pre step and GPU
memory consumption pre device for Transformer and
LPA with various model sizes.

4.1 Effectiveness of LPA

Experimental Settings. To validate the effective-
ness and robustness of the LPA architecture, we
conduct experiments with two model settings in-
troduced in Section 3.2, pre-training models with
parameter sizes of 130M and 370M. For Model
Setting 1, we use the WikiText-103 dataset (Mer-
ity et al., 2016), consisting of 0.1B tokens, and
set of LPA to 256. For Model Setting 2, we pre-
train the models using 2.6B tokens from the Pile
dataset (Gao et al., 2020) for the 130M parameter
model and 6.8B tokens for the 370M parameter
model, with the LPA architecture r set to 128 or
256. Detailed model configurations and training
hyperparameters are provided in Table 9 in Ap-
pendix A. For the implementation of our models,
we leverage the Huggingface Transformers (Wolf
et al., 2020) and PyTorch (Paszke et al., 2019)
frameworks. Our computational infrastructure is
powered by the NVIDIA GeForce RTX 3090 (max-
imum GPU memory=24GB), NVIDIA A800 (max-
imum GPU memory=80GB), and NVIDIA A6000
(maximum GPU memory=48GB).

As indicated in Table 9, the parameter count
of the LPA model typically ranges from 75% to
90% of the corresponding Transformer, referred
to as the Same-Dim Transformer. To compare the
performance of the LPA and Transformer models
under the same parameter settings, we also pre-
train Transformer models with parameter counts
nearly equal to those of LPA models. For each
model, repeated pre-training with 3 random seeds is
performed, and following pre-training, we evaluate
the models on test datasets, using perplexity (ppl)
as the performance metric.

Results and analysis. The mean test perplexity
and standard deviation for each model are pre-

14592

2.61 Transformer(2.49B)
Transformer(3.23B)
LPA(2.43B)
2.41
w0
3
= 2.2
2.01
1.8 T T - : - : ;
0 25000 50000 75000 100000 125000 150000 175000 200000
Step

Figure 2: Training loss for the 2.43B LPA model, the 3.23B Same-Dim Transformer, and the 2.49B Transformer

with nearly the same parameter count as the LPA model.

sented in Table 3. Generally speaking, the LPA
model can achieve similar or slightly better per-
formance compared to the Same-Dim Transformer.
Moreover, the performance of the LPA model is
notably superior to that of the Transformer with
a nearly equivalent model size. However, for the
130M parameter size model, the test perplexity of
the LPA model is slightly higher than that of the
Same-Dim Transformer across two model settings.
This could be attributed to the fact that with fewer
parameters in the model, each parameter has to ac-
commodate more, thus making the parameter count
more crucial. The integration of low-dimensional
modules into the attention layer considerably re-
duces the model’s fitting capability, thereby dimin-
ishing overall performance. Consequently, employ-
ing LPA with 130M parameters may not enhance
the model’s effectiveness and may even have ad-
verse effects.

Transformer Transformer LPA
(Same-Dim) (Same-Param)
Model Setting 1
14.61.)15(135M) 14.699.05(128M) | 14.660.14(125M)
13.65410.00(369M) 13.75+0.02(319M) | 12.89¢.11(319M)
Model Setting 2
18.44(40(134M) 19.5919.12(116M) | 19.081¢.12(115M)
12.1040.01(368M) 12.3319.01(318M) | 11.704.02(318M)

Table 3: Test perplexities for all models with parameter
sizes of 130M and 370M. The model size is provided in
parentheses.

4.2 Scaling up to 3.23B

In this section, experiments are conducted on the
3B-scale models, including the pre-training of
a 2.43B LPA model, a 3.23B Same-Dim Trans-
former, and a 2.49B Transformer with nearly the

same parameter count as the LPA model. Inspired
by LLaMA (Touvron et al., 2023), we adopt the
pre-normalization for these large models. Com-
pared to pre-training smaller models, we utilize a
larger dataset, specifically 13% of the Pile dataset,
amounting to 51B tokens, without data repetition
during pre-training. Additional hyperparameters
for the model architecture and training settings are
detailed in Table 10 in Appendix A.

Transformer Transformer LPA
(Same-Dim) (Same-Param)
6.45(3.23B) 6.69(2.49B) ‘ 6.11(2.43B)

Table 4: Test perplexities for all models with parameter
sizes of 3B. The model size is provided in parentheses.

Figure 2 illustrates the training loss for three
models, and Table 4 presents their perplexities on
the test set. The 2.43B LPA model achieves a lower
test perplexity than both the 3.23B and 2.49B Trans-
former models. Moreover, the training loss of the
2.43B LPA model consistently remains below those
of the two Transformer models, particularly in the
later stages of pre-training. This indicates that the
LPA maintains a significant advantage when the
model parameter is scaled up to 3B, suggesting
substantial potential for application in even larger
models and demonstrating its scalability.

4.3 Downstream Tasks Performance

To further demonstrate the superiority of the
LPA model over the Transformer, in addition
to comparing test perplexities, we also evalu-
ate the performance of the pre-trained 369M
Transformer and the 319M LPA model with
Model Setting I on downstream tasks. Us-
ing the GLUE benchmark (Wang et al.), which

14593

CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE

Model Params Mcc Acc Acc Acc/F1 Corr Acc(m/mm) Acc Acc Avg.
1828 8494 7435 86.60/81.95 7247 71.69/71.81 8092 5276

Transformer | 369M | 47) (054) (3.40) (0.04)(0.08) (1.14) (037)/021) (0.08) (034 %
2546 8651 7892 87.44/83.06 78.77 73.73/7420 8326 53.60

LPA 3IM 1 066) (099) (0.69) (0.11)/(0.20) (0.23) (0.08)/(0.47) (0.45) (0.36) 73

Table 5: Test results of the pre-trained LPA and Transformer models on the GLUE benchmark. "Mcc", "Acc", "F1"
and "Corr" represent matthews correlation coefficient, accuracy, the F1 score, and pearson correlation coefficient
respectively. And "Acc(m/mm)" represents the results corresponding to matched and mismatched datasets of MNLI.

The standard deviation is provided in parentheses.

is widely recognized for the natural language
understanding, we conduct full-parameter fine-
tuning on CoLA (Warstadt et al., 2019), SST-
2 (Socher et al., 2013), MRPC (Dolan and Brockett,
2005), QQP (Wang et al.), STS-B (Wang et al.),
MNLI (Williams et al., 2017), QNLI (Rajpurkar
et al., 2016) and RTE (Dagan et al., 2005; Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009). We perform repeated experiments
with 3 random seeds and report the average results
and standard deviations in Table 5.

Due to our use of WikiText-103 as the training
dataset in Model Setting I and the inherent limita-
tions of decoder-only models in classification tasks,
the overall scores on the GLUE benchmark are rel-
atively lower. WikiText-103 is a research-oriented
dataset with a relatively small amount of training
data and is not specifically designed for the capa-
bilities required by the GLUE benchmark. How-
ever, our results indicate that the pre-trained LPA
model outperforms the Transformer, particularly
on tasks such as MRPC and STS-B. Additionally,
the standard deviation for the LPA model is not
significantly different from that of the Transformer,
suggesting that the observed performance improve-
ments on the GLUE tasks can indeed be attributed
to the LPA model.

4.4 Apply LPA with Different r

For the LPA, r is the most critical hyperparame-
ter, and it is essential to investigate the impact of
different r on the performance of the LPA mod-
els. We pre-train a 369M Transformer with Model
Setting I and the corresponding LPA models with
r set to 256, 128, 64, and 32, followed by con-
ducting repeated experiments with 3 random seeds
and computing the average test perplexity for each
configuration.

Figure 3 shows the training loss curves of these
models, and Table 6 presents the test perplexity re-

4.0
Transformer(369M)
381 —— LPA,=256(319M)
' LPA, - 128(293M)
LPA, - 64(281M)
3.61 LPA,_3,(274M)
3.4
(%]
1]
o
)
3.2
3.0 ‘
281 %
2.6 : : : ‘ ‘ | ‘
00 05 1.0 15 20 25 30 35 4.0

Epoch

Figure 3: Training loss for Transformer and LPA models
with different r. The darker curves correspond to larger
values of r in LPA.

| Param Perplexity

Transformer ‘ 36OM 13.65
LPA,_o56 319M 12.89
LPA,_198 293M 13.03
LPA, ¢4 281M 13.19
LPA, 35 274M 13.82

Table 6: Parameter count and test perplexities for Trans-
former and LPA models with different 7.

sults. Overall, although the performance of the LPA
model degrades as r decreases, the LPA models
generally outperform the Same-Dim Transformer
in both training loss and test perplexity, which indi-
cates that the LPA model is quite tolerant to vari-
ations in . However, when the r is too low, such
as 32, the effectiveness of the LPA is relatively
inferior compared to the Transformer, which may
be because a meager r results in a lack of crucial
parameters, significantly impacting the model’s fit-
ting capability.

14594

4.5 Apply Low-dimensional Module to
Different Sublayers in Attention

In the aforementioned experiments, we apply the
low-dimensional module to all sublayers of the
attention layer, including the Query, Key, Value,
and Output layers. In this section, we explore
whether applying the low-dimensional module to
only some sublayers can achieve better results. We
design combinations of sublayers to which the low-
dimensional module is applied based on the func-
tional characteristics of them. Specifically, accord-
ing to Lemma 1, the computations in the Key and
Value layers require all the vectors in the input
z. Additionally, the Query, Key, and Value lay-
ers collectively handle the computation of the re-
lationships between the input tokens. Therefore,
we consider two configurations in the experiments:
applying the low-dimensional module to the Key
and Value layers, and applying it to the Query, Key,

of Wg, Wk, Wy and the input dimensions of
Wy in attention layers. (2) FFN Dim. Expand-
ing the output dimensions of the up-project matrix
Wy and the input dimensions of the down-project
matrix Wp in the FFN layers. (3) Layer Num.
Enlarging the number of layers in LPA model. We
conduct repeated experiments with Model Setting
1, using the same training settings and 3 random
seeds for the Transformer and LPA model, and the
average test perplexities are presented in Table 8.

130M 370M
Param Size Param Size
Transformer | 14.61(135M) 13.65(369M)
LPA 14.66(125M) 12.89(319M)
Attn Dim. 14.32(135M) 12.85(369M)
FFN Dim. 14.38(135M) 13.02(369M)
Layer Num. | 14.39(138M) 13.04(371M)

and Value layers, which are denoted as LPAf

and LPA(g v, respectively.

Model Model
Setting 1 Setting 2
Transformer | 13.65(369M) 12.10(368M)
LPA 12.89(319M) 11.68(318M)
LPAgk v 13.29(344M) 11.73(343M)
LPAg kv 12.94(331M) 11.80(330M)

Table 7: Test perplexities for LPA, LPA v/, LPAg kv,
and the Same-Dim Transformer with parameter sizes of
370M. The model size is provided in parentheses.

The LPA, LPAk v, LPAg i v, and the Same-
Dim Transformer with parameter sizes of 370M
and two model settings are pre-trained, and Ta-
ble 7 reports their test perplexities. We observe that
the performance of both LPAf y and LPAg kv is
slightly inferior to that of LPA, indicating that ap-
plying the low-dimensional module to all sublayers
in the attention layer is more appropriate.

4.6 Allocating Surplus Parameters across
Modules

The reduced parameter of the LPA model compared
to the Same-Dim Transformer presents an oppor-
tunity to allocate the saved parameters to other
modules of the model, which is a worthwhile av-
enue to explore for further enhancing the model’s
effectiveness. Building upon the LPA model, we
respectively allocate the parameters in three ways:
(1) Attn Dim. Increasing the output dimensions

Table 8: Test perplexities for variant models obtained
through parameter reallocation and baselines. The
model size is provided in parentheses.

Both the LPA model and the models obtained
through parameter reallocation exhibit lower test
perplexity compared to the Transformer, which in-
dicates that these parameter reallocation strategies
have a positive impact compared to the original
Transformer model. Notably, the models employ-
ing the Attn Dim. strategy demonstrate the most
favorable performance in terms of test perplexity,
indicating that allocating surplus parameters to in-
crease the dimensionality of attention layers leads
to superior results, making it the most effective
parameter reallocation scheme. Furthermore, com-
pared to LPA model, the FFN Dim. and Layer
Num. models exhibit higher test perplexity at the
370M parameter size, suggesting that augmenting
the FFN dimension and the layer number on top
of LPA architecture may be unsuitable solutions,
especially in the context of large parameter size.

5 Conclusion

This paper demonstrates that low-rank pre-training
can enhance both the effectiveness and efficiency
of LLMs when reduced parameters are precisely
targeted. By incorporating low-dimensional mod-
ules specifically in the attention layers, we develop
the Low-dimensional Projected Attention (LPA),
which outperforms Transformers without the effi-
ciency compromises. Our empirical analysis and
experiments show that LPA maintains its effective-

14595

ness even as model parameters scale up to 3B. Addi-
tionally, we explore the impact of hyperparameters
and the optimal reallocation of surplus parameters,
providing a robust framework for future enhance-
ments in LLM pre-training.

Limitations

Despite the encouraging results demonstrated by
this paper, certain limitations in our current study
are worth acknowledging. First of all, our expla-
nation in Section 3.3 is empirical rather than a rig-
orous theoretical explanation with mathematical
derivation. Furthermore, due to computational re-
source limitations, we conduct experiments with a
3B parameter scale on only one Transformer model
setting and don’t verify the effectiveness of LPA
at larger parameter scales. Last, we find that the
efficiency of LPA during the pre-training phase is
not very apparent, which may require the introduc-
tion of KV cache because LPA has the potential to
reduce KV cache, but we don’t explore this further.

Acknowledgements

This work is supported by the National Science
and Technology Major Project (2023Z2D0121403),
Young Elite Scientists Sponsorship Program by
CAST (2023QNRC001), National Natural Science
Foundation of China (No. 62406165).

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In Proceedings of Text
Analysis Conference.

Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat,
Sashank Reddi, and Sanjiv Kumar. 2020. Low-rank
bottleneck in multi-head attention models. In In-
ternational conference on machine learning, pages

864-873. PMLR.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot

learners. Advances in neural information processing
systems, 33:1877-1901.

Xuxi Chen, Tianlong Chen, Weizhu Chen, Ahmed Has-
san Awadallah, Zhangyang Wang, and Yu Cheng.
2021. Dsee: Dually sparsity-embedded efficient tun-
ing of pre-trained language models. arXiv preprint
arXiv:2111.00160.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177-190. Springer.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023a.
Sparse low-rank adaptation of pre-trained language
models. arXiv preprint arXiv:2311.11696.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. 2023b. Parameter-
efficient fine-tuning of large-scale pre-trained lan-
guage models. Nature Machine Intelligence, pages
1-16.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Kunihiko Fukushima. 1975. Cognitron: A self-
organizing multilayered neural network. Biological
Cybernetics, 20:121-136.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 1-9, Prague. Association for
Computational Linguistics.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment, volume 7.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao
Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao, Ao Zhang,
Liang Zhang, et al. 2021. Pre-trained models: Past,
present and future. Al Open, 2:225-250.

14596

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of ICML.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang,
Yasheng Wang, Zhiyuan Liu, and Maosong Sun.
2022. Sparse structure search for parameter-efficient
tuning. arXiv preprint arXiv:2206.07382.

Yerlan Idelbayev and Miguel A Carreira-Perpinédn. 2020.
Low-rank compression of neural nets: Learning the
rank of each layer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-

nition, pages 8049-8059.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Speeding up convolutional neural net-
works with low rank expansions. arXiv preprint
arXiv:1405.3866.

Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat
Venkitesh, Jimmy Ba, Yarin Gal, and Aidan N
Gomez. 2022. Exploring low rank training of deep
neural networks. arXiv preprint arXiv:2209.13569.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of EMNLP.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of ACL, pages 4582—-4597, Online. As-
sociation for Computational Linguistics.

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2023. Relora: High-
rank training through low-rank updates. In Workshop
on Advancing Neural Network Training: Computa-
tional Efficiency, Scalability, and Resource Optimiza-
tion (WANT@ NeurIPS 2023).

Rui Lin, Ching-Yun Ko, Zhuolun He, Cong Chen, Yuan
Cheng, Hao Yu, Graziano Chesi, and Ngai Wong.
2020. Hotcake: Higher order tucker articulated ker-
nels for deeper cnn compression. In 2020 IEEE 15th
International Conference on Solid-State & Integrated
Circuit Technology (ICSICT), pages 1-4. IEEE.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. 2024.
Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint
arXiv:2405.04434.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. ArXiv, abs/1609.07843.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Steffen Schotthdfer, Emanuele Zangrando, Jonas Kusch,
Gianluca Ceruti, and Francesco Tudisco. 2022. Low-
rank lottery tickets: finding efficient low-rank neural
networks via matrix differential equations. Advances
in Neural Information Processing Systems, 35:20051-
20063.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Yang Sui, Miao Yin, Yu Gong, Jinqgi Xiao, Huy Phan,
and Bo Yuan. 2024. FElrt: Efficient low-rank training
for compact convolutional neural networks. arXiv
preprint arXiv:2401.10341.

Vithursan Thangarasa, Abhay Gupta, William Marshall,
Tianda Li, Kevin Leong, Dennis DeCoste, Sean Lie,
and Shreyas Saxena. 2023. Spdf: Sparse pre-training
and dense fine-tuning for large language models.
arXiv preprint arXiv:2303.10464.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for
natural language understanding.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625-641.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38—45.

14597

Xin Yuan, Pedro Savarese, and Michael Maire.
2020. Growing efficient deep networks by struc-
tured continuous sparsification. arXiv preprint
arXiv:2007.15353.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. ArXiv preprint, abs/2106.10199.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for
parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512.

Jiawei Zhao, Yifei Zhang, Beidi Chen, Florian Schifer,
and Anima Anandkumar. 2023. Inrank: Incremental
low-rank learning. arXiv preprint arXiv:2306.11250.

Jiawei Zhao, Zhenyu (Allen) Zhang, Beidi Chen,
Zhangyang Wang, Anima Anandkumar, and Yuan-
dong Tian. 2024. Galore: Memory-efficient 1lm
training by gradient low-rank projection. ArXiv,
abs/2403.03507.

Bowen Zhou and Ning Ding. 2024. Generative ai for

complex scenarios: Language models are sequence
processors.

14598

A Hyperparameters of Model
Architecture and Pre-training

In this section, we present the key hyperparame-
ters from the aforementioned experiments. The
hyperparameters for pre-training the Transformer
and LPA models with parameter sizes of 130M and
370M, as described in Section 4.1, are shown in
Table 9, and the hyperparameters for pre-training
models with parameter sizes of 3B, as described in
Section 4.2, are listed in Table 10. The upper and
lower parts of these tables respectively display the
hyperparameters related to the model architecture
and pre-training settings.

‘ Model Setting 1 ‘ Model Setting 2

Params(Trans) | 135M 369M | 134M 368M
Params(LPA) | 125M 319M | 115M 318M
r 256 256 128 256
Hidden Size 768 1024 768 1024
Heads 8 8 12 16
FFN Dim 3072 4096 | 2048 2736
Layers 12 24 12 24
Ir(Trans) 8e-4 8e-4 le-3 le-3
Ir(LPA) 8e-4 8e-4 le-3 8e-4
Epoch 10 8 1 1
Batch Size 82K 98K 82K 61K
Seq.len. 512 1024 256 512

Table 9: Hyperparameters of the model architecture
and pre-training settings. Ir(Trans) and Ir(LPA) mean
the learning rates for pre-training Transformer and LPA
models.

Transformer Transformer LPA
(Same-Dim) (Same-Param)
Params 3.23B 2.49B 2.43B
r - - 512
Hidden Size 4096 4096 4096
Heads 32 32 32
FFN Dim 14436 14436 14436
Layers 16 12 16
Ir 3e-4 3e-4 6e-4
Epoch 1 1 1
Batch Size 262K 262K 262K
Seq.len. 4096 4096 4096

Table 10: Hyperparameters of the model architecture
and pre-training settings for large models. Ir means the
learning rate for training.

B Explanatory Analyses for Phenomena
Described in Section 3.2

There are two primary empirical explanations
for the different effects when applying the low-

dimensional modules to the attention layer and
FEN layer. First, the parameter matrix with low-
dimensional modules can be viewed as a two-step
projection, which involves first mapping the in-
put data into a low-dimensional space and then
back into the target space. Typically, the FFN
layer projects the input into a high-dimensional
space via Wy, processes it with the non-linear
activation function, and then maps it back to
the original space via Wp. The heavy reliance
on the high-dimensional space of the FFN lay-
ers means that introducing low-dimensional space
through low-dimensional modules negatively im-
pacts it. Additionally, for each token in the in-
put consisting of L tokens, considering Lemma 1

WoWExT
and S (%) e RY™L the softmax com-

putation in the attention layer results in one-
dimensional weight data for L tokens, indicating
that the attention layer is less sensitive to the dimen-
sionality of the input space. Hence, introducing a
low-dimensional space has a minimal negative im-
pact on the attention layer.

Secondly, for the input data which comprises
L tokens, based on Lemma 2, the projection of
these L tokens in the FFN layer is independent, ef-
fectively processing them sequentially. In contrast,
based on Lemma 1, the computation in the attention
layer involves the relationships between each input
token and all L tokens. Theoretically, since the
projection can be optimized to any possible choice,
projecting data into a low-dimensional space be-
fore mapping it back to the target space should
not affect the size of the output space. However,
in practice, this operation tends to concentrate the
output in several subspaces within the target space,
reducing the output space size, which constrains
the possible output values and makes it harder to
identify the optimal weight point.

This negative impact is substantial for the FFN
layer, but for the attention layer, the reduced out-
put space implies that the data points for input
tokens are closer together, making their relation-
ships easier to capture. Consequently, applying the
low-dimensional module to the attention layers can
enhance the model’s effectiveness.

14599

