
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 13991–14007
November 12-16, 2024 ©2024 Association for Computational Linguistics

Structured Optimal Brain Pruning for Large Language Models

Jiateng Wei1 Quan Lu2 Ning Jiang2

Siqi Li1 Jingyang Xiang1 Jun Chen3∗ Yong Liu1∗
1APRIL Lab, Zhejiang University

2Mashang Consumer Finance Co, Ltd 3Zhejiang Normal University
{jiatengwei, lsq4747, jingyangxiang}@zju.edu.cn

{quan.lu02, ning.jiang02}@msxf.com
junc.change@gmail.com, yongliu@iipc.zju.edu.cn

Abstract

The massive parameters and computational de-
mands hinder the widespread application of
Large Language Models (LLMs). Network
pruning provides a practical solution to this
problem. However, existing pruning works for
LLMs mainly focus on unstructured pruning
or necessitate post-pruning fine-tuning. The
former relies on special hardware to accelerate
computation, while the latter may need sub-
stantial computational resources. In this paper,
we introduce a retraining-free structured prun-
ing method called SoBP (Structured Optimal
Brain Pruning). It leverages global first-order
information to select pruning structures, then
refines them with a local greedy approach, and
finally adopts module-wise reconstruction to
mitigate information loss. We assess the effec-
tiveness of SoBP across 14 models from 3 LLM
families on 8 distinct datasets. Experimental
results demonstrate that SoBP outperforms cur-
rent state-of-the-art methods.

1 Introduction

Extensive research has shown that Large Language
Models (LLMs) (Zhang et al., 2022a; Touvron
et al., 2023; Workshop et al., 2022) possess out-
standing language comprehension and text gener-
ation capabilities, which provide them with sig-
nificant potential and value across diverse indus-
tries (Hadi et al., 2023; Zhao et al., 2023). How-
ever, such high performance often comes with enor-
mous model size, high computational overhead,
and significant memory consumption (Brown et al.,
2020; Xiao et al., 2023), making it impractical for
many scenarios. Many studies in model compres-
sion (Wei et al., 2023; Frantar et al., 2023; Frantar
and Alistarh, 2023; Sun et al., 2023) have been in-
vestigated to tackle this problem. Among them, net-
work pruning is an effective technique to compress
the model size while maintaining the performance.

∗Corresponding authors.

(a)

1X̂0X

FFNX̂1Ŵ 2Ŵ

(b)

1X̂0X

FFNX̂1Ŵ 2Ŵ

non-zero
weight &

zero(masked)
weight activation

Figure 1: General overview of computation in Feed
Forward Network. (a) Unstructured pruned weights.
(b) Structured pruned weights.

For LLMs’ pruning, most methods adopt un-
structured pruning. They analyze the importance of
individual weight, zeroing out unimportant weights
to obtain sparse weight matrices, as shown in
Fig.1(a). However, unstructured sparse weights
require specialized data structure to store and spe-
cific hardware to accelerate computation (Zhang
et al., 2020; Xie et al., 2021). For general comput-
ing devices, unstructured pruning does not bring
any reduction in storage or computation.

Another branch of network pruning focuses on
structured pruning. Structured pruning eliminates
several rows or columns of the weight matrix
or deletes entire layers from the network, which
makes it more general for various computing de-
vices (Anwar et al., 2017). However, these coarser
pruning granularities suffer from non-negligible
performance degradation. Therefore, most struc-
tured pruning methods require fine-tuning to re-
store network performance (Han et al., 2015).
Given the large number of parameters in LLMs,
it might be incredibly resource-intensive and time-
consuming.

To address the above issues, we propose SoBP
(Structured Optimal Brain Pruning), a structured
pruning method for LLMs that does not require
fine-tuning. It takes into account both the hardware-

13991

friendliness of the pruned network and the effi-
ciency of the pruning process. When consider-
ing this problem of retraining-free structured prun-
ing, two principal aspects need to be critically ad-
dressed: ❶ Finding the appropriate pruning struc-
tures. ❷ Applying a suitable strategy to recover the
performance of the pruned network.

Regarding the first aspect, considering the set-
ting of structured pruning, we prune the heads in
Multi-Head Attention (MHA) and the intermedi-
ate dimension of Feed Forward Network (FFN),
similar to previous studies (Kwon et al., 2022; An
et al., 2024). Since the importance level varies
among different layers in LLMs (Dalvi et al., 2020;
Kim et al., 2024), it is necessary to select pruning
structures according to their importance within the
network. We use global importance scores, which
are based on first-order information, to select the
pruning structures of each MHA and FFN module.
However, first-order information ignores the corre-
lation between different structures, which means
that the structures selected by it might fail to min-
imize the change in local output. So we further
refine the pruning structures of each module by a
local greedy approach.

For the second aspect, since fine-tuning is omit-
ted, we reconstruct the output weights of each mod-
ule after pruning. Our method inherits the legacy
of the previous Optimal Brain series (LeCun et al.,
1989; Hassibi et al., 1993; Frantar and Alistarh,
2022), extending them into the field of structured
pruning and implementing some transformations
to address numerical stability issues. Meanwhile,
we also introduce a method to compensate for the
cumulative errors at a high compression rate.

The overview of SoBP is shown in Fig.2. To
summarize the contribution of our work:
• We adopt a global-local manner to find out ap-
propriate pruning structures. We select the prun-
ing structures of each module based on global im-
portance scores and further refine them by a local
greedy approach.
• Based on the explored pruning structures, we
adopt module-wise reconstruction to align the out-
puts between the pruned network and the original
network, avoiding post-pruning fine-tuning.
• We evaluate the effectiveness of SoBP through ex-
tensive experiments. The results demonstrate that
SoBP exhibits superior performance across various
models at different pruning rates, outperforming
current state-of-the-art methods.

2 Related Work

2.1 Network pruning for LLMs

Extensive studies have suggested that by removing
certain weights from the network, network pruning
helps in reducing the model’s parameters and accel-
erating inference (LeCun et al., 1989; Hassibi et al.,
1993; He et al., 2018; Behnke and Heafield, 2020).
This method also receives considerable attention
with respect to LLMs.

Unstructured pruning. Unstructured pruning
sets individual weights to zero according to their
importance. Most LLMs’ pruning work follows
this paradigm. SparseGPT (Frantar and Alistarh,
2023) zeros out unimportant weights and adjusts
the remaining weights based on the Hessian ma-
trix. Wanda (Sun et al., 2023) uses the product of
the weight’s magnitude and the norm of the activa-
tion to remove unimportant weights. E-Sparse (Li
et al., 2023) further introduces information entropy
to measure the importance of weights. Plug-and-
Play (Zhang et al., 2024) ensures unstructured spar-
sity of the pruned weights by relative importance.

Structured pruning. Structured pruning
prunes entire rows or columns of weight matri-
ces or even deletes entire network layers. LLM-
pruner (Ma et al., 2023) removes non-critical cou-
pled structures and restores network performance
via LoRA (Hu et al., 2022). Compresso (Guo et al.,
2023) combines LoRA with L0 regularization, si-
multaneously performing network pruning and pa-
rameter fine-tuning. Shortened LLaMA (Kim et al.,
2024) deletes entire layers with low importance
and retrains the pruned network to avoid perfor-
mance degradation. To further improve the effi-
ciency of the pruning process, recent researches
pay attention to retraining-free structured pruning.
PTP (Kwon et al., 2022) utilizes second-order in-
formation to determine pruning structures and a
least squares method to minimize information loss.
FLAP (An et al., 2024) discovers the stability of
certain channels in LLMs’ activation, the weights
corresponding to these channels can be directly
removed and compensated with additional bias.
SliceGPT (Ashkboos et al., 2024) makes use of the
network’s rotational invariance and applies PCA to
reduce the embedding dimension of LLMs.

2.2 Low-rank decomposition for LLMs

Parallel to pruning, low-rank decomposition is
also an effective network compression tech-
nique (Sainath et al., 2013; Idelbayev and Carreira-

13992

⋮

① Importance-Aware Selection

global importance

⋮

② Local Greedy Refinement
 refined units

⋮ ⋮

③ Module-Wise Reconstruction

weight rearrangement&reconstruction

⋮

MHA

FFN

MHA

FFN

dataconstraint

original network

compact network

⋮
⋮ ⋮

 selected units selected units

Figure 2: Framework of SoBP. ① Select pruning units of each module based on global importance scores. ② Refine
the selected units by a greedy approach. ③ Reconstruct the weight matrix to maintain the output.

Perpinán, 2020). Recent research suggests that
decomposing LLMs’ weights is effective in reduc-
ing parameters. LoRD (Kaushal et al., 2023) first
applies Singular Value Decomposition (SVD) to
LLMs, demonstrating the high potential of low-
rank decomposition. ASVD (Yuan et al., 2024) con-
siders the activation outliers during the decomposi-
tion of weights. SVD-LLM (Wang et al., 2024) dis-
covers the misalignment between singular values
and compression loss and proposes a data whiten-
ing strategy to address this problem.

3 Preliminary

SoBP prunes heads of MHA and the intermedi-
ate dimension of FFN. We refer to them as prun-
ing structures or pruning units and use neurons to
denote the intermediate dimension of FFN in the
following text.

3.1 Hessian Matrix Based Pruning
Given an input feature X ∈ RT×Cin and weight
W ∈ RCin×Cout , where T represents the number
of tokens of the sequence, Cin,Cout are the num-
ber of input and output channels of a linear layer,
respectively. A pruning algorithm finds Ŵ to mini-
mize the output error, formulated as:

argmin
Ŵ
||XW −XŴ ||22 s.t r(Ŵ) ≥ rt (1)

where r(·) represents the current pruning rate and
rt is the target pruning rate.

Recent study OBC (Frantar and Alistarh, 2022)
observes that squared term in Eq.(1) can be refor-
mulated as

∑Cout
j=1 ||XW:,j −XŴ:,j ||22. So we can

consider each output channel (column of weight
matrix) independently. For weight Wi,j , the min-
imal error incurred by pruning it is ei,j and the
update to the weights in the jth column is δW:,j ,
they can be calculated as:

ei,j =
W 2

i,j

H−1
i,i

δW:,j = −Wi,j

H−1
i,i

·H−1
:,i (2)

where H = XTX + αI represents the local Hes-
sian matrix (Hassibi et al., 1993; Frantar and Al-
istarh, 2022), α is a small positive number. After
pruning Wi,j , the inverse of the Hessian matrix cor-
responding to the remaining weights needs to be
recalculated. OBC proposes an efficient algorithm,
which calculates the inverse through Gaussian elim-
ination:

[H−1]−i = (H−1 − 1

H−1
i,i

H−1
:,i H

−1
i,:)−i (3)

3.2 MHA and FFN Under Masks

As the basic block of LLMs, Transformer (Vaswani
et al., 2017) contains two modules, MHA and
FFN. In the lth layer of a Transformer network,
MHA usually contains four linear layers, with the
weight matrices W l

q ,W l
k,W l

v,W l
o ∈ RD×D, where

D is the embedding dimension. FFN usually
contains two linear layers, with weight matrices
W l

1 ∈ RD×N ,W l
2 ∈ RN×D, N is the number of

neurons. Our work focuses on deleting entire rows
or columns of these matrices. We define binary
masks M l

H ∈ {0, 1}Hh , M l
N ∈ {0, 1}N to re-

move (0) or retain (1) rows and columns, Hh is
the number of heads. For simplicity, the following
equations ignore the skip connection and normal-
ization layer. The operations of the MHA module
under the mask are denoted by:

Xl,i
head = Attn

(
Xl−1,W l,i

q ,W l,i
k ,W l,i

v

)
◦M l,i

H (4)

X̂l
MHA = Concat

(
Xl,1

head, . . . , X
l,Hh
head

)
W l

o (5)

where Attn represents the attention mecha-
nism (Vaswani et al., 2017), X l−1 is the input of
the lth layer, X l,i

head is the output of the ith head,
Concat is the concatenation operation, X̂ l

MHA is
the output of the masked MHA module. The sym-
bol ◦ represents element-wise multiplication. Right
multiplication means it acts on the columns. For
the FFN module, its operation under the mask is

13993

denoted by:

X̂l
FFN = σ

(
X̂l

MHAW
l
1 ◦M l

N

)
W l

2 (6)

where σ is a non-linear activation function. The
overview of Eq.(6) is shown in Fig.1(b).

4 Method

The framework of SoBP has three key components:
global importance-aware selection, local greedy
refinement, and module-wise reconstruction.

4.1 Global Importance-Aware Selection
We first select pruning units based on their global
importance scores. When conducting network prun-
ing, we aim to identify and remove structures that
have minimal impact on the network’s final predic-
tion. Taylor expansion is a commonly used method
for analyzing the importance of structures. (Michel
et al., 2019; Molchanov et al., 2019). The global
importance of a pruning unit can be assessed by its
impact on loss. Removing more important units
will result in greater loss. Similar to previous stud-
ies (Zhang et al., 2022b; Kwon et al., 2022), we per-
form a Taylor expansion on the loss with the vari-
able being the mask M = {M l

H ,M l
N}Ll=1. Given

calibration data D, the expansion at M = 1 can be
formulated as:

L(M,D) ≈ L(1,D) + g(M − 1) (7)

where L represents the perplexity loss, g is the
gradient of the masks, with each element gi = ∂L

∂mi
.

Most previous works ignore the first-order term
since they assume that the model has converged on
the training data. However, if the calibration data
does not come from the original training data, this
assumption does not hold (Ma et al., 2023), then
we can utilize first-order information.

Our global importance score is built on the
basis of first-order information. For the ith

unit, Ui, its initial importance score is Îi =
(L(Mi,D)− L(1,D))2 ≈ (gi)

2. Since heads and
neurons have different parameters and levels of
importance, we introduce a transformation to bal-
ance the scores between them. The final global
importance score can be expressed as:

Ii =

{
Îi Ui is a head

λPN
PH

Îi Ui is a neuron
(8)

where λ is a hyperparameter, PH and PN denote
parameters per head and parameters per neuron,

respectively. After obtaining the importance score
of each unit, we have the following optimization
problem:

argminS
∑

i∈S
Ii s.t.

∑

i∈S
P (Ui) ≥ r ·Θ (9)

where S is a set of pruning units, P (·) represents
the number of parameters of a unit, r is the given
pruning rate, Θ is the total parameters of the model.
Eq.(9) is a knapsack problem (Kwon et al., 2022).
Since each unit has its own parameter size (volume)
and importance score (value), the sum constraint
can be seen as the knapsack capacity.

By solving the knapsack problem, we can obtain
a set of pruning units with the lowest importance.
However, it’s important to note that we neglect
higher-order terms in Eq.(7). Because given mas-
sive parameters in LLMs, they are computationally
infeasible. For example, LLaMA1-13B has about
1600 heads and 5 × 105 neurons, which makes
the second-order term approximately a 5× 105 by
5× 105 square matrix. Neglecting the higher-order
terms means that we cannot consider the correla-
tions between different units. To mitigate the nega-
tive effect of it, we introduce a greedy approach to
refine the selected units within each module.

4.2 Local Greedy Refinement

Consider a problem of pruning a linear layer (with
weight matrix W). Assuming the selected set of
pruning units from Section 4.1 is S, we prune sev-
eral rows of W based on S. The minimum error
incurred by pruning this set can be calculated as:

E =
∑Cout

j=1
[WS,j]

T
[
H−1

S,S

]−1
[WS,j] (10)

Eq.(10) has an important implication, the total er-
ror incurred by pruning is related to the pruning
units selected. In Section 4.1, we only consider the
global importance of each unit while ignoring the
correlation between them, so S may be suboptimal
for minimizing E. A straightforward approach to
finding the optimal set is to brute-force check all
sets that have the same parameters as S. From these
sets, the one with the lowest E is optimal. The
number of computations required by this method is
C(row, |S|), C represents the calculation of com-
binations, row denotes the number of rows of W ,
|S| denotes the number of selected units (rows).
For the weight matrices of LLMs, the number of
rows is huge, which makes the brute-force method

13994

update

updated weight original weight selected unit

higher

refined
structure

compute ie compute ie

e

Figure 3: Greedily select pruning units. Each time
select the row with the minimum error then update the
remaining weights.

infeasible. For example, LLaMA1-13B, its W2

contains 1.3 × 104 rows, the brute-force method
requires about 102820 computations at a pruning
rate of 20%. Inspired by recent studies (Frantar
and Alistarh, 2022; Kurtić et al., 2023), this prob-
lem of finding the optimal combination set can be
approximated in a one-by-one greedy manner. A
key insight is that the total error caused by pruning
all units in a certain set, Eq.(10), is equal to pruning
these units one by one while considering weight
updates through Eq.(2). This one-by-one manner
allows us to adopt a greedy algorithm. For the ith

unit, the error incurred by pruning it is ei:

ei =
∑Cout

j=1

W 2
i,j

H−1
i,i

(11)

At each step, we select and prune the row with
the lowest error among all rows and update the
remaining weights as W:,j = W:,j + δW:,j . δW:,j

is calculated by Eq.(2), then H−1 is updated by
Eq.(3). The process iterates until the parameter
constraint is satisfied.

This greedy approach selects the local optimum
at each step. Although it can not guarantee a global
optimum, the result can still be considered a good
approximation. The overview of this method is
shown in Fig.3. We validate the effectiveness of it
in the ablation study. The proof of Eq.(10) and the
equivalence between pruning the whole set and the
one-by-one pruning and updating manner can be
found in Appendix A. Through greedy selection,
we can further refine the pruning structures of each
module, so that to minimize output error E between
the pruned network and the original network.

4.3 Module-Wise Reconstruction
SoBP considers pruning each MHA and FFN
module individually. Module-wise reconstruction

aims at aligning the pruned modules’ output with
their counterparts in the original network. This is
achieved through the following two key strategies.

Output weights reconstruction. When con-
ducting output weights reconstruction, we refer to
Wo of MHA and W2 of FFN. Theoretically, in Sec-
tion 4.2, when greedily selecting pruning units, we
have updated the remaining weights. The resulting
weight matrix is reconstructed. However, in prac-
tice, for LLMs with billions of parameters, running
Eq.(3) tens of thousands of times can cause numer-
ical stability problems. This prevents weights from
correct updates. So after greedy refinement, we
need to perform a numerically stable pruning and
reconstruction. GPTQ (Frantar et al., 2023) points
out that the Gaussian elimination in Eq.(3) corre-
sponds to a Cholesky decomposition. Performing
a pre-decomposition can solve the numerical sta-
bility problem. However, the decomposed Hessian
inverse can only handle weights sequentially. For
sparsely distributed pruning units, as shown in the
right part of Fig.3, the decomposition can not be
directly utilized.

This problem can be addressed by rearranging
the input and weight matrices. Note that for the
matrix multiplication XW , if the rows of W are
permuted, the corresponding columns of X must
be permuted accordingly to preserve the output.
Following the rearrangement of X , the Hessian
matrix is also permuted. By rearranging input and

⋮update
XXH T

 1HCholesky

X W

weights to be pruned input or inverse Hessian columns of the weights to be pruned
weights to be retained input or inverse Hessian columns of the weights to be retained

X  W 

 

Figure 4: Rearrange input and weight matrices to ensure
correct reconstruction.

weight matrices, the decomposed Hessian inverse
can correctly update the remaining weights.

When conducting reconstruction, we only con-
sider output weights. Once the rows of these
weights are pruned, the corresponding columns of
the preceding weights in the same module become
irrelevant and can consequently be pruned.

Input weights error compensation. The input

13995

weights refer to Wq,Wk,Wv of MHA and W1 of
FFN. In output weights reconstruction, the pruned
network aligns with the original network by mini-
mizing ||XW −XŴ ||22. A potential issue is that
after pruning the previous layers, the input feature
X̂ deviates from X of the original network. It
results in the optimization problem changing to
argmin

Ŵ
||X̂W − X̂Ŵ ||22. This change causes a

deviation between the reconstructed output and the
original output. Therefore, we need to update the
input weights before reconstruction to compensate
for the error incurred by pruning previous layers,
which ensures that X̂ is sufficiently close to X . It
leads to the following problem:

argminδWp ||XpWp − X̂p(Wp + δWp)||22 (12)

where Wp represents the preceding weights of out-
put weights, Xp denotes the input of Wp in the
original network, X̂p denotes the counterpart of
Xp in the pruned network. The closed-form solu-
tion of Eq.(12) is as follow:

δWp = (X̂T
p X̂p)

−1X̂T
p (Xp − X̂p)Wp (13)

When the input weights are updated, we also need
to transform the skip connection to ensure informa-
tion alignment. The skip connection can be seen as
a special linear layer, its Wp is an identity matrix.
This transformation will add extra parameters to
the skip connection, so we only use it under certain
conditions1.

Algorithm 1 provides a comprehensive overview
of SoBP.

5 Experiments

We compare SoBP with different methods on gener-
ative and zero-shot tasks. Meanwhile, we perform
ablation studies to evaluate the contribution of each
component in SoBP, as well as the impact of cali-
bration data and the hyperparameter on the pruned
models’ performance. Finally, we measure the in-
ference time and throughput after pruning.

5.1 Experimental Settings
Baselines. We compare SoBP against 4 SOTA
methods, two pruning methods: FLAP (An et al.,
2024), SliceGPT (Ashkboos et al., 2024) and two
decomposition methods: ASVD (Yuan et al., 2024),
SVD-LLM (Wang et al., 2024) since both pruning
and decomposition aims to reduce parameters.

1More details and discussions in Section 5.4.

Algorithm 1 Prune LLM with SoBP
Require: model, pruning rate r, calibration data D
1: # global importance-aware selection
2: loss← PPL (label,model (mask = 1,D))
3: inital_scores← loss.backward()
4: scores← transform_score(inital_scores, PH , PN , λ)
5: ▷ Eq.(8)
6: S = {S1, ..., S2L} ← knapsack(scores, PH , PN , r,Θ)
7: ▷ Eq.(9)
8: for i← 1 to 2L do
9: Wp ← input weights in the ith module

10: if need to update Wp then
11: Wp = Wp + δWp ▷ Eq.(13)
12: end if
13: W ← output weights in the ith module
14: X ← input feature of W
15: # local greedy refinement
16: Si ← greedy_refinement(W,X, Si) ▷ Eq.(2-3)
17: # module-wise reconstruction
18: Wp ← prune_input_weight(Wp, Si)
19: W,X ← matrix_rearrange(W,X, Si)
20: W ← prune_with_cholesky(W,X, Si)
21: W ← rearrange_back(W,Si)
22: end for
23: return pruned compact model

Setup. SoBP is implemented with PyTorch(Paszke
et al., 2019) and HuggingFace Transformers(Wolf
et al., 2019). Unless otherwise stated, the calibra-
tion data is from the training dataset of WikiText2.
The calibration data size and sequence length are
128 and 2048, respectively, using the same settings
as SliceGPT. All experiments are conducted on
Nvidia 24GB 3090 GPUs and 80GB A800 GPUs.
Models, Datasets. We conduct experiments on
14 models from LLaMA1, LLaMA2 (Touvron
et al., 2023) and OPT (Zhang et al., 2022a) fam-
ilies, evaluating the compressed models via lm-
eval-harness (Gao et al., 2021) on WikiText2 (Mer-
ity et al., 2017) and seven zero-shot tasks: ARC-
c, ARC-e (Clark et al., 2018), WinoGrande (Sak-
aguchi et al., 2020), BoolQ (Clark et al., 2019), Hel-
laSwag (Zellers et al., 2019), OpenBookQA (Mi-
haylov et al., 2018), PIQA (Bisk et al., 2019).

5.2 Performance after Compression

SliceGPT introduces additional parameters in each
residual connection. There is a discrepancy in the
total parameters. SliceGPT-eq is an implementa-
tion in which we control its slicing rate to achieve
the same number of parameters as other methods.
As shown in Table 1, SoBP outperforms other meth-
ods in 53 out of 56 comparative experiments. On
generative tasks, SoBP consistently outperforms
other methods, achieving lower perplexity across
all models. On seven zero-shot tasks, under a low
compression rate (15%), ASVD is comparable to

13996

Model LLaMA1-7B LLaMA1-13B LLaMA1-30B LLaMA1-65B LLaMA2-7B LLaMA2-13B LLaMA2-70B

Rate Method Para PPL↓ Avg↑ Para PPL↓ Avg↑ Para PPL↓ Avg↑ Para PPL↓ Avg↑ Para PPL↓ Avg↑ Para PPL↓ Avg↑ Para PPL↓ Avg↑
0% Dense 6.7B 5.68 66.05 13.0B 5.09 68.21 32.5B 4.10 71.92 65.3B 3.56 73.01 6.7B 5.47 66.69 13.0B 4.88 69.24 69.0B 3.32 73.61

15%

FLAP 5.8B 6.44 62.69 11.1B 5.71 64.87 27.7B 4.75 69.28 55.6B 4.12 71.91 5.8B 6.50 59.97 11.1B 5.84 63.21 59.1B 3.81 72.07
SliceGPT 6.5B 6.49 57.46 12.6B 5.74 62.81 31.5B 4.90 68.10 63.3B 4.25 70.52 6.5B 6.33 55.77 12.6B 5.61 60.96 66.5B 4.09 71.89
SliceGPT-eq 5.8B 7.55 52.67 11.1B 6.56 57.84 27.7B 5.65 62.41 55.6B 4.95 66.97 5.8B 7.43 52.01 11.1B 6.52 54.56 59.1B 4.76 67.12
SVD-LLM 5.8B 7.51 57.02 11.1B F F 27.7B 5.39 64.64 55.6B 4.67 69.84 5.8B 7.86 51.96 11.1B 6.35 61.11 59.1B 4.39 69.26
ASVD 5.8B 6.66 62.94 11.1B 5.76 66.94 27.7B 4.63 71.47 55.6B 4.08 71.39 5.8B 6.64 63.21 11.1B 5.53 68.39 59.1B 5.88 62.65
SoBP 5.8B 6.39 62.29 11.1B 5.59 67.66 27.7B 4.56 71.42 55.6B 3.86 72.98 5.8B 6.13 63.74 11.1B 5.38 68.55 59.1B 3.70 72.37

20%

FLAP 5.4B 6.89 61.19 10.4B 6.05 63.15 26.1B 5.13 67.77 52.3B 4.45 71.59 5.4B 7.16 56.62 10.4B 6.31 61.55 55.7B 4.12 71.60
SliceGPT 6.1B 6.99 56.16 11.8B 6.13 60.66 29.5B 5.27 65.45 59.2B 4.58 68.66 6.1B 6.84 54.25 11.8B 6.06 56.78 62.2B 4.46 69.60
SliceGPT-eq 5.4B 8.27 48.11 10.4B 7.08 56.08 26.1B 6.09 59.39 52.3B 5.33 64.43 5.4B 8.18 48.27 10.4B 7.12 51.86 55.7B 5.15 63.65
SVD-LLM 5.4B 7.89 56.25 10.4B F F 26.1B 5.68 63.29 52.3B 4.91 68.48 5.4B 8.38 48.70 10.4B 6.66 58.98 55.7B 4.66 68.14
ASVD 5.4B 8.87 61.55 10.4B 6.71 65.29 26.1B 5.21 70.22 52.3B 4.52 70.48 5.4B 8.65 59.49 10.4B 6.51 66.18 55.7B 18.34 44.05
SoBP 5.4B 6.78 62.19 10.4B 5.82 66.96 26.1B 4.84 70.87 52.3B 4.08 72.74 5.4B 6.53 63.27 10.4B 5.62 67.73 55.7B 3.88 71.24

30%

FLAP 4.8B 8.23 57.30 9.2B 6.97 60.14 22.9B 5.87 64.58 45.8B 5.06 69.85 4.8B 8.85 50.91 9.2B 7.57 57.27 48.9B 4.82 69.68
SliceGPT 5.3B 8.69 46.90 10.2B 7.35 54.26 25.5B 6.33 58.05 51.1B 5.49 63.46 5.3B 8.64 46.70 10.2B 7.44 50.10 53.7B 5.41 61.61
SliceGPT-eq 4.8B 11.19 42.52 9.2B 8.69 48.69 22.9B 7.40 51.50 45.8B 6.33 57.01 4.8B 10.80 43.46 9.2B 9.17 46.25 48.9B 6.23 56.19
SVD-LLM 4.8B 9.52 51.39 9.2B F F 22.9B 6.49 59.61 45.8B 5.58 65.35 4.8B 10.66 44.77 9.2B 8.00 53.16 48.9B 5.44 64.65
ASVD 4.8B 84.72 45.55 9.2B 13.30 57.47 22.9B 8.16 61.88 45.8B 6.86 64.78 4.8B 1.6e2 42.82 9.2B 15.92 53.32 48.9B 1.1e3 34.68
SoBP 4.8B 7.57 59.61 9.2B 6.52 64.50 22.9B 5.40 69.62 45.8B 4.56 72.46 4.8B 7.58 59.15 9.2B 6.27 66.82 48.9B 4.36 70.30

40%

FLAP 4.1B 10.16 52.45 7.9B 8.02 56.80 19.7B 6.95 59.55 39.4B 5.76 68.00 4.1B 11.49 48.70 7.9B 9.07 53.18 42.1B 6.24 67.96
SliceGPT 4.5B 15.94 39.64 8.6B 9.79 47.00 21.5B 8.22 48.90 43.2B 6.92 54.05 4.5B 12.80 41.47 8.6B 10.60 44.31 45.5B 7.08 52.00
SliceGPT-eq 4.1B 46.08 36.78 7.9B 11.89 44.76 19.7B 9.89 46.10 39.4B 8.10 50.07 4.1B 16.02 39.63 7.9B 13.38 41.32 42.1B 8.93 48.63
SVD-LLM 4.1B 13.85 42.95 7.9B F F 19.7B 7.96 54.21 39.4B 6.69 58.89 4.1B 16.14 40.47 7.9B 10.79 45.40 42.1B 6.83 58.05
ASVD 4.1B 1.7e3 36.79 7.9B 149.94 40.13 19.7B 17.78 49.79 39.4B 15.23 50.62 4.1B 2.1e3 36.29 7.9B 71.21 42.88 42.1B 4.8e3 34.32
SoBP 4.1B 9.09 56.10 7.9B 7.61 60.34 19.7B 6.06 67.20 39.4B 5.10 71.24 4.1B 9.28 56.06 7.9B 7.39 60.86 42.1B 4.96 68.58

Table 1: Performance of models compressed by different methods. Bold for the best performance. PPL is the
perplexity on the WikiText2 test dataset. Avg is the average accuracy on 7 zero-shot tasks. The detailed results are
shown in Table 7. F indicates that we failed to conduct comparisons due to errors in the open-source code.

SoBP. However, as the compression rate increases,
its performance significantly declines, while SoBP
still maintains relatively good performance. When
compressing 20% parameters of LLaMA2-70B,
FLAP outperforms SoBP by 0.36% on average ac-
curacy. However, in other experiments, SoBP con-
sistently outperforms FLAP. Specifically, at a 40%
compression rate of LLaMA1-30B, SoBP outper-
forms FLAP by 7.65%. Moreover, we find that the
advantage of SoBP over FLAP is more pronounced
in OPT family2. Additionally, we find that SoBP
is more favorable for larger models. After prun-
ing 30% of the parameters from LLaMA1-65B and
OPT-66B, the models retain 99.2% (72.46/73.01)
and 99.9% (63.05/63.08) of their performance on
seven zero-shot tasks, respectively. Experimental
results of the OPT family are shown in Table 8.

5.3 Compression Time
Most LLaMA and OPT models can be compressed
by SoBP on a single 80G A800 GPU (models larger
than 30B need 2 A800 to obtain first-order infor-
mation, then the rest pruning work can be done on
a single A800). Table 2 presents the time consump-
tion of different methods on different models at a
compression rate of 20%. As shown in the table,
the compression time of SoBP is longer than that
of FLAP and SliceGPT, comparable to SVD-LLM,
and shorter than that of ASVD.

5.4 Ablation Study
Evaluation of each component. We evaluate the
contribution of each component in SoBP by incre-

2Detailed results can be found in the Appendix B.3.

Method LLaMA2-7B LLaMA1-30B OPT-6.7B OPT-30B
FLAP 1min 3min 1min 1.5min

SliceGPT 12min 40min 14min 36min
SVD-LLM 24min 2h09min 33min 2h41min

ASVD 17h10min 109h50min 20h54min 103h05min
SoBP 18min 1h05min 35min 3h47min

Table 2: Compression time of different methods.

mentally incorporating them, denoted as GI, Rec,
and LGR. GI: select pruning units based on global
importance scores and directly remove them. Rec:
apply module-wise reconstruction after pruning.
GI+LGR+Rec: select pruning units for each mod-
ule, then refine them via local greedy refinement,
and finally, apply module-wise reconstruction. Af-
ter applying GI, different modules of the network
have varying pruning rates. As shown in Fig.5, GI
prefers to prune the latter part of the network. This
phenomenon may be explained by recent work (Fan
et al., 2024), which suggests that LLMs can pro-
duce reliable results without using all transformer
layers for inference, indicating that deeper layers
may exhibit a higher degree of redundancy.

To demonstrate the effectiveness of GI, we show
the results of weight magnitude pruning, denoted
as Mag. Mag: select pruning units based on weight
magnitude

∑Cout
j=1 |Wi,j | and directly remove them.

We present the pruned models’ perplexity of Wiki-
Text2 in Table 3. After incorporating each compo-
nent, there is a decrease in perplexity, indicating
that each component has a positive effect.

Impact of input weights error compensation.
Since the input weight error compensation mecha-
nism requires adding an additional mapping matrix
to the skip connection, we apply it only to the mid-

13997

Model Mag GI GI+Rec GI+LGR+Rec
LLaMA1-7B(-30%) 55243 8.53 8.04 7.57
LLaMA1-7B(-40%) 102250 12.30 10.85 9.09
LLaMA2-7B(-30%) 39589 8.38 7.80 7.58
LLaMA2-7B(-40%) 50374 13.66 11.46 9.28
LLaMA1-13B(-30%) 61222 6.76 6.51 6.52
LLaMA1-13B(-40%) 73490 8.66 7.99 7.61
LLaMA2-13B(-30%) 18688 6.58 6.32 6.27
LLaMA2-13B(-40%) 57253 8.84 7.74 7.39

OPT-6.7B(-30%) 162.73 17.10 12.69 12.17
OPT-13B(-30%) 1.2e6 22.09 11.43 10.83

Table 3: Ablation study of each component. -30% de-
notes pruning 30% of the parameters.

0 10 20 30 40 50 60
0.00

0.25

0.50

0.75

1.00
LLaMA1-7B(-20%)
LLaMA1-7B(-30%)
LLaMA1-7B(-40%)

(a)

0 10 20 30 40 50 60 70
0.00

0.25

0.50

0.75

1.00
LLaMA1-13B(-20%)
LLaMA1-13B(-30%)
LLaMA1-13B(-40%)

(b)

0 10 20 30 40 50 60
0.00

0.25

0.50

0.75

1.00
LLaMA2-7B(-20%)
LLaMA2-7B(-30%)
LLaMA2-7B(-40%)

(c)

0 10 20 30 40 50 60 70
0.00

0.25

0.50

0.75

1.00
LLaMA2-13B(-20%)
LLaMA2-13B(-30%)
LLaMA2-13B(-40%)

(d)

Figure 5: Pruning rates of different modules. The X-axis
represents the module index, and the Y-axis represents
the pruning rate. The pink and grey dashed lines corre-
spond to the MHA and FFN modules, respectively.

dle and the fourth-to-last FFN modules when the
global pruning rate exceeds 30%. We validate its ef-
fectiveness on the OPT, BLOOM(Workshop et al.,
2022), and LLaMA models. Table 4 presents the
perplexity of the pruned models on the WikiText2.
As shown in the table, when the model size is less
than 7B, the incorporation of this mechanism re-
sults in a decrease in perplexity across all cases.
However, when the model size reaches 7B, this
mechanism only has a positive impact under a 60%
pruning rate. We think this phenomenon is due to
the growth in the condition number. Eq.(13) corre-
sponds to a system of linear equations: AX = B.
If the condition number of A is large, X becomes
numerically sensitive, and a small perturbation in

B can lead to significant changes in the solution.
As the model size increases, A = (X̂T

p X̂p) tends to
have a large condition number. Under lower prun-
ing rates, B = X̂T

p (Xp − X̂p)Wp is closer to 0,
making the perturbation more impactful on the so-
lution. Therefore, we prefer to use this mechanism
when the model size is less than 7B.

Model 40% 50% 60%

w/o w w/o w w/o w

OPT-125M 37.07 36.10 47.58 44.59 73.59 59.98
OPT-1.3B 20.57 20.14 31.26 27.38 48.94 39.42
OPT-2.7B 16.78 16.64 26.30 24.73 43.01 38.36
OPT-6.7B 15.24 14.93 19.99 19.02 27.38 24.39

BLOOM-560M 45.08 38.52 69.42 50.48 103.30 68.09
BLOOM-1.1B 29.59 26.41 44.75 36.89 85.97 57.74
BLOOM-1.7B 21.97 20.89 28.27 25.80 44.75 40.25
BLOOM-3B 17.86 17.65 24.96 22.69 41.06 33.35
LLaMA1-7B 9.09 9.39 12.07 12.05 18.75 17.70
LLaMA2-7B 9.28 9.66 11.69 12.17 17.43 17.04

LLaMA1-13B 7.61 7.87 9.26 9.78 12.53 13.12

Table 4: Impact of input weight error compensation. w
denotes with compensation, and w/o denotes without.

Impact of calibration data. We investigate the
impact of calibration data from two aspects: differ-
ent data sizes and different datasets. Fig.6 presents
the results at a pruning rate of 30%. The perfor-
mance of SoBP improves as calibration data in-
creases. It stabilizes when the data size reaches
around 128 samples. Compared to LLaMA fami-
lies, the models of the OPT family are more sensi-
tive to the calibration dataset. When using C4 (Raf-
fel et al., 2020) for calibration, the pruned OPT
models’ performance on zero-shot tasks improves.
Therefore, for zero-shot tasks of OPT models, we
choose 128 C4 samples for calibration.

2 8 32 128 512 2048
Number of calibration samples

5

10

15

20

25

W
ik

iTe
xt

2
PP

L

Different data sizes
LLaMA2-7B
LLaMA1-13B
OPT-6.7B
OPT-13B

LLaMA2-13B OPT-13B LLaMA1-30B OPT-30B
Models

30

40

50

60

70

80

Av
er

ag
e

ac
cu

ra
cy

 (%
) 66.82

54.34

69.62

53.84

65.41

57.57

70.22

60.77

Different datasets
WikiText2
C4

Figure 6: Impact of calibration data.

Impact of hyperparameter. We introduce a
hyperparameter λ in Section 4.1 to balance the
importance of head and neuron. So we evaluate
its impact on the pruned models. Fig.7 presents
the results at a pruning rate of 30%, which exhibits
bowl-shaped curves. Hyperparameters used in our
experiments can be found in the Appendix B.1.

13998

0 100 200 300 400 500 600 700 800 9006

7

8

9
W

ik
iTe

xt
2

PP
L

Different hyperparameters
LLaMA2-13B
LLaMA1-13B
LLaMA1-7B
LLaMA2-7B

Figure 7: Impact of hyperparameter

5.5 Inference time and Throughput

The inference of LLMs can be divided into the pre-
fill phase and the decode phase (Sheng et al., 2023).
The former is compute-bound, while the latter is
memory-bound. We conduct experiments on these
two phases. Specifically, in the prefill phase, we
set the sequence length to 2048 and batch size to
1, then measure the time consumption of inference.
In the decode phase, in order to measure the max-
imum throughput, we set the sequence length to
128 and progressively increase the batch size until
the GPUs run out of memory. For OPT-66B and
LLaMA2-70B, we use two A800 GPUs. In other
cases, an A800 GPU is required. As shown in Fig.8,
compared to the original model (dense), pruning
via SoBP achieves efficiency improvements. Un-
like SliceGPT, it does not introduce additional pa-
rameters to each residual connection. In contrast to
decomposition methods, it does not need to recover
the original weight matrix through low-rank matrix
multiplication. At a pruning rate of 30%, SoBP
achieves 16.5% (1− 1.62/1.94) speed up on OPT-
66B during the prefill phase. At a pruning rate of
40%, LLaMA2-70B achieves 16.3% (1−1.6/1.91)
speed up. The compressed models also show im-
provements during the decode phase. OPT-66B (-
30%) and LLaMA2-70B (-40%) achieve 2.05×
and 1.42× throughput, respectively. It is worth
noting that the model pruned by SliceGPT-eq has a
shorter inference time than SoBP during the prefill
stage. That is because SliceGPT-eq controls all
dimensions of the weight matrix are multiples of 8,
which accelerates tensor computations in PyTorch.
If we similarly ensure that all weight dimensions
in the SoBP pruned model are multiples of 8, de-
noted as SoBP (/8), the inference performance can
be further improved. At the prefill stage, the in-
ference time with SoBP (/8) pruning is shorter on
OPT-13B (-30%) and OPT-66B (-30%) compared

to SliceGPT-eq pruning , and is slightly longer on

OPT-13B(-30%) LLaMA2-13B(-40%)0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
(s

) 0.414
0.4540.443

0.384

0.283 0.292

Inference Time

OPT-66B(-30%) LLaMA2-70B(-40%)0.0

0.5

1.0

1.5

2.0

2.5

1.94 1.91

1.62 1.6

1.22 1.2

Inference Time

OPT-13B(-30%) LLaMA2-13B(-40%)0

1000

2000

3000

4000

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

2612 2491

3121
3358

4219
4021

Throughput

OPT-66B(-30%) LLaMA2-70B(-40%)0

100

200

300

400

500

600

76

396

156

563

210

574
Throughput

Dense
FLAP

SliceGPT-eq
ASVD

SVD-LLM
SoBP

SoBP(/8)

Figure 8: Inference time and throughput of different
models. Dense denotes the original model. -30% de-
notes compressing 30% of the parameters.

LLaMA2-13B (-40%) and LLaMA2-70B (-40%).
With SoBP (/8), OPT-13b (30%) and LLaMA2-
13B (-40%) achieve higher throughput, 1.62× and
1.61×, respectively.

6 Conclusion

In this paper, we investigate retraining-free struc-
tured pruning for large language models. We pro-
pose a three-stage pruning algorithm named SoBP.
It determines the appropriate pruning structures
in a global-local manner. By reconstructing the
output feature of each module, we preserve the
pruned model’s performance while avoiding re-
training. The effectiveness of this approach is
confirmed through extensive experiments across
various models.

Limitations

Our method assesses the importance of each prun-
ing structure based on first-order information while
ignoring higher-order terms. It cannot consider the
correlations between different pruning structures.
Although the local greedy refinement approach op-
timizes pruning structures within each module, it
still neglects the inter-module correlations. In fu-
ture research, we aim to explore methods for thor-
oughly analyzing the correlations between pruning
structures. Additionally, the global importance met-
ric we proposed is still hand-crafted, introducing an
extra hyperparameter that requires manual tuning.
Thus, our method is not fully automated and ne-
cessitates domain expertise to balance model size,
speed, and performance. Future research could

13999

consider integrating AutoML to achieve a human-
intervention-free pruning process.

Ethics Statement

Our SoBP aims to reduce the model size of
LLMs while maintaining their performance. It can
help extend the application of LLMs to resource-
constrained scenarios and does not introduce addi-
tional ethical concerns.

Acknowledgements

We sincerely thank the anonymous reviewers for
their thorough evaluations and insightful sugges-
tions.

References
Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao

Wang. 2024. Fluctuation-based adaptive structured
pruning for large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 10865–10873.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung.
2017. Structured pruning of deep convolutional neu-
ral networks. ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC), 13(3):1–18.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-
nari do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. In Interna-
tional Conference on Learning Representations.

Maximiliana Behnke and Kenneth Heafield. 2020. Los-
ing heads in the lottery: Pruning transformer. In The
2020 Conference on Empirical Methods in Natural
Language Processing, pages 2664–2674. Association
for Computational Linguistics (ACL).

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piqa: Reasoning about
physical commonsense in natural language. In AAAI
Conference on Artificial Intelligence.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 2924–2936, Minneapolis, Minnesota.
Association for Computational Linguistics.

PeterE. Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv:
Artificial Intelligence.

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and
Yonatan Belinkov. 2020. Analyzing redundancy
in pretrained transformer models. arXiv preprint
arXiv:2004.04010.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng
Han, Shuo Shang, Aixin Sun, Yequan Wang, and
Zhongyuan Wang. 2024. Not all layers of llms
are necessary during inference. arXiv preprint
arXiv:2403.02181.

Elias Frantar and Dan Alistarh. 2022. Optimal brain
compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Infor-
mation Processing Systems, 35:4475–4488.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323–10337. PMLR.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2023. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
In International Conference on Learning Representa-
tions.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2021. A framework for few-shot language model
evaluation.

Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang.
2023. Compresso: Structured pruning with collabora-
tive prompting learns compact large language models.
arXiv preprint arXiv:2310.05015.

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah,
Muhammad Irfan, Anas Zafar, Muhammad Bilal
Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili,
et al. 2023. A survey on large language models:
Applications, challenges, limitations, and practical
usage. Authorea Preprints.

Song Han, Huizi Mao, and William J Dally. 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149.

Babak Hassibi, David G Stork, and Gregory J Wolff.
1993. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural
networks, pages 293–299. IEEE.

14000

https://api.semanticscholar.org/CorpusID:208290939
https://api.semanticscholar.org/CorpusID:208290939
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu,
and Yi Yang. 2018. Soft filter pruning for accel-
erating deep convolutional neural networks. arXiv
preprint arXiv:1808.06866.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Yerlan Idelbayev and Miguel A Carreira-Perpinán. 2020.
Low-rank compression of neural nets: Learning the
rank of each layer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 8049–8059.

Ayush Kaushal, Tejas Vaidhya, and Irina Rish. 2023.
Lord: Low rank decomposition of monolingual
code llms for one-shot compression. arXiv preprint
arXiv:2309.14021.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. 2024. Shortened llama: A simple depth
pruning for large language models. arXiv preprint
arXiv:2402.02834.

Eldar Kurtić, Elias Frantar, and Dan Alistarh. 2023. Zi-
plm: Inference-aware structured pruning of language
models. Advances in Neural Information Processing
Systems, 36.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney,
Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
2022. A fast post-training pruning framework for
transformers. Advances in Neural Information Pro-
cessing Systems, 35:24101–24116.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. Advances in neural information
processing systems, 2.

Yun Li, Lin Niu, Xipeng Zhang, Kai Liu, Jianchen
Zhu, and Zhanhui Kang. 2023. E-sparse: Boost-
ing the large language model inference through
entropy-based n: M sparsity. arXiv preprint
arXiv:2310.15929.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702–21720.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in neural information processing systems, 32.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. 2019. Importance estima-
tion for neural network pruning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 11264–11272.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, EdwardZ.
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. arXiv: Learning,arXiv: Learning.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani,
Ebru Arisoy, and Bhuvana Ramabhadran. 2013. Low-
rank matrix factorization for deep neural network
training with high-dimensional output targets. In
2013 IEEE international conference on acoustics,
speech and signal processing, pages 6655–6659.
IEEE.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adversar-
ial winograd schema challenge at scale. Proceedings
of the AAAI Conference on Artificial Intelligence,
page 8732–8740.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Inter-
national Conference on Machine Learning, pages
31094–31116. PMLR.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

14001

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.1609/aaai.v34i05.6399
https://doi.org/10.1609/aaai.v34i05.6399

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang.
2024. Svd-llm: Truncation-aware singular value de-
composition for large language model compression.
arXiv preprint arXiv:2403.07378.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo
Zhang, Ruihao Gong, Jinyang Guo, and Xianglong
Liu. 2023. Outlier suppression+: Accurate quanti-
zation of large language models by equivalent and
optimal shifting and scaling. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 1648–1665.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Frank Morgan,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. Cornell
University - arXiv,Cornell University - arXiv.

BigScience Workshop, Teven Le Scao, Angela Fan,
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luc-
cioni, François Yvon, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR.

Xiaoru Xie, Jun Lin, Zhongfeng Wang, and Jinghe Wei.
2021. An efficient and flexible accelerator design for
sparse convolutional neural networks. IEEE Trans-
actions on Circuits and Systems I: Regular Papers,
68(7):2936–2949.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu,
Yan Yan, and Guangyu Sun. 2024. Asvd: Activation-
aware singular value decomposition for compressing
large language models.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Jie-Fang Zhang, Ching-En Lee, Chester Liu,
Yakun Sophia Shao, Stephen W Keckler, and
Zhengya Zhang. 2020. Snap: An efficient sparse
neural acceleration processor for unstructured sparse
deep neural network inference. IEEE Journal of
Solid-State Circuits, 56(2):636–647.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022a. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao,
Lu Hou, and Carlo Vittorio Cannistraci. 2024. Plug-
and-play: An efficient post-training pruning method

for large language models. In The Twelfth Interna-
tional Conference on Learning Representations.

Yuxin Zhang, Mingbao Lin, Mengzhao Chen, Fei Chao,
and Rongrong Ji. 2022b. Optg: Optimizing gradient-
driven criteria in network sparsity. arXiv preprint
arXiv:2201.12826.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

14002

http://arxiv.org/abs/2312.05821
http://arxiv.org/abs/2312.05821
http://arxiv.org/abs/2312.05821
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF

A Appendix-A

A.1 Proof of Equation 10
Assuming we need to prune n rows from the weight
matrix W according to the selected set S. For
simplicity, consider a simple case, the weights to
be pruned are the first n rows of W , S = {1, ..., n}.
We have the following optimization problem:

argminδW
Cout∑

j=1

∥XW:,j −X(W:,j + δW:,j)∥22

s.t. vT1 δW:,j +W1,j = 0, ..., vTn δW:,j +Wn,j = 0, ∀j
(14)

where vi is a one-hot column vector with the ith

position set to 1 and all other positions set to 0.
Following the approach of OBC (Frantar and Alis-
tarh, 2022), we decompose it into an optimization
problem for each column:

argminδw ∥Xw −X(w + δw)∥22
s.t. vT1 δw + w1 = 0, ..., vTn δw + wn = 0 (15)

where w represents a column of W , and δw de-
notes the corresponding update for this column. To
solve Eq.(15), we form the following Lagrangian
equation:

1

2
δwTXTXδw +

n∑

i=1

λi(v
T
i δw + wi) (16)

where λi is the Lagrange multiplier. Taking the
derivative of Eq.(16) with respect to δw and setting
the result to zero yields:

δw = −H−1V λ (17)

where H = XTX , V = [v1, ..., vn] and λ =
[λ1, ..., λn]

T . Noting that δwi = −wi, we have
following linear equations:

H−1
S,Sλ = wS (18)

where H−1
S,S is the submatrix of H−1 according to

S, and wS = [w1, ..., wn]
T is the subvector of w.

Solving Eq.(18) yields:

δw = −H−1V
[
H−1

S,S

]−1
wS (19)

Substituting Eq.(19) into e = δwTXTXδw and
simplify it , we have:

e = wT
S

[
H−1

S,S

]−1
wS (20)

The Eq.(20) represents the incurred error in a single
column. Considering all columns yields Eq.(10).

A.2 Analysis of Equation 10

Following A.1, the selected set is S = {1, ..., n}, w
is a column of weight matrix W , wS is a subvector
of w. Assuming H−1

S,S is as follows:

H−1
S,S =

[
A B
BT c

]
(21)

where A is a (|S| − 1) by (|S| − 1) matrix, B is a
column vector and c is a scalar. The inverse of it is:

[
H−1

S,S

]−1
=

[
cΛ −ΛB

−BTΛ 1
c +

1
cB

TΛB

]
(22)

where Λ = (cA−BBT)−1. According to Eq.(20),
the pruning-induced error in this column is:

e =
[
wT
Ŝ

wn

] [
H−1

S,S

]−1
[
w
Ŝ

wn

]

=
[
wT
Ŝ

wn

] [cΛ −ΛB
−BTΛ 1

c +
1
cB

TΛB

] [
w
Ŝ

wn

]

=
w2
n

c
+ cwT

Ŝ
Λw

Ŝ
− wnB

TΛw
Ŝ
− wnw

T
Ŝ
ΛB +

w2
n

c
BTΛB

=
w2
n

c
+
(
wT
Ŝ
− wn

c
BT

)
cΛ

(
w
Ŝ
− wn

c
B
)

=
w2
n

c︸︷︷︸
first term

+
[
w
Ŝ
− wn

c
B
]T

︸ ︷︷ ︸
updated weights

[
A− 1

c
BBT

]−1

︸ ︷︷ ︸
updated Hessian inverse

[
w
Ŝ
− wn

c
B
]

︸ ︷︷ ︸
updated weights

︸ ︷︷ ︸
second term

(23)
where Ŝ = {1, ..., n− 1}. Eq.(23) has two terms.
The first term is the error incurred by pruning wn,
according to Eq.(2). The second term consists of
the updated weights and the updated inverse Hes-
sian, which are calculated by Eq.(2) and Eq.(3),
respectively. This indicates that the error incurred
by pruning the entire set is equivalence to the er-
ror incurred by pruning a single weight (wn) plus
the error incurred by pruning the subset (without
wn) while considering weight updating and inverse
Hessian updating. Repeating this method on the
updated w

Ŝ
, we can break down the problem of

pruning the entire set into a one-by-one weight
pruning, updating, then pruning iteration.

Thinking in reverse, to find the optimal set S that

minimizes wT
S

[
H−1

S,S

]−1
wS , we can iteratively se-

lect and prune the weight with the smallest error
while updating the weights and inverse Hessian
until the parameter constraints are satisfied. The
pruning error of the selected set equals the sum of
the error at each step. By iteratively reaching the
local optimum at each, we approximate the global
optimum.

14003

The above only considers the case of a single
column of W, as the processing of each column
is independent. Simultaneously considering all
columns corresponds to the structured pruning of
the entire weight matrix.

A.3 Proof of Equation 13
Consider Eq.(12) from the perspective of each col-
umn, we have:

∥∥∥XpWp − X̂p(Wp + δWp)
∥∥∥
2

2

=

Cout∑

j=1

∥∥∥
(
Xp − X̂p

)
(Wp):,j − X̂p(δWp):,j

∥∥∥
2

2

(24)

where Cout is the number of columns in Wp. For
the simplicity of notation, denote w = (Wp):,j ,
δw = δ(Wp):,j , X = Xp, X̂ = X̂p, and △X =

Xp − X̂p. Then we have:

∥∥∥△Xw − X̂δw
∥∥∥
2

2

=
(
∆Xw − X̂δw

)T (
∆Xw − X̂δw

)

= wT∆XT∆Xw − wT∆XT X̂δw

− δwT X̂T∆Xw + δwT X̂T X̂δw

(25)

Taking the derivative with respect to δw and setting
the result to zero, we obtain:

δw = (X̂T X̂)−1X̂T∆Xw (26)

Eq.(26) represents the solution for each column. By
considering all columns simultaneously, we obtain
Eq.(13)

B Appendix-B

B.1 Details for SoBP
Hyperparameter λ for different models. In Sec-
tion 4.1 we introduce a hyperparameter λ to bal-
ance the importance between head and neuron.
The hyperparameters used in our experiments are
shown in Table 5 and Table 6.

Model 15% 20% 30% 40%

LLaMA1-7B 250 300 300 300
LLaMA1-13B 300 350 350 300
LLaMA1-30B 250 250 250 250
LLaMA1-65B 250 200 250 250
LLaMA2-7B 250 250 300 450
LLaMA2-13B 250 250 250 250
LLaMA2-70B 250 200 150 250

Table 5: Hyperpatameters for LLaMA models

Model 10% 15% 20% 30%

OPT-125M 100 250 250 300
OPT-1.3B 250 250 550 550
OPT-2.7B 550 550 550 550
OPT-6.7B 900 900 1000 2600
OPT-13B 650 850 1000 3000
OPT-30B 650 650 650 2750
OPT-66B 450 450 450 3000

Table 6: Hyperpatameters for OPT models

Constrained knapsack algorithm. When solv-
ing Eq.(9), we do not use the naive knapsack algo-
rithm. Instead, we add some constraints to prevent
the module from being excessively pruned. Specif-
ically, when the pruning rate of a certain module
exceeds the threshold, we set the "volume" of all
unpruned units of that module to infinity. This
ensures that they will not be selected into the knap-
sack in subsequent iterations. In our experiments,
we set the pruning rate threshold for MHA and
FFN to 80%.

B.2 Detailed Results of LLaMA Family

Table 7 presents the accuracy of the compressed
LLaMA models on seven zero-shot tasks with a
compression rate r=30%. As shown in the table,
SoBP outperforms other methods on most tasks.

B.3 Detailed Results of OPT Family

In the compression of the LLAMA models, FLAP
is comparable to SoBP. However, when compress-
ing OPT models, SoBP significantly outperforms
FLAP. As shown in Table 8, when compressing
OPT-13B, OPT-30B, and OPT-66B models by 30%
of their parameters, SoBP achieves average accura-
cies on zero-shot tasks that exceed FLAP by 6.76%,
8.16%, and 9.34%, respectively. We suppose the
reason is that FLAP relies on the stability of feature
channels, which the OPT models lack. This further
emphasizes the greater applicability of SoBP to
different models.

When compressing OPT models, SliceGPT
is comparable to SoBP. As shown in Table 9,
SliceGPT outperforms SoBP in certain tasks. How-
ever, SoBP consistently achieves higher average
accuracy. Meanwhile, as shown in Table 8, the
models compressed via SliceGPT have a larger
parameter size. When compared at an equivalent
parameter size, SoBP shows a more significant ad-
vantage over SliceGPT-eq.

14004

Model Methods ARC-c ARC-e BoolQ HellaSwag OpenBookQA PIQA WinoGrande Avg

LLaMA1-7B

Dense 44.62 72.90 75.02 76.22 44.40 79.16 70.01 66.05

FLAP 33.87 58.42 66.88 61.70 40.40 73.23 66.61 57.30
SliceGPT 31.40 53.37 37.83 45.68 33.60 64.31 62.12 46.90
SliceGPT-eq 29.18 44.82 37.83 37.85 29.80 60.07 58.09 42.52
SVD-LLM 31.14 50.93 61.68 50.73 37.00 65.61 62.67 51.39
ASVD 28.16 40.28 64.01 42.71 29.20 60.72 53.75 45.55
SoBP 37.97 61.20 68.41 67.62 40.20 73.56 68.35 59.61

LLaMA1-13B

Dense 47.78 74.83 77.98 79.10 44.80 80.14 72.85 68.21

FLAP 38.91 62.46 66.70 67.58 42.40 74.27 68.67 60.14
SliceGPT 36.69 60.40 55.20 54.06 38.00 67.30 68.19 54.26
SliceGPT-eq 33.36 55.18 38.35 48.56 37.00 63.93 64.48 48.69
SVD-LLM - - - - - - - -
ASVD 35.84 58.50 70.58 63.04 37.60 73.34 63.38 57.47
SoBP 43.86 70.41 71.50 74.92 42.40 77.09 71.35 64.50

LLaMA1-30B

Dense 52.90 78.91 82.69 82.61 48.20 82.26 75.85 71.92

FLAP 39.93 66.46 74.37 76.32 43.60 78.67 72.69 64.58
SliceGPT 42.15 69.23 55.44 59.29 41.60 69.75 68.90 58.05
SliceGPT-eq 36.86 60.19 38.81 52.20 40.20 64.91 67.32 51.50
SVD-LLM 40.02 64.35 62.57 64.06 42.20 71.76 72.30 59.61
ASVD 41.98 67.89 73.52 67.45 39.40 75.68 67.25 61.88
SoBP 50.00 75.34 80.28 80.12 47.40 80.20 74.03 69.62

LLaMA1-65B

Dense 55.63 79.71 84.89 84.15 47.00 82.32 77.35 73.01

FLAP 49.06 76.68 81.74 80.32 46.40 80.36 74.35 69.84
SliceGPT 47.95 73.65 67.95 64.43 43.20 73.56 73.48 63.46
SliceGPT-eq 41.47 67.51 51.35 57.57 41.60 68.99 70.56 57.01
SVD-LLM 46.84 74.41 71.59 70.42 43.00 76.17 74.98 65.34
ASVD 41.98 69.91 79.91 71.41 44.00 76.93 69.30 64.78
SoBP 53.41 79.71 84.68 83.13 46.60 81.83 77.82 72.46

LLaMA2-7B

Dense 46.25 74.58 77.74 76.02 44.20 79.05 68.98 66.69

FLAP 31.23 53.83 44.71 56.58 37.00 71.27 61.72 50.91
SliceGPT 31.74 49.58 38.32 49.09 32.60 64.91 60.69 46.70
SliceGPT-eq 28.07 45.45 37.83 43.06 31.40 60.01 58.41 43.46
SVD-LLM 26.79 42.47 44.50 45.40 33.40 62.13 58.72 44.77
ASVD 26.96 36.95 61.56 36.82 27.20 56.69 53.59 42.82
SoBP 37.63 59.81 71.19 67.27 38.40 73.50 66.22 59.15

LLaMA2-13B

Dense 49.23 77.48 80.58 79.37 45.20 80.52 72.30 69.24

FLAP 36.26 59.43 65.14 61.86 40.20 72.42 65.59 57.27
SliceGPT 36.86 53.28 38.81 52.37 38.60 65.13 65.67 50.10
SliceGPT-eq 31.57 47.31 37.80 45.93 37.40 61.37 62.35 46.25
SVD-LLM 31.14 52.86 66.85 50.96 39.40 66.76 64.17 53.16
ASVD 29.95 53.11 69.24 53.30 36.60 70.18 60.85 53.32
SoBP 47.78 74.45 79.45 74.55 43.20 76.50 71.82 66.82

LLaMA2-70B

Dense 57.25 80.98 83.70 83.81 48.80 82.75 77.98 73.61

FLAP 49.32 73.86 82.78 80.41 45.80 80.90 74.66 69.68
SliceGPT 50.43 74.03 56.18 62.62 44.00 71.38 72.61 61.61
SliceGPT-eq 43.94 68.06 43.27 56.11 42.00 68.12 71.82 56.19
SVD-LLM 50.51 75.63 64.10 69.41 43.20 74.37 75.30 64.65
ASVD 22.95 29.00 40.64 27.45 22.80 50.33 49.57 34.68
SoBP 56.40 79.21 68.62 81.80 48.20 80.58 77.27 70.30

Table 7: Detailed zero-shot tasks results of LLaMA1 and LLaMA2 models. Compression rate r = 30%.

B.4 Results of Inference time and Throughput

The inference time and throughput are tested on
Pytorch (version 2.2.2) and Accelerate (version
0.29.2). Table 10-11 provide detailed results on
the inference time and throughput of various com-
pressed models across different batch sizes. Dur-
ing the prefill stage, the inference time increases
almost linearly with the batch size, indicating that
this stage is compute-bound. In the decode stage,
the throughput of the model increases as the batch

size increases. Compared to the original model,
SoBP achieves improvements in both inference
speed and throughput. The model compressed by
SliceGPT-eq has a faster inference speed during
the prefill stage compared to SoBP, in other cases,
SoBP achieve better performance.

14005

Model OPT-125M OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B

Rate Method Para PPL↓ Avg↑ Para PPL↓ Avg↑ Para PPL↓ Avg↑ Para PPL↓ Avg↑ Para PPL↓ Avg↑ Para PPL↓ Avg↑ Para PPL↓ Avg↑
0% Dense 125M 27.64 41.39 1.3B 14.61 51.09 2.7B 12.46 53.91 6.7B 10.85 58.16 12.9B 10.12 59.15 30.0B 9.56 61.85 65.7B 9.33 63.08

10%

FLAP 117M 29.27 41.14 1.2B 15.58 48.40 2.4B 13.70 52.57 6.0B 11.35 57.31 11.6B 11.31 58.10 27.0B 10.45 59.26 59.2B 10.51 60.81
SliceGPT 163M 29.50 41.16 1.5B 15.16 49.92 2.8B 12.82 52.86 7.1B 11.07 57.07 13.5B 10.30 59.18 31.3B 9.65 61.61 68.4B 9.43 63.14
SliceGPT-eq 117M 77.48 36.45 1.2B 18.01 47.59 2.4B 14.58 50.29 6.0B 11.86 55.66 11.6B 10.86 57.34 27.0B 9.99 60.50 59.2B 9.64 62.85
ASVD 117M 31.56 40.69 1.2B 19.48 47.56 2.4B 16.99 51.69 6.0B 12.22 55.18 11.6B 14.61 56.32 27.0B 10.99 59.11 59.2B 10.53 60.33
SoBP 117M 27.74 41.97 1.2B 14.80 50.65 2.4B 12.46 53.51 6.0B 10.88 58.41 11.6B 10.15 59.29 27.0B 9.56 61.96 59.2B 9.34 63.01

15%

FLAP 112M 32.01 41.23 1.13B 16.44 47.94 2.3B 14.80 52.50 5.7B 11.88 55.35 10.9B 12.19 56.98 25.5B 11.74 58.09 55.9B 11.32 59.56
SliceGPT 156M 31.17 41.35 1.4B 15.70 49.20 2.7B 13.28 51.93 6.7B 11.26 56.58 12.7B 10.49 58.70 29.4B 9.78 61.08 64.2B 9.51 63.07
SliceGPT-eq 112M 93.21 36.96 1.13B 19.44 46.92 2.3B 15.54 49.18 5.7B 12.32 54.76 10.9B 11.15 56.68 25.5B 10.16 59.75 55.9B 9.76 62.22
ASVD 112M 37.13 40.59 1.13B 74.56 42.19 2.3B 43.27 43.51 5.7B 23.33 47.92 10.9B 2.7e2 44.05 25.5B 12.74 56.66 55.9B 1.4e2 52.29
SoBP 112M 28.21 41.66 1.13B 15.16 50.46 2.3B 12.55 53.56 5.7B 11.02 58.36 10.9B 10.21 59.15 25.5B 9.57 61.86 55.9B 9.35 63.26

20%

FLAP 108M 34.45 40.99 1.07B 17.37 47.50 2.1B 15.38 50.91 5.4B 12.80 54.72 10.3B 13.18 55.36 24.0B 12.81 56.52 52.3B 12.25 57.95
SliceGPT 148M 34.10 40.02 1.3B 16.51 48.46 2.5B 13.89 51.51 6.2B 11.60 55.50 11.9B 10.71 57.84 27.5B 9.92 60.86 60.1B 9.61 62.96
SliceGPT-eq 108M 112.17 36.25 1.07B 21.45 45.71 2.1B 16.95 48.45 5.4B 12.89 54.08 10.3B 11.54 56.02 24.0B 10.38 59.53 52.3B 9.91 62.41
ASVD 108M 45.52 40.14 1.07B 5.4e2 38.43 2.1B 3.9e2 38.64 5.4B 51.92 45.11 10.3B 1.2e3 39.2 24.0B 25.97 49.48 52.3B 3.7e2 44.12
SoBP 108M 29.01 41.26 1.07B 15.57 50.18 2.1B 12.72 52.65 5.4B 11.32 57.71 10.3B 10.40 59.19 24.0B 9.63 61.42 52.3B 9.38 63.29

30%

FLAP 99.7M 40.06 40.66 0.95B 20.78 45.62 1.9B 18.32 47.18 4.7B 15.42 52.77 9.1B 16.01 50.81 21.1B 16.50 52.61 46.1B 16.61 53.71
SliceGPT 134M 44.23 38.30 1.1B 19.59 46.97 2.2B 16.31 48.96 5.4B 12.80 54.16 10.3B 11.49 55.92 23.8B 10.39 59.49 51.9B 9.95 62.24
SliceGPT-eq 99.7M 1.8e2 35.41 0.95B 28.87 43.66 1.9B 22.31 45.46 4.7B 14.78 51.79 9.1B 12.66 53.98 21.1B 11.03 58.35 46.1B 10.35 61.70
ASVD 99.7M 1.0e2 38.51 0.95B 3.4e3 38.07 1.9B 1.7e3 38.37 4.7B 1.1e3 37.86 9.1B 7.6e3 36.85 21.1B 1.2e2 41.12 46.1B 6.6e3 35.90
SoBP 99.7M 32.14 40.50 0.95B 17.18 49.12 1.9B 13.89 51.45 4.7B 12.17 56.02 9.1B 10.83 57.57 21.1B 9.89 60.77 46.1B 9.56 63.05

Table 8: Performance of compressed OPT models.

Model Methods ARC-c ARC-e BoolQ HellaSwag OpenBookQA PIQA WinoGrande Avg

OPT-125M

Dense 22.78 39.94 55.47 31.36 27.80 61.97 50.43 41.39

FLAP 20.65 35.52 61.74 30.13 27.80 59.03 49.72 40.66
SliceGPT 22.44 34.89 43.43 29.22 27.80 58.32 52.01 38.30
SliceGPT-eq 21.5 29.97 39.51 27.73 25.60 53.54 50.04 35.41
ASVD 21.76 35.56 49.63 29.60 26.80 56.91 49.33 38.51
SoBP 21.93 36.66 55.41 30.35 26.60 60.99 51.54 40.50

OPT-1.3B

Dense 29.69 50.97 57.74 53.69 33.20 72.42 59.91 51.09

FLAP 25.00 42.42 61.41 41.06 28.00 66.65 54.78 45.62
SliceGPT 25.43 45.54 62.08 43.38 32.20 67.30 52.88 46.97
SliceGPT-eq 23.21 41.08 60.80 36.96 30.00 62.35 51.22 43.66
ASVD 24.74 28.28 58.01 26.70 25.40 51.09 52.25 38.07
SoBP 27.22 47.56 61.41 48.85 32.00 69.59 57.22 49.12

OPT-2.7B

Dense 31.23 54.38 60.37 60.63 35.20 74.76 60.77 53.91

FLAP 25.17 45.88 62.23 45.79 27.60 68.66 54.93 47.18
SliceGPT 26.37 47.35 62.26 49.23 33.20 68.28 56.04 48.96
SliceGPT-eq 24.23 42.68 61.74 42.16 28.80 64.80 53.83 45.46
ASVD 26.02 26.77 61.87 26.19 27.60 49.73 50.43 38.37
SoBP 30.80 50.80 56.09 56.51 34.40 72.69 58.88 51.45

OPT-6.7B

Dense 34.64 60.14 66.06 67.19 37.40 76.50 65.19 58.16

FLAP 30.29 51.47 62.14 54.94 37.40 73.18 59.98 52.77
SliceGPT 30.12 55.85 64.43 58.32 36.20 73.45 60.77 54.16
SliceGPT-eq 28.33 51.47 63.61 53.81 34.00 71.06 60.22 51.79
ASVD 25.26 28.07 55.84 26.75 25.00 52.72 51.38 37.86
SoBP 32.85 57.24 65.29 63.22 36.60 75.24 61.72 56.02

OPT-13B

Dense 35.67 61.87 65.72 69.86 39.00 76.82 65.11 59.15

FLAP 30.63 47.69 63.98 53.60 32.20 71.11 56.43 50.81
SliceGPT 31.31 57.87 66.30 61.93 36.60 74.59 62.83 55.92
SliceGPT-eq 29.69 54.12 64.37 58.81 35.80 73.07 61.96 53.97
ASVD 24.83 25.80 53.85 25.99 26.60 50.71 50.20 36.85
SoBP 34.98 60.23 68.01 67.01 36.20 75.24 61.33 57.57

OPT-30B

Dense 38.05 65.36 70.46 72.30 40.20 78.18 68.43 61.85

FLAP 28.75 47.69 62.17 59.30 38.40 73.07 58.88 52.61
SliceGPT 33.36 62.08 71.87 67.65 38.40 76.88 66.22 59.49
SliceGPT-eq 33.28 60.77 70.86 65.51 36.80 76.28 64.96 58.35
ASVD 24.23 32.74 60.64 36.68 25.20 57.45 50.91 41.12
SoBP 37.54 65.36 68.44 71.62 38.40 77.75 66.30 60.77

OPT-66B

Dense 40.02 67.26 69.72 74.89 41.00 79.87 68.82 63.08

FLAP 31.48 53.75 60.24 60.46 36.00 74.86 59.19 53.71
SliceGPT 37.54 65.11 72.75 72.35 40.80 78.56 68.59 62.24
SliceGPT-eq 37.63 65.40 72.72 70.92 39.60 77.69 67.96 61.70
ASVD 25.09 29.46 40.00 26.94 27.40 52.12 50.28 35.90
SoBP 41.13 67.55 69.97 74.72 40.60 79.05 68.35 63.05

Table 9: Detailed zero-shot tasks results of OPT models. Compression rate r = 30%.

14006

Methods Model GPUs Batchsize Time (s)

Dense

LLaMA2-13B
1 1 0.454
1 2 0.896
1 4 1.832

LLaMA2-70B
2 1 1.913
2 2 4.062
2 3 6.072

OPT-13B
1 1 0.414
1 2 0.877
1 4 1.754

OPT-66B
2 1 1.942
2 2 OOM
2 3 OOM

SliceGPT-eq

LLaMA2-13B (-40%)
1 1 0.231
1 2 0.524
1 4 1.023

LLaMA2-70B (-40%)
2 1 1.093
2 2 2.009
2 3 3.094

OPT-13B (-30%)
1 1 0.369
1 2 0.870
1 4 1.480

OPT-66B (-30%)
2 1 1.722
2 2 3.490
2 3 5.593

ASVD

LLaMA2-13B (-40%)
1 1 0.435
1 2 0.890
1 4 1.791

LLaMA2-70B (-40%)
2 1 1.761
2 2 3.473
2 3 5.152

OPT-13B (-30%)
1 1 0.425
1 2 0.830
1 4 1.644

OPT-66B (-30%)
2 1 2.023
2 2 OOM
2 3 OOM

SVD-LLM

LLaMA2-13B (-40%)
1 1 0.605
1 2 1.277
1 4 2.499

LLaMA2-70B (-40%)
2 1 2.661
2 2 5.131
2 3 7.974

OPT-13B (-30%)
1 1 0.634
1 2 1.270
1 4 2.522

OPT-66B (-30%)
2 1 2.262
2 2 4.530
2 3 6.993

SoBP

LLaMA2-13B (-40%)
1 1 0.384 (0.292)
1 2 0.793 (0.586)
1 4 1.552 (1.164)

LLaMA2-70B (-40%)
2 1 1.603 (1.203)
2 2 3.226 (2.391)
2 3 4.718 (3.609)

OPT-13B (-30%)
1 1 0.443 (0.283)
1 2 0.922 (0.566)
1 4 1.786 (1.158)

OPT-66B (-30%)
2 1 1.620 (1.224)
2 2 3.077 (2.528)
2 3 4.551 (3.763)

Table 10: Inference time of different models. OOM
denotes out of memory. The results in () of SoBP corre-
spond to the results of SoBP(/8).

Methods Model GPUs Batchsize Token/s

Dense

LLaMA2-13B
1 256 2456
1 512 2491
1 768 OOM

LLaMA2-70B
2 64 306
2 128 396
2 256 OOM

OPT-13B
1 256 2176
1 512 2612
1 768 OOM

OPT-66B
2 8 51
2 16 76
2 32 OOM

SliceGPT-eq

LLaMA2-13B (-40%)
1 256 2282
1 512 2422
1 768 OOM

LLaMA2-70B (-40%)
2 128 423
2 256 484
2 512 OOM

OPT-13B (-30%)
1 256 2664
1 512 2733
1 768 OOM

OPT-66B (-30%)
2 32 109
2 48 120
2 64 OOM

ASVD

LLaMA2-13B (-40%)
1 256 2004
1 512 2116
1 768 OOM

LLaMA2-70B (-40%)
2 32 206
2 64 294
2 128 OOM

OPT-13B (-30%)
1 256 2458
1 512 2460
1 768 OOM

OPT-66B (-30%)
2 32 84
2 64 91
2 96 OOM

SVD-LLM

LLaMA2-13B (-40%)
1 256 1740
1 512 1973
1 768 OOM

LLaMA2-70B (-40%)
2 128 249
2 256 282
2 512 OOM

OPT-13B (-30%)
1 256 1743
1 512 1901
1 768 OOM

OPT-66B (-30%)
2 16 66
2 32 89
2 64 OOM

SoBP

LLaMA2-13B (-40%)
1 512 3167 (3782)
1 768 3358 (4021)
1 1024 OOM

LLaMA2-70B (-40%)
2 256 530 (546)
2 512 563 (574)
2 1024 OOM

OPT-13B (-30%)
1 512 3074 (4162)
1 768 3121 (4219)
1 1024 OOM

OPT-66B (-30%)
2 32 97 (168)
2 64 156 (210)
2 128 OOM

Table 11: Throughput of different models. OOM de-
notes out of memory. The results in () of SoBP corre-
spond to the results of SoBP(/8).

14007

