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Abstract

Social intelligence is essential for understand-
ing complex human expressions and social in-
teractions. While large multimodal models
(LMMs) have demonstrated remarkable perfor-
mance in social intelligence question answer-
ing (SIQA), they are still inclined to generate
responses relying on language priors and ig-
noring the relevant context due to the domi-
nant prevalence of text-based data in the pre-
training stage. To interpret the aforementioned
language bias of LMMs, we employ a struc-
ture causal model and posit that counterfactual
reasoning can mitigate the bias by avoiding
spurious correlations between LMMs’ internal
commonsense knowledge and the given con-
text. However, it is costly and challenging to
construct multimodal counterfactual samples.
To tackle the above challenges, we propose an
output Distribution Calibration network with
Virtual Counterfactual (DCVC) data augmen-
tation framework. DCVC devises a novel out-
put distribution calibration network to mitigate
the impact of negative language biases while
preserving beneficial priors. Perturbations are
introduced to the output distributions of LMMs
to simulate the distribution shifts from coun-
terfactual manipulations of the context, which
is employed to construct counterfactual aug-
mented data virtually. Experiments on multiple
datasets demonstrate the effectiveness and gen-
eralizability of our proposed method.

1 Introduction

Social intelligence is essential for understanding
complex human intentions and social interactions
with machine learning models, which has emerged
as a nascent area in Natural Language Processing
(NLP) and multimodal communities in recent years.
A few question-answering (QA) benchmarks have
been proposed to evaluate the social intelligence
of existing machine learning models (Sap et al.,
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Figure 1: An example in the Social-IQ-2.0 dataset. The
input includes videos along with corresponding audio
and subtitles. G.T. stands for the Ground-Truth answer.
LMMs tend to select the incorrect answer (option B
in red) based on their social commonsense knowledge
obtained during pre-training.

2019a; Zadeh et al., 2019), including Social-IQ-2.0
(Wilf et al., 2023), a multiple-choice QA dataset
with multimodal inputs(videos, audio and subti-
tles). However, existing works often utilize and
optimize small models via modality feature align-
ment and/or leveraging external knowledge (Xie
and Park, 2023). Research on social intelligence
employing Large Multimodal Models(LMMs) re-
mains under-explored.

To bridge this gap, we evaluate the performance
of two powerful LMMs, Video-LLaVA (Lin et al.,
2023) and CREMA (Yu et al., 2024), on the Social-
IQ-2.0 dataset. Experimental results (Table 1) show
that LMMs demonstrate remarkable performance
under the zero-shot setting due to their exceptional
cross-modal understanding and reasoning capabil-
ities, achieving accuracy of 61.06% for Video-
LLaVA and 63.33% for CREMA. Nevertheless,
LMMs are prone to generating content frequently
seen during their pre-training stage (corresponding
to social commonsense knowledge in the LMMs)
due to the different data scales between text-based
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pre-training and multimodal alignment (Pi et al.,
2024). As shown in Figure 1, despite the woman
in the video ”laughed” (G.T.) in response to her
not knowing the route, Video-LLaVA selected the
incorrect answer based on the social commonsense
acquired during the text-based pre-training stage,
which suggests that not knowing the route can
“make her confused”. Extra examples are shown
in Figure 7 in Appendix B. To further assess the
language biases inherent in LMMs, we statistically
analyzed the mean output distributions of Video-
LLaVA when responding to emotion-related ques-
tions: the top 15 words with the highest output
probabilities are shown in Figure 2. It is evident
that the output distributions with multimodal inputs
closely resemble those without context, yet they
significantly differ from the answer proportions. To
mitigate such biases, Zhang et al. (2024) proposed
to detach the output distribution of video-free in-
puts to ensure that the LMMs generate responses
based solely on the visual context. However, ben-
eficial language priors have also been inevitably
removed.

To mitigate undesirable language biases while
preserving beneficial priors, we propose an out-
put Distribution Calibration network with Virtual
Counterfactual data augmentation (DCVC). Specif-
ically, we first employ a Structural Causal Model
(SCM) (Pearl, 2009) to characterize the causal ef-
fect for social intelligence QA, which denotes that
the spurious correlation between LMMs and con-
text can be avoided by counterfactual reasoning.
Then, an output distribution calibration network
is employed to calibrate the output distribution of
LMMs adaptively. Furthermore, We expect further
to mitigate the language bias of LMMs with coun-
terfactual data augmentation. However, construct-
ing multimodal counterfactual samples is challeng-
ing and costly, especially for the complex video
modality. To efficiently construct counterfactual
samples, we propose a Virtual Counterfactual Data
Augmentation (VCDA) framework to construct vir-
tual counterfactual samples with flipped labels and
filter out the high-quality data. Perturbations are
introduced to the output distribution of LMMs to
simulate the shifts in distributions resulting from
counterfactual manipulations of the context.

Overall, our main contributions are as follows:

• We utilize a Structural Causal Model (SCM)
to interpret and quantify the language biases
in LMMs for the social intelligence QA task.

Figure 2: Mean output distributions of Video-LLaVA
when responding to emotion-related questions across
different inputted modalities, with ’V’ representing
video and ’S’ representing subtitles. The proportions of
answers are given in the line graph for comparison.

• We employ an output distribution network to
adaptively calibrate the output distribution of
LMMs, which largely mitigates undesirable
language biases and preserves beneficial lan-
guage priors.

• To efficiently construct multimodal counter-
factual samples, we propose a virtual coun-
terfactual data augmentation framework to
construct virtual counterfactual samples that
simulates the shifts in output distributions re-
sulting from counterfactual manipulations of
the context.

2 Related works

Multimodal Question Answering. Multimodal
Question Answering aims to answer natural lan-
guage questions given multiple input modalities,
which requires multimodal understanding and com-
monsense reasoning skills. Previous benchmarks
(Antol et al., 2015; Xu et al., 2017; Jang et al.,
2017) focus on visual facts such as location and ob-
jects/attributes. In recent years, more benchmarks
(Lei et al., 2018; Zellers et al., 2019; Sap et al.,
2019b; Chen et al., 2024) have tended to tackle
commonsense and causal reasoning questions. Re-
garding the existing methods, while earlier works
(Cheng et al., 2023; Yu et al., 2021; Ye et al., 2023)
concentrate on multimodal representation learn-
ing and modality fusion, large vision-and-language
models align the multimodal feature to LLMs by
instruction tuning (Ko et al., 2023; Liu et al., 2023;
Yu et al., 2024). Different from these works, we
further examine the impact of language biases in
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LMMs and promote the performance of existing
LMMs by adaptively calibrating such biases.
Social Intelligence Learning. Social intelligence
is a long-standing research area within sociology
and psychology (Andreou, 2006; Daniel Goleman,
2007). In recent years, the study of social intel-
ligence has gained increasing momentum within
the machine learning communities. Zadeh et al.
(2019) propose a multimodal QA benchmark that
requires understanding and reasoning skills of so-
cial commonsense and human interaction. Bosse-
lut et al. (2019) conduct an extensive investigation
on the automated construction of social common-
sense knowledge bases. Furthermore, Xie and Park
(2023) propose to leverage emotional cues in so-
cial interaction through contrastive learning. While
previous work on Social Intelligence has primar-
ily focused on small, fine-tuned models, Our work
concentrates on evaluating and enhancing LMMs.
Mitigating Biases in Large Language Models.
Studies have been conducted to measure and miti-
gate political and societal biases of machine learn-
ing methods (Zhao et al., 2018; Bender et al., 2021).
Recently, with the growing prevalence of large lan-
guage models, multiple works have examined the
biases within these models (Zhou et al., 2023; Li
et al., 2024). Zhang et al. (2024) have demonstrated
that the outputs of LMMs are primarily influenced
by language priors, enabling them to provide con-
fident answers even without visual input. Chen
et al. (2024) initially employ fine-tuning based and
chain-of-thought based methods to mitigate such
bias. Zhang et al. (2024) introduce Visual Debias
Decoding (VDD) strategies to redirect the model’s
focus toward vision information. Our work also
advances existing visual decoding strategies, adap-
tively mitigating language biases in LMMs through
calibrated adjustments to the output distribution.

3 Method

In this section, we describe our proposed DCVC
framework for mitigating language bias of LMMs.
In section 3.1, we introduce the Social Intelligence
question-answering task (SIQA). In Section 3.2, a
Structural Causal Model (SCM) (Pearl, 2009) is
employed to interpret the causal effect for social
intelligence QA, which demonstrates that counter-
factual reasoning can mitigate the biases by avoid-
ing the spurious correlations between LMMs and
context. The next two sections show the specific
design of our output distribution-based counterfac-

tual reasoning approach, namely DCVC. In Section
3.3, we introduce a novel calibration network to
calibrate output distributions of LMMs adaptively.
In Section 3.4, we describe the virtual counterfac-
tual data augmentation method employed to train
the calibration network to rectify language biases.

3.1 Preliminary

Given input video v depicting social interaction,
as well as corresponding audio a, subtitle s, ques-
tion and options q, the goal of Social Intelli-
gence QA is to predict a label (i.e., option) ŷ
∈ {A,B,C,D, . . .} corresponding to the right an-
swer.

3.2 Language Bias Analysis

We formalize the causal effect for the Social Intelli-
gence QA task via a Structure Causal Model (SCM)
(Pearl, 2009). In Figure 4, an SCM is depicted
through a directed acyclic graph G = (V, E), where
edges in E represent the causal relationships be-
tween key factors in SIQA, which are represented
as nodes in V. The key factors include contextual
features X (i.e., the content of the input video),
knowledge embodied in Large Multimodal Model
T, mediator variable M and the prediction Y. The
details of SCM are shown as follows:

• T → X. The directed edge between T and X
indicates that X is encoded by LMM, and the
representation of X inevitably integrates priors
derived from T.

• X → M ← T. M is a mediator variable
blended with prior knowledge from LMM T
and contextual feature X. The paths among the
variables above denote that LMM encodes the
contextual feature and integrates prior knowl-
edge of LMM (such as grammar rules or com-
monsense knowledge) to generate responses.

• X → Y ← M. The directed path X → Y de-
notes that the causal effect between X and Y is
not fully represented by the path X →M →
Y . Because the existing LMMs cannot fully
represent all information contained in X. In-
stead, LMM is inclined to generate responses
by utilizing social commonsense knowledge,
rather than responding faithfully based on the
context X. The mediation path Y← M is also
inevitable due to the aforementioned mecha-
nism of existing LMM.
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Figure 3: The overall architecture of our proposed output Distribution Calibration network with Virtual
Counterfactual data augmentation (DCVC). The DC adaptively calibrates the output distribution of the LMM to
mitigate undesirable language biases while preserving beneficial priors. Furthermore, virtual counterfactual data
augmentation is employed to decouple spurious correlations between the LMM and the context.

Figure 4: (a) Causal graph for social intelligence QA. (b)
Intervene on context X to mitigate spurious correlation
related to LMM T.

Considering the SCM, it is hard for LMMs to
comprehensively capture the true causality between
X and Y, as spurious correlation exits in these two
paths: T → X and T → M → Y. Specifically,
LLMs incorporate prior knowledge while encod-
ing contextual features (T → X) and generating
responses (T → M → Y). While language priors
are essential for generating responses, excessive
incorporation of prior knowledge when encoding
X is prone to lead to misunderstandings or neglect
of the context. We propose that the spurious corre-
lations can be avoided by blocking the back-door
path X← T→ M via the do(·) operation:

P (Y |do(X = x̂)) =
∑

k

P (Y |X = x̂, T = t)P (T = t)

=
∑

k

P (Y |X = x̂, T = t,M = g(x̂, t))P (T = t)

(1)

By blocking the back-door path T → X by in-
tervening on X , the LMMs become more sensitive

to X , thus avoiding over-reliance on the language
priors. We will implement the intervention through
output distribution-based Virtual Counterfactual
Calibration in the next two sections.

3.3 Output Distribution Calibration Network

To mitigate undesirable language biases while pre-
serving beneficial priors, we propose an Output Dis-
tribution Calibration Network (DC) to calibrate the
output distribution of LMMs adaptively. As shown
in Figure 3, DC controls the output distribution
of LMMs p(y|q, s, v, a) given the representation
of q and language priors p(y|q). Specifically, the
question and options q are fed into the pre-trained
model for encoding: hq = Encoder(q). Then,
we calculate the element-wise product of the rep-
resentation for each option with its corresponding
output distribution and language priors to obtain
the weighted representations for each option:

ĥq = Concat(hq ◦ p(y|q, v, s, a), hq ◦ p(y|q)) (2)

where ĥq denotes the weighted representations for
each option, p(y|q, v, s, a) denotes the output dis-
tribution of LMM while p(y|q) denotes language
priors. Finally, ĥq is fed into an MLP classifier
with softmax for output distribution calibration:
fCal = softmax(ĥq ·W + b), where W and b are
learnable parameters.

Through supervised training, DC is capable of
assessing the impact of language priors and adap-
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tively mitigate undesirable biases, thereby promot-
ing causal inference:

LCE = −
N∑

i=1

yi log(fCal(ĥq)) (3)

where N represents the number of options.
To mitigate the bias of primitive hq, a Mean

Squared Error (MSE) loss function is employed:

LMSE =
1

N

N∑

i=1

((hqi ·W ′ + b′)− σ)2 (4)

where W ′ and b′ are learnable parameters, hqi are
representation of i-th option, σ = 1

N

∑N
i=1(hqi ·

W ′ + b′). The MSE loss function is applied to
make the output distributions derived solely from
the representation of options closer to the average.

The final training objective is:

L = LCE + αLMSE (5)

where α is a hyperparameter.

3.4 Virtual Counterfactual Augmentation

To reiterate, the causal intervention operation can
block the back-door path X← T→ M and encour-
age causal inference. Inspired by previous works
(Dong et al., 2023; Li et al., 2024), we propose to
construct counterfactual augmented data to realize
causal intervention, i.e., inverting causal features
through slight modifications to reverse the label.
Specifically, we would like to construct counter-
factual samples by slightly perturbing the input
video v, audio a, subtitle s in which way the label
is reversed.

However, compared to text-based perturbations,
it is exceedingly challenging and costly to construct
multimodal counterfactual samples for complex
videos. While there have been multiple prior works
in data augmentation for videos (Yun et al., 2020;
Ding et al., 2022), they focus on the replacement
and simple modification of image regions within
videos, which is hard to be employed to perform
precise adjustments to social interaction in videos.
As a result, it remains to be explored how to pre-
cisely modify videos for generating counterfactual
data.

Inspired by the Virtual Data Augmentation
(VDA) technique proposed by Zhou et al. (2021),
we propose a Virtual Counterfactual Data Augmen-
tation (VCDA) framework, as shown in Figure 3,
to construct virtual counterfactual samples with

flipped labels and filter for high-quality data. In-
stead of being directly introduced to the input con-
text, perturbations are introduced to the output dis-
tributions p(y|q, v, s, a) and language biases p(y|q)
of LMMs to simulate the shifts in distributions re-
sulting from counterfactual manipulations of the
context. This serves as an indirect and virtual coun-
terfactual data augmentation. The augmented data
will be employed to train the calibration network to
promote the calibration performance of the model
further.

Specifically, Gumbel noise is added to
p(y|q, v, s, a) and p(y|q) to perform perturbation.
The probability density function of the Gumbel
distribution is given by:

f(x;µ, β) =
1

β
exp

(
−x− µ

β
− exp

(
−x− µ

β

))
(6)

where µ is the location parameter and β is the scale
parameter.

We sample a random variable with the same di-
mension as p(y|q, v, s, a) from the Gumbel distri-
bution, denoted as Zoutput ∼ Gumbel(µ, β = 1).
Similarly, Zpriors ∼ Gumbel(µ, β = 0.1) with the
same dimension as p(y|q) is sampled. Then, the
significantly perturbed distribution p

′′
(y|q, v, s, a)

is obtained by shifting the original distribution
p(y|q, v, s, a) by Zoutput, where ′′ denotes signifi-
cant perturbation. To obtain the slightly perturbed
distribution p

′
(y|q), where ′ denotes minor pertur-

bation, we shift the original distribution p(y|q) by
Zpriors with minor scale parameter. Intuitively,
p
′
(y|q) denotes minor perturbations to the question

and options q, namely p(y|q′). Since the simul-
taneous perturbation to q is minor, p

′′
(y|q, v, s, a)

simulates the effect of applying significant pertur-
bations to the video v, audio a and the subtitle s,
namely p(y|q′, v′′

, s
′′
, a

′′
).

As the Virtual Counterfactual Augmentation is
unsupervised, we employed FlipDA proposed by
Zhou et al. (2022) to filter and retain high-quality
augmented data. Specifically, we first train the cal-
ibration network with original data. Then, virtual
augmented data will be generated with the afore-
mentioned method. Next, we apply the trained
calibration network as the data filter and select aug-
mented samples with the highest probabilities for
flipped labels. Finally, we retrain the DC with the
original and counterfactual augmented samples.
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4 Experimental Setup

4.1 Datasets

To validate the language bias mitigation perfor-
mance of our proposed DCVC method, we con-
duct experiments on two social intelligence under-
standing QA datasets: Social-IQ-2.0 (Wilf et al.,
2023) and DeSIQ-2.0 (Guo et al., 2023). Addition-
ally, NExT-QA (Xiao et al., 2021), a more general-
purpose video QA dataset is employed to evaluate
the generalizability of DCVC.

Social-IQ-2.0 is an improved version of Social-
IQ (Zadeh et al., 2019) with multimodal, multiple-
choice questions designed to evaluate the social
intelligence understanding capability of machine
learning models. The original video about human
interactions, the corresponding extracted audio,
and automatically generated transcripts are pro-
vided. Guo et al. (2023) reveals that Social-IQ,
as well as Social-IQ-2.0, contain significant bias
in which the distinction between the representa-
tions of correct and incorrect choices is readily
discernible, regardless of the specific questions or
contexts. They introduce DeSIQ and DeSIQ-2.0,
two corresponding debiased datasets constructed
by applying simple but effective perturbations to
the original datasets. Detailed dataset statistics are
shown in Appendix A in Table 4.

NExT-QA (Xiao et al., 2021) is a rigorously de-
signed video question answering (VideoQA) bench-
mark to advance video understanding from the de-
scription to the explanation of temporal actions and
causal reasoning. Causal questions account for ap-
proximately half (48%) of the whole dataset while
temporal questions compose 29% of the dataset.
Detailed dataset statistics are shown in Appendix
A in Table 5.

4.2 Baselines

We compare DCVC with both small and large mul-
timodal language models (LMMs). The fine-tuned
small models include RoBERTa-large (Liu et al.,
2019), T5-small (Guo et al., 2023) and MMTC-
ESC (Xie and Park, 2023). MMTC-ESC proposes
to leverage emotional cues in social interactions
through contrastive learning and applies the cross-
modal attention module to align multimodal repre-
sentations, which achieves state-of-the-art (SOTA)
performance. For video-capable LMMs, we em-
ploy two recent, strong models: Video-LLaVA
(Lin et al., 2023) and CREMA (Yu et al., 2024)
in a zero-shot setting. Video-LLaVA (Lin et al.,

2023) unifies visual representation into the lan-
guage feature space to advance the foundational
LLM towards a unified LMM and achieves su-
perior performances on a broad range of 9 mul-
timodal benchmarks. CREMA (Yu et al., 2024)
is an efficient and modular modality-fusion frame-
work for injecting any new modality into video rea-
soning and achieves better/equivalent performance
against strong LMMs with significantly fewer train-
able parameters. Additionally, we also fine-tune
CREMA as a control. Visual Debias Decoding
(VDD) Zhang et al. (2024) is a decoding strategy
that introduces a calibration step to adjust the out-
put distribution with that of the image-free input.
We adapted VDD to make it applicable for social
intelligence QA and employed it as a baseline.

4.3 Implementation Details
We utilize the same instructions as Video-LLaVA to
obtain output distributions. We set the temperature
to 0.1 for Video-LLaVA and set the beam size to
5 for CREMA. For fine-tuning CREMA, Learning
rate is set to 5e-5, and max training epoch is set to
10. For our proposed DCVC, we employ RoBERTa-
base (Liu et al., 2019) to encode q. The learning
rate is set to 1e-5, and the weight decay is set to
1e-2. We apply AdamW as an optimizer with a
batch size of 16. Our experiments show optimal
results are achieved when α is set to 0.1. For virtual
counterfactual data augmentation, we generate ten
samples for each original sample. All experiments
are conducted on the 2 × NVIDIA 4090 GPUs.

5 Results and Analysis

In this section, we validate the effectiveness of our
proposed DCVC through multiple experiments and
conduct further analyses. In Section 5.1, the overall
performance of DCVC is compared against multi-
ple baselines in Social-IQ-2.0 dataset and DeSIQ-
2.0 dataset. In Section 5.2, ablation study is con-
ducted to evaluate the effectiveness of each com-
ponent. Afterward, we analyze the impact of the
type of noise for virtual counterfactual data aug-
mentation in Section 5.3. Finally, we validate the
generalizability of the output distribution calibra-
tion network in Section 5.4.

5.1 Overall Performance
The overall results are shown in Table 1. It can
be seen that our proposed DCVC framework sig-
nificantly (p < 0.01) improves the performance of
”vanilla” LMM Video-LLaVA (by 17.26 points on
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Model Social-IQ-2.0 DeSIQ-2.0

RoBERTa-large (Liu et al., 2019) [q, s] 73.55 81.38
T5-small (Guo et al., 2023) [q, s, v, a] 64.06 74.13
MMTC-ESC (Xie and Park, 2023) [q, s, v, a] 75.94 -

Video-LLaVA (Lin et al., 2023) [q, s, v] 61.06 85.69
Video-LLaVA + VDD (Zhang et al., 2024) 58.23 78.43
Video-LLaVA + DCVC (ours) [q, s, v] 78.32 97.04

CREMA (Yu et al., 2024) [q, s, v, a] 63.33 87.62
CREMA + VDD (Zhang et al., 2024) 62.65 84.10
CREMA(fine-tuned) [q, s, v, a] 76.39 98.29
CREMA + DCVC (ours) [q, s, v, a] 77.78 97.27

Table 1: Accuracy on the Social-IQ-2.0 and DeSIQ-2.0 development sets. The content in ”[ ]” denotes the modalities
of the model (q: question and answer options, s: subtitle, v: video, a: audio).

Social-IQ-2.0 and 11.35 points on DeSIQ-2.0) and
CREMA (by 14.45 points on Social-IQ-2.0 and
9.65 points on DeSIQ-2.0). Moreover, CREMA, in
the zero-shot setting, when coupled with DCVC,
achieves comparable performance with dataset-
specific fine-tuned results.

As previously mentioned, language biases inher-
ent in the pre-training phase of language models
negatively impact LLMs’ performance on SIQA.
To mitigate the biases, Visual Debias Decoding
(VDD) directly detaches the output distribution of
video-free inputs to ensure that the LMMs generate
responses based solely on the visual context. While
excelling in mitigating hallucinations, the rather
simplistic calibration of VDD removes not only lan-
guage biases but also the linguistic priors beneficial
for social intelligence reasoning (e.g., basic social
commonsense). Consequently, the performance of
VDD, when applied to Video-LLaVA, exhibits a
moderate decline compared with the baseline. In
comparison, our proposed DCVC framework mea-
sures the extent of language bias based on the out-
put probabilities. It employs an adaptive calibration
network enhanced with virtual counterfactual aug-
mentation, which achieves state-of-the-art (SOTA)
performance (78.32% for Video-LLava and 77.78%
for CREMA on Social-IQ-2.0).

Surprisingly, Video-LLaVA achieved an accu-
racy 85.69% on the DeSIQ-2.0 dataset, which is
significantly higher than the Social-IQ-2.0 dataset.
This experimental result can be attributed to the
fact that DeSIQ-2.0 directly replaces the options of
the original samples with others from the dataset,
rendering the option representations no longer dis-
cernible. However, LMMs can easily distinguish

Figure 5: The performance of DCVC under varying
proportions of training data (30%, 60%, 90%, 100%) on
the Social-IQ-2.0 dataset. The orange segment in the bar
chart denotes the performance improvement achieved
by incorporating VCDA.

the substitute options based on the semantics of the
question and options, as the new options, which
originate from other samples, often have a lower
semantic relevance to the question. Nonetheless,
DCVC still demonstrates an improvement of 11.35
points. We leave the construction of an unbiased
and more challenging dataset for evaluating LMMs’
social intelligence understanding to future work.

5.2 Ablation Study

An ablation study of Video-LLaVA on the Social-
IQ-2.0 and DeSIQ-2.0 dataset is conducted to val-
idate the effectiveness of each component. The
results are shown in Table 2. The tested modules
include: (1) VCDA: the virtual counterfactual data
augmentation introduced in our work, (2) MSE
Loss: employed to mitigate the bias of primitive
representation of question and options, and (3) Cal-
ibration Network: our proposed output Distribu-
tion Calibration network. As can be seen in the
table, with the removal of each component, there
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Module Social-IQ-2.0 DeSIQ-2.0

Video-LLaVA + DCVC 78.32 97.04
- VCDA 77.09 95.64
- MSE Loss 76.33 96.02
- Calibration Network 61.06 85.69

Table 2: Ablation study (Accuracy) on the Social-IQ-2.0 and DeSIQ-2.0 dataset.

is a drop in model performance, demonstrating the
effectiveness of each component.

From another perspective, The components are
closely interconnected and build upon each other.
MSE loss alleviates the inherent biases present in
the calibration network. Virtual counterfactual data
augmentation, a critical component for mitigating
the language biases of LMMs, generates probabilis-
tic augmented data that simulates perturbations in
the context. As it is exceedingly difficult to perform
actual data augmentation directly on video-related
context, our virtual data augmentation approach
provides an efficient way to further optimize the
calibration network, resulting in better calibration
performance.

We also evaluate the performance of DCVC un-
der varying proportions of training data (30%, 60%,
90%, 100%) on the Social-IQ-2.0 dataset. As
depicted in Figure 5, the performance of Video-
LLaVA with DCVC improved further with increas-
ing training data. Notably, virtual counterfactual
data augmentation is more effective with less train-
ing data. When only 30% of the training data
was utilized, the VCDA module achieved a perfor-
mance enhancement of 2.48 points. Thus, DCVC
is especially beneficial in the low-resource setting.

5.3 Noise Selection Study
We further investigated the impact of different
types of noise on the performance of our frame-
work. The tested noise was sampled from three
distinct distributions, namely: (1) Gumbel, (2) Lo-
gistic, and (3) Gaussian. As depicted in Table 3, all
three noises yield comparable performance, with
Gumbel noise demonstrating slightly better per-
formance, which could be attributed to its better
suitability for sampling from discrete distributions.

5.4 Generalizability Analysis
To evaluate the generalizability of the output distri-
bution calibration network, we further assess its per-
formance on NExT-QA. Figure 6 shows that the cal-

Types of Noise Social-IQ-2.0 DeSIQ-2.0

Gumbel 78.32 97.04
Logistic 76.73 96.48
Gaussian 77.86 96.70

Table 3: The effect of different types of noise on the
Social-IQ-2.0 dataset and DeSIQ-2.0 dataset.

Figure 6: Generalizability analysis of the calibration
network on the NExT-QA dataset. The evaluation metric
is accuracy.

ibration network consistently yields performance
improvements over the original LMMs. While
fine-tuned CREMA already achieves a respectable
71.6% accuracy, the calibration network still results
in a 1-point increase. The performance gain is even
more pronounced in the zero-shot setting, where
the original model performance is lower. Com-
pared to Social-IQ-2.0, the improvements offered
by the calibration network are relatively limited on
NExT-QA. This experimental result can be partly
attributed to the fact that NExT-QA encompasses
a more diverse range of question types, making
it more challenging for the calibration network to
perform uniform calibration.

6 Conclusion

In this paper, we employ a structural causal
model to interpret and quantify the language bi-
ases of LMMs in the social intelligence question-
answering problems. To mitigate the biases while
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preserving beneficial priors, we propose an out-
put distribution calibration network with virtual
counterfactual data augmentation. Experiments on
multiple datasets have demonstrated the effective-
ness and generalizability of the proposed method.
In future work, we will further explore the intrinsic
reasons for language bias in LMMs.

7 Limitations

We have only validated the effectiveness of the pro-
posed method on multiple LMMs with 7b parame-
ter scales. Experiments on LMMs of 13b and 33b
are expected to be conducted in the future work.
In addition, we have analyzed the causal effects
of language biases in LMMs through a structural
causal model. However, the internal reasons for
the existence of biases and other biases in LMMs
remain to be explored.
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Appendix

A Dataset details

Number Train Val Total

Videos 877 134 1,011
Questions 5,558 881 6,439

Table 4: Statistics of the Social-IQ-2.0 and DeSIQ-2.0
datasets. For each question, there are four options and
only one correct answer.

Number Train Val Test Total

Videos 3,870 570 1,000 5,440
Questions 3,4132 4,996 8,564 47,692

Table 5: Statistics of the NExT-QA dataset. For each
question, there are five options and only one correct
answer.

B Extra examples of language priors in
LMMs on the Social-IQ-2.0 dataset

Figure 7: Extra two examples in the Social-IQ-2.0
dataset. The input includes videos along with cor-
responding audio and subtitles. G.T. stands for the
Ground-Truth answer. LMMs tend to select the in-
correct answer (option B in red) based on their social
commonsense knowledge obtained during pre-training.
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