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Abstract

Consistency learning (CL) has proven to be a
valuable technique for improving the robust-
ness of models in conditional sentence gener-
ation (CSG) tasks by ensuring stable predic-
tions across various input data forms. How-
ever, models augmented with CL often face
challenges in optimizing consistency features,
which can detract from their efficiency and ef-
fectiveness. To address these challenges, we
introduce Curriculum Consistency Learning
(CCL), a novel strategy that guides models to
learn consistency in alignment with their cur-
rent capacity to differentiate between features.
CCL is designed around the inherent aspects
of CL-related losses, promoting task indepen-
dence and simplifying implementation. Imple-
mented across four representative CSG tasks,
including instruction tuning (IT) for large lan-
guage models and machine translation (MT) in
three modalities (text, speech, and vision), CCL
demonstrates marked improvements. Specifi-
cally, it delivers +2.0 average accuracy point
improvement compared with vanilla IT and an
average increase of +0.7 in COMET scores
over traditional CL methods in MT tasks. Our
comprehensive analysis further indicates that
models utilizing CCL are particularly adept at
managing complex instances, showcasing the
effectiveness and efficiency of CCL in improv-
ing CSG models. Code and scripts are avail-
able at https://github.com/xinxinxing/
Curriculum-Consistency-Learning.

1 Introduction

Consistency learning (CL) as a robust and widely
utilized methodology for enhancing the perfor-
mance of various conditional sentence generation
(CSG) models, (Liu et al., 2023; Li et al., 2023b;
Xie et al., 2022; Fang and Feng, 2023; Yin et al.,
2023; Li et al., 2022b; Kambhatla et al., 2022; Li
et al., 2022a). The primary goal of CL is to en-
sure uniformity in a model’s predictions across
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identical or similar instances, even when faced
with minor variations in data or model configura-
tions. However, the integration of CL into models
has faced challenges related to suboptimal conver-
gence efficiency (Liang et al., 2021). The core issue
arises from the increased computational demands
required to optimize the CL loss, effectively dou-
bling the convergence time for the models. Further-
more, with the ongoing growth in the complexity
and size of models, the efficiency problem becomes
increasingly significant (Hu et al., 2022).

This work is motivated by the need to enhance
the learning efficiency of CSG models using CL.
Our observations show that existing CL approaches
use a uniform strategy to learn consistency features,
which is suboptimal for CSG models. Early in train-
ing, models should prioritize developing strong
feature representations over consistency learning.
Once proficient in feature discrimination, models
can then focus on consistency modeling. This
phased approach aligns with curriculum learning
principles (Bengio et al., 2009), which tailor the
learning process to the model’s evolving capabil-
ities. However, integrating curriculum learning
with CL methods is challenging. Curriculum learn-
ing depends on task-specific difficulty metrics and
training schedules (Platanios et al., 2019; Soviany
et al., 2020; Wang et al., 2021; Soviany et al.,
2022), contrasting with the broad applicability of
CL, adding complexity to this integration.

In this paper, we introduce a novel approach,
Curriculum Consistency Learning (CCL), designed
to overcome the existing limitations and broaden
the applicability of CL in CSG models. CCL inte-
grates a difficulty measure and a proficiency estima-
tor directly derived from the CL losses observed in
both the training and validation phases. This inno-
vation eliminates the dependency on task-specific
metrics, streamlining the implementation process.
CCL strategically guides the model to engage in
CL with instances that match its current proficiency
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level, ensuring more effective and efficient opti-
mization of CL-enhanced CSG models, leading to
improved performance.

Experimental evaluation in four CSG tasks, in-
cluding instruction tuning (IT) tasks (Rao et al.,
2024; Fan et al., 2024) for large language mod-
els (LLMs) and machine translation (MT) tasks in
three distinct modalities (text, vision, and speech)
establishes the superior performance of CCL over
existing advanced baselines and conventional CL
approaches. Specifically, it delivers +2.0 average
accuracy point improvement compared with vanilla
IT and an average increase of +0.7 in COMET
scores over traditional CL methods in MT tasks.
This advancement is supported by detailed analy-
ses, which corroborate the effectiveness of CCL in
improving the model’s ability to handle complex in-
stances, thus confirming the benefits of our method
in enhancing the efficiency and efficacy of models
in diverse CSG tasks.

Our contributions are summarized as follows:

• We introduce CCL, an innovative framework
for the training of CSG models, which strate-
gically enhances model consistency learning
across differentiated training phases.

• We propose a novel automatic metric for the
difficulty of instances and the capability of
models within the context of the CL paradigm.

• We demonstrate that the notable performance
improvements by CCL can be largely at-
tributed to its superior handling of challenging
samples, such as translating hard sentences.

2 Background and Existing Challenges

2.1 Consistency Learning

CL is a technique that seeks to establish uniformity
between the predictions of the model from different
views on the same sample. The fundamental con-
cept revolves around creating cross-view supervi-
sion and enhancing cross-view consistency through
the implementation of a CL loss, thereby augment-
ing supervision signals. In this paper, we primarily
reference the exemplary CL method R-Drop (Liang
et al., 2021) to elucidate the background. The over-
all loss function of a CL-enhanced model can be
expressed as follows:

L = argmin
N∑

n=1




I∑

i=1

− logP (yn|xni , θi)
︸ ︷︷ ︸

Negative Log−likelihood Loss:LNLL

+αDivergence({P (yn|xni , θi)}Ii=1)︸ ︷︷ ︸
Consistency Learning Loss:LCL




(1)

where I means the number of different views
of the sample and D = {⟨xn, yn⟩}Nn=1 denotes the
training set. xn1 and xni respectively represent the
default or variations version of xn, θi means model
parameters.

Training Set D In the context of models, D =
{⟨xn, yn⟩}Nn=1 may represent the training set for
diverse tasks. For example, both x and y can repre-
sent a sentence in IT or textual translation tasks.

Negative Log-likelihood Loss LNLL The Nega-
tive Log-likelihood (NLL) loss constitutes the ag-
gregation of losses stemming from varied predic-
tions across multiple views. These views (aka con-
sistency sources) can be engendered through either
x or θ. For instance, xi may be a semantically
equivalent version (Kambhatla et al., 2022) of x;
alternatively, θi might represent the same model
but with varying structures resulting from random
dropout masks (Liang et al., 2021).

Consistency Learning Loss LCL The CL loss
constitutes the crux of CL. Different divergence
functions, such as Jensen–Shannon (JS) (Lin, 1991)
and Kullback–Leibler (KL) divergences (Kullback
and Leibler, 1951), can be employed based on spe-
cific context. For instance, consider the bidirec-
tional KL divergence used in R-Drop:

Ln
CL = αDivergence({P (yn|xn, θi)}2i=1)

= α(KL(P (yn|xn, θ1)||P (yn|xn, θ2)) +
KL(P (yn|xn, θ2)||P (yn|xn, θ1))) (2)

In this equation, α is a coefficient that balances the
learning of the two losses of NLL Loss and CL
Loss. While xn remains constant in the two predic-
tions, θ varies due to the disparate forward propaga-
tions induced by random dropout masks, yielding
the different consistency sources P (yn|xn, θ1) and
P (yn|xn, θ2).
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Figure 1: The overall framework of CCL. In the CL-aware Difficulty Measurer, CCL utilizes the intrinsic consistency
loss to evaluate the sample difficulty. In the Model Proficiency Estimator, the training and validation sets are used to
jointly determine model proficiency. Based on the sample difficulty and model proficiency, CCL can calculate the
sample weight for the model training.

Challenge The preceding discussion demon-
strates the versatility of CL concerning tasks, con-
sistency sources, and loss types. By minimizing the
final loss function L, CL can force the output distri-
butions of different models or data to align, thereby
effectively enhancing the model’s generalization
capabilities. However, the process of constraining
the consistency distribution of the model, coupled
with the inherent challenges of multi-objective opti-
mization, often requires CL to invest more training
time in achieving model convergence.

2.2 Curriculum Learning

To mitigate the above limitations, this paper primar-
ily draws inspiration from the field of curriculum
learning (Bengio et al., 2009). Curriculum learning
commences by training on simpler tasks or more
straightforward examples, gradually exposing the
network to more complex tasks or challenging ex-
amples. This process significantly simplifies the
learning problem by directing the learning algo-
rithm towards better local minima within the opti-
mization landscape. Consequently, this progressive
approach can enable models to learn more effec-

tively and potentially at a faster pace.

Challenge Despite its potential benefits, the ap-
plication of curriculum learning presents several
challenges. It demands the establishment of distinct
difficulty metrics for tasks across various modal-
ities to determine which instances are simple or
hard. For instance, sentence length (Platanios et al.,
2019) and word rarity (Kocmi and Bojar, 2017)
are metrics used to gauge the difficulty of textual
instances, which are not suitable for visual features.
Moreover, it requires the determination of the ap-
propriate time for the models to engage with easy
or difficult instances (Platanios et al., 2019). This
complexity poses significant obstacles to the inte-
gration of curriculum learning with CL.

3 Our Proposed Method

We propose that CL should not be the primary focus
until the model has developed sufficient meaningful
features and representations. Applying consistency
constraints too early can lead to learning incorrect
features and slow optimization. To address this, we
introduce CCL, which adapts consistency learning
to different training stages. As shown in Figure
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1, we first measure instance difficulty using the
consistency loss of the training set, eliminating
the need to model different modalities separately.
Next, we calculate the average CL loss for both the
training and validation sets to gauge the model’s
capacity. Finally, we calculate the instance weights
and update model parameters, ensuring the model
focuses on tasks aligned with its strengths.

3.1 CL-aware Difficulty Measurer
As previously elaborated, when a model with lim-
ited capacity encounters complex instances, it strug-
gles to capture intricate features and patterns within
the data. This difficulty manifests as a significant
increase in the value of the CL loss, rendering the
learning process ineffective. To address this chal-
lenge, we introduce the use of CL loss as a measure
of instance difficulty in this paper. This metric is
both straightforward to acquire and cost-effective
during the model training process. Importantly, it
is determined intrinsically by the model, obviating
the need for human intervention.

Formulation We first collected the CL loss Ln
CL

of all training instances for difficulty assessment:

Sn ∈ [0, 1) =
Ln
CL −min{Ln

CL}Nn=1

max{Ln
CL}Nn=1

(3)

Where Sn represents the instance difficulty. The
interpretation of this measure is straightforward:
the larger the value of the CL loss, the more chal-
lenging the instance is for the model to learn con-
sistency at that particular juncture.

3.2 Model Proficiency Estimator
To evaluate a model’s ability to learn and model
consistency, we propose a novel estimation method
centered around the CL loss within the valida-
tion set and training set. We calculate the av-
erage CL losses on the training set (LTrain

CL =
average({Ln

CL}Nn=1) and validation set (LValid
CL =

average({Lm
CL}Mm=1) at each epoch. During the

model training, we found that the CL loss in the
training set remains stable, whereas the CL loss
in the validation set increases as the training pro-
gresses. One possible reason is that the CL loss is
typically much smaller than the model loss through-
out the training process in standard CL methods.
This discrepancy might arise because the primary
optimization target is the model loss, while CL loss
plays a supplementary role in aiding this optimiza-
tion. As a result, the CL loss on the training set

remains relatively stable. However, as the model
becomes more adept at capturing consistency due
to the constraints of the CL loss, there’s a notice-
able increase in the CL loss on the validation set.
So, this growing disparity, resulting from the con-
straints of consistency, can serve as an effective
measure of model proficiency C in CL.

Formulation We quantify the capability of the
model by employing LTrain

CL and LValid
CL as follows:

C = min

(
1,

(
LValid
CL − LTrain

CL

)

Tmax

)
(4)

where Tmax means the value of LValid
CL - LTrain

CL at
80% of the total training steps of vanilla CL. We
follow Liu et al. (2020); Platanios et al. (2019) to
stop our curriculum learning time at later of the
training process to enable the model to perform
unbiased learning in the later stages of training.
A distinct advantage of our approach is its abil-
ity to encapsulate the model proficiency from a
consistency perspective, and it is entirely data and
model-driven, eliminating the necessity for human
intervention.

3.3 Instance Weight Calculation
The proposed method facilitates the model in learn-
ing instances that align more precisely with its
current ability. This is achieved by adjusting the
weight of each instance wn, increasing it when
the difficulty of an instance matches the model’s
current proficiency, and decreasing it when the in-
stance is either excessively challenging or too sim-
ple for the model. By varying the weights of differ-
ent instances within the loss function, the model’s
focus and significance assigned to these instances
can be accordingly manipulated, as detailed below:

wn = exp(1− |C − Sn|)− 1 (5)

where the Sn represents the instance difficulty
score and C is the model proficiency. When the
difficulty of an instance closely matches the model
proficiency, the model assigns it greater attention
(wn > 1). Conversely, if the instance is too diffi-
cult or too easy for the model, it will be assigned
less attention (wn < 1).

3.4 Model Update
Based on the analysis of model proficiency, we
choose to apply the curriculum learning part wn on
the original loss function, rather than only the CL
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ID System External MMLU BBH GSM TydiQA CodeX AE Overall

Data Model AVG ∆ (↑)

Base Model: LLaMA-2-7B Implemented Existing Method
1 Alpaca-GPT4 46.2 39.2 15.0 43.3 27.8 33.7 34.3 -
2 1 + AlpaGasus % ! 46.8 39.2 14.5 48.4 26.5 34.6 35.0 +0.8
3 1 + Q2Q % ! 46.7 39.8 16.5 45.5 28.1 35.1 35.3 +1.1
4 1 + Instruction Mining ! ! 47.0 40.0 16.5 47.8 29.6 34.4 35.9 +1.7
5 1 + Data CL % % 47.3 39.0 14.5 43.7 29.5 35.1 29.5 +0.6

Our Method
6 5 + CCL % % 47.6 40.8 15.5 48.4 30.7 35.6 36.4 +2.1

Base Model: LLaMA-2-13B Implemented Existing Method
7 Alpaca-GPT4 55.7 47.3 31.0 49.1 41.8 46.5 45.2 -
8 7 + AlpaGasus % ! 54.1 49.3 32.0 52.6 39.3 47.5 45.8 +0.6
9 7 + Q2Q % ! 55.3 48.5 34.0 50.8 42.3 47.7 46.4 +1.2
10 7 + Instruction Mining ! ! 55.5 49.7 33.0 51.2 41.5 46.1 46.2 +1.0
11 7 + Data CL % % 55.2 47.2 33.0 51.2 40.8 46.2 45.6 +0.4

Our Method
12 11 + CCL % % 55.6 49.3 34.0 53.6 42.7 47.6 47.1 +1.9

Table 1: The overall results on Instruction Tuning of LLMs. Codex and AE mean HumanEval and AlpacaEval
benchmark respectively. CCL significantly enhances the IT performance of LLMs.

loss, which is much smaller and hard to produce a
significant impact and change to the total loss (Liu
et al., 2020; Platanios et al., 2019). By integrating
wn with the original loss function, the final loss
function of CCL can be represented as follows:

L∗ = argmin

N∑

n=1

wn(Ln
NLL + αLn

CL) (6)

Model Generality It is important to note that
both the instance difficulty and model proficiency
estimation are derived from existing computational
outcomes, necessitating minimal additional compu-
tations. Consequently, our proposed CCL method-
ology is not only straightforward to implement,
but it also demonstrates a high level of generality,
making it suitable for a variety of CSG scenarios.

4 Evaluation

To establish the universality of our approach, we
evaluate it using both unimodal and multimodal
tasks. We focus on the following four CSG tasks:

Instruction Tuning (IT) uses instruction data
pairs to perform supervised fine-tuning on LLMs,
which can effectively align LLMs with human
preferences. We use the popular Alpaca-GPT4
dataset (Peng et al., 2023) and the LLaMA-2 model
family (Touvron et al., 2023) as our training sets
and foundation model respectively.

Textual Machine Translation (TMT) involves
translating a sentence from one language to an-
other while retaining semantic equivalence. We em-

ploy the vanilla Transformer model (Vaswani et al.,
2017) and machine translation LLM ALMA-7B
(Xu et al., 2024) as our baseline and test their per-
formance on two prominent benchmarks IWSLT14
German-English benchmarks and WMT22 English-
Chinese benchmarks respectively.

Multimodal Machine Translation (MMT) is
a task aimed at using a fusion of text and image
data to enhance the quality and expressive capacity
of translation. We run experiments on the widely-
used Multi30K English-German benchmark (El-
liott et al., 2016), using VL-T5 (Cho et al., 2021)
as our baseline due to its superior performance.

Speech-to-Text Translation (ST) translates
source acoustic speech signals in a source lan-
guage into a foreign text without any intermedi-
ate output. We use the commonly-used MUST-C
dataset (Di Gangi et al., 2019) and focus on the
English-German translation task. The SpeechUT
model (Zhang et al., 2022), known for its strong
performance, is chosen as our baseline.

4.1 Evaluation Metric

For the IT tasks, we comprehensively evaluate the
LLMs on the open-instruct code repository (Wang
et al., 2023), including MMLU (Hendrycks et al.,
2021), GSM (Cobbe et al., 2021), BBH (Suz-
gun et al., 2022), TyDiQA (Clark et al., 2020),
HumanEval (Chen et al., 2021b), and AlpacaE-
val (Dubois et al., 2023). For the MT tasks (TMT,
MMT, and ST), we report both the widely used
BLEU score (Post, 2018; Ott et al., 2018), which
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ID Method
TMT MMT ST

IWSLT14 WMT22 (ALMA) Test16 Test17 MUST-C
BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Existing Leading Method
13 R-Drop 37.3 - - - - - - - - -
14 ALMA - - 36.5 85.1 - - - - - -
15 VL-T5 - - - - 45.3 - 42.4 - - -
16 SpeechUT - - - - - - - - 30.1 -

Implemented Method
17 Baseline 34.6 74.1 36.3 84.8 44.9 72.0 42.0 72.6 29.9 79.5
18 17 + Data CL 37.5 76.7 36.0 84.3 45.7 72.7 42.4 72.8 30.2 79.7
19 17 + Model CL 37.3 76.5 - - 45.6 72.4 42.2 72.5 30.2 79.8

Our Method
20 18 + CCL 38.0‡ 77.2† 37.0‡ 85.2† 46.1† 73.3‡ 42.9† 73.5† 30.6† 80.3‡

21 19 + CCL 37.8‡ 77.1† - - 45.9† 72.9‡ 42.7† 73.4‡ 30.6‡ 80.4‡

Table 2: The overall results on three MT tasks. “Baseline” are our re-implemented baseline, namely Trans-
former (Vaswani et al., 2017), ALMA (Xu et al., 2024), VL-T5 (Cho et al., 2021) and SpeechUT (Zhang et al.,
2022). “†” and “‡” the improvement is significant by contrast to the corresponding CL model (p < 0.05 and p <
0.01).ALMA does not incorporate dropout mechanisms, leading to the lack of Model CL experimental results.

measures lexical overlap, as well as the recently in-
troduced COMET score (Rei et al., 2022) based on
the wmt22-comet-da model, which shows higher
correlation with human judgments.

4.2 Consistency Learning Methods
Data Consistency Learning (Data CL) Data CL
mainly forms different consistency sources at the
data level. In the case of IT and TMT of WMT22
(ALMA), we induce perturbations by randomly
substituting tokens in the input, thereby introducing
elements of inconsistency. For TMT of IWSLT14
and MMT, we employ CipherDAug (Kambhatla
et al., 2022) to perform character-level shifting
on the source sentence. For ST, we randomly
masked some speech frames with a certain proba-
bility (Chen et al., 2021a).

Model Consistency Learning (Model CL) The
consistency sources in Model CL methods predomi-
nantly originate from variations in model structures
or parameters. Across all the MT tasks, we utilize
the widely adopted R-Drop method (Liang et al.,
2021), which generates model variants through the
application of random dropout masks. It is noted
that ALMA and IT do not yet see advantages from
Model CL, as the training and fine-tuning processes
for LLMs do not incorporate dropout mechanisms.

Please refer to Appendix A.2, A.3 for more de-
tails of the datasets, method training, and inference.

4.3 Main Result
Performance Boost on IT As presented in Ta-
ble 1, CCL significantly enhances the IT perfor-
mance of LLMs. Unlike Q2Q (Li et al., 2023a),

Instruction Mining (Cao et al., 2023), and Alpa-
Gasus (Chen et al., 2023), which depend on exter-
nal data or models for curating high-quality data,
CCL autonomously identifies appropriate samples
for learning, leveraging the model’s self abilities.
While CL methods yield modest enhancements in
LLM abilities (∼ 0.5 points), our CCL method
refines the learning strategy of CL, resulting in a
substantial performance boost (∼ 2.0 points).

Performance Boost on MT As depicted in Table
2, CCL yields considerable improvements across
both unimodal and multimodal MT tasks. In TMT,
the incorporation of CCL leads to advancements in
both metrics. It also effectively applies to models of
differing sizes, from the smaller scale Transformer
to the larger language model ALMA. For MMT,
CCL sets better results on the Multi30K dataset
compared with the leading VL-T5 method. In ST,
CCL surpasses the powerful model (Zhang et al.,
2022) by achieving 0.9 COMET improvements.
Most notably, CCL usually achieves marked im-
provements in the reliable metric COMET, indicat-
ing that it addresses more semantically complex
difficulties, which tend to pose greater challenges.

5 Analysis

In this section, we aim to answer the following
research questions: 1) Can CCL improve the ef-
ficiency and universality of CL? 2) Is CL loss a
better difficulty measurer for CCL? 3) How does
CCL enhance CSG model efficacy? We mainly
evaluate four specific tasks, including TydiQA for
IT on LLaMa-2-7B, IWSLT for TMT, Multi30K
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Figure 2: Evolution of validation scores across various training steps or epochs.

Foundation Model Method MMLU BBH GSM Tydiqa CodeX AE Overall

AVG ∆ (↑)

LLaMA-2-7B Vanilla IT 46.2 39.2 15.0 43.3 27.8 33.7 34.3 -
CCL 47.6 40.8 15.5 48.4 30.7 35.6 36.4 +2.1

LLaMA-2-13B Vanilla IT 55.7 47.3 31.0 49.1 41.8 46.5 45.2 -
CCL 55.6 49.3 34.0 53.6 42.7 47.6 47.1 +1.9

Mistral-7B Vanilla IT 52.5 51.7 33.5 51.1 54.7 43.1 47.8 -
CCL 55.1 53.4 34.5 53.6 53.3 44.4 49.1 +1.3

LLaMA-3-8B Vanilla IT 59.6 52.3 34.5 43.1 60.2 48.2 49.7 -
CCL 59.6 52.4 39.0 42.0 63.1 49.7 51.0 +1.3

Table 3: Results of IT with various foundation models. Codex and AE mean HumanEval and AlpacaEval benchmark
respectively.

Method
IT TMT MMT ST

F1 / Steps BLEU / Steps BLEU / Steps BLEU / Steps

Baseline 43.3/1.2K 34.6 / 100K 44.9 / 20K 29.9 / 50K
CL 43.7/1.4K 37.3 / 300K 45.6 / 30K 30.2 / 70K

w/ CCL 48.2/0.6K 37.8 / 140K 45.9 / 22K 30.6 / 55K

Table 4: Overall speedup results.“Steps” means the step
of each model reaching the performance of CL.

for MMT, and MUST-C for ST. Additionally, we
employ Model CL for MT and Data CL for IT, ac-
knowledging the absence of Model CL in IT. For
performance metrics, we apply BLEU scores to as-
sess translation quality and F1 scores for IT, except
where noted otherwise.

5.1 CCL: An Effective and Universal Method

Learning Curves Figure 2 indicates that CCL
exhibits a more pronounced ascent due to the in-
tegration of curriculum learning, which facilitates
the model’s ability to grasp simpler instances dur-
ing the initial training stages. As the training pro-
gresses, CCL surpasses the CL, attributable to the
model’s enhanced ability to concentrate on more
challenging instances. These observations demon-
strate that CCL not only augments model perfor-
mance but also optimizes training efficiency.

Expedited Convergence CCL demonstrates a
superior convergence rate in comparison to consis-
tency learning methods. Table 4 shows that CCL
enables models to produce equivalent or superior

results with fewer updates across IT and MT tasks.
CCL facilitates a speed-up factor of approximately
1.79 times, thereby underlining its beneficial im-
pact on the process of model optimization. Addi-
tionally, we give a thorough time comparison for
each step and total time in model training on CCL
and traditional CL in Appendix A.4.

Various Foundation Models This part primar-
ily discusses the extensive applicability of CCL on
foundational LLMs of different sizes and capabili-
ties. Specifically, we apply CCL to the Mistral-7B
and LLaMA-3-8B LLMs and present our results
on the open-instruct benchmark aligned with the
aforementioned test configuration. As shown in
Table 3, CCL consistently enhances the overall per-
formance of different LLMs. This is particularly
evident in the GSM and AlpacaEval benchmarks,
as CCL is capable of effectively modulating the
focus during various stages of the training process,
without relying on additional resources.

5.2 CL Loss: A Universal Difficulty Measurer
Predefined Difficulty Measurer Conventional
curriculum learning approaches often employ task-
specific difficulty measures, but CCL allows for a
task-independent evaluation of instance difficulty
directly from the model. Based on the above anal-
ysis of Section 3.1 and the tasks statement of Sec-
tion 4, we contrast three commonly used difficulty
measures, namely sentence length for text input of
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Figure 3: Model performance by difficulty bucket measures by the proposed CL-aware difficulty measurer. CCL
mainly improves the performance of challenging instances. The benchmarks for IT, TMT, MMT, and ST are
TydiQA, IWSLT, Multi30K, and MUST-C respectively. For performance metrics, we apply BLEU scores to assess
translation quality and F1 scores for IT.

Method IT TMT MMT ST

Baseline 43.3 34.6 44.9 29.9
CL 43.7 37.3 45.6 30.2

CCL 48.4 37.8 45.9 30.6
w/ Sentence Length 46.2 37.5 45.7 30.3
w/ Number of Object - - 45.7 -
w/ Frames of Speech - - - 30.3
w/ NLL Loss 45.5 37.6 45.8 30.4

Table 5: Ablation study of CCL. The inapplicable diffi-
culty measure to a task is marked with “-”.

IT, TMT, MMT, and ST, the number of targets for
image input of MMT, and the number of frames
for speech signals of ST. As shown in Table 5, dif-
ferent difficulty measures can improve the model
performance consistently which can be attributed to
the rationality and effectiveness of the overall CCL
framework. However, CCL demonstrates superior
performance compared to existing difficulty mea-
sures across diverse CSG tasks in different modali-
ties. This is because the difficulty measurer of CCL
is based on model self-feedback, which is more
flexible and reasonable than human-predefined con-
scious evaluation, such as sample length.

Automatic Difficulty Measurer One intuitive,
task-independent means of estimating instance dif-
ficulty is by employing the NLL loss. However,
through our preliminary study on model profi-
ciency estimation, we discovered that as model
proficiency increases, NLL loss correspondingly
decreases throughout the training process. This in-
verse relationship generates significant ambiguity
and instability when differentiating instance diffi-
culty. In contrast, CCL remains stable throughout
the training process, thereby enabling consistent
differentiation of instance difficulty. As substan-
tiated by Table 5, CLL consistently outperforms
the NLL loss method across all tasks. It is note-
worthy that all aforementioned predefined and au-

Figure 4: Model performance across samples of varying
difficulties on TMT. Notably, improvements in both easy
and medium samples occur primarily at the develop and
later stages. The advancements of difficult samples are
predominantly observed in the final stage.

tomatic measures still utilize our proposed model
proficiency estimator and model update strategy.

5.3 CCL Excels in Tackling Challenges
Performance by Difficulty Bucket We further
analyze the performance improvement from CCL
by dissecting results based on test instance diffi-
culty, as shown in Figure 3. We use TydiQA and
CodeX as a mixed test set for IT due to their suit-
ability for calculating consistency loss. For transla-
tion tasks, we divide the test set into three difficulty
levels using the CL loss and calculate the evaluation
score. Results show that CCL and CL perform sim-
ilarly in simpler instances, but CCL often outper-
forms in more challenging ones.1 This is because
CCL allows the model to navigate a better parame-
ter space for optimization, improving performance
where CL loss is high. A case study of translating
challenging sentences is in Appendix A.5.

Performance on Different Training Stages
CCL enhances the model’s handling of challenging
samples by focusing more on later training stages.

1In MT tasks, it is observed that more challenging samples
often outperform the simpler ones in terms of performance
metrics. This phenomenon can be attributed to the complexity
of difficult sentences (with larger CL loss and longer lengths)
which leads to a higher number of n-gram matches and, con-
sequently, an increase in BLEU scores (Liu et al., 2020).
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Yet, it raises the question of whether it overlooks
simpler early-acquired knowledge. To explore this,
we divided the training into four stages and evalu-
ated the model’s performance on different difficulty
tests in the IWSLT translation task. Figure 4 shows
consistent improvement on easier samples through-
out training, this is because complex samples con-
tain simpler elements. Thus, dealing with complex
samples doesn’t hinder the model’s efficiency with
easier ones. This highlights CCL’s ability to wisely
distribute learning resources based on sample diffi-
culty, optimizing overall performance.

6 Related Works

6.1 Consistency Learning

Consistency learning, a method aimed at harmo-
nizing model predictions from various sample per-
spectives, has been incorporated in several research
works. R-drop (Liang et al., 2021) enhances the
model performance across 18 datasets by address-
ing the layer-wise inconsistency brought about by
random dropout. CipherDAug (Kambhatla et al.,
2022) employs multi-source training with multi-
ple ROT-k ciphertexts generated from different
k values for the plaintext as well as the original
parallel data to improve neural machine transla-
tion. With the continuous development of NLP,
researchers have begun to apply this technology to
LLMs. ACE (Fang et al., 2024) deploys a bidirec-
tional consistency loss to train the decoding process
for a multimodal large language model, mitigating
overfitting issues. NPoE (Graf et al., 2024) and
G2ST (Chen et al., 2024) adopt Kullback-Leibler
divergence to respectively constrain the dual predic-
tions of the main MOE model for a data poisoning
backdoor attacks task, and to minimize inconsis-
tency between training and inference in enhancing
the performance of models within the e-commerce
sector. Lastly, Consistency Matters (Zhao et al.,
2024) improves LLMs consistency by generating
varied responses through multiple LLMs in indus-
trial deployments. Although consistency learning
can potentially augment model capability, achiev-
ing model convergence often demands extensive
training time due to the need to regulate model con-
sistency distribution and inherent multi-objective
optimization challenges (Liang et al., 2021).

6.2 Curriculum Learning

Curriculum learning (Bengio et al., 2009) intro-
duces a human-like learning process for models,

progressively transitioning from simpler to com-
plex samples, contingent on the model’s ability to
learn. The challenge lies in defining the sample
complexity and model capability. While sentence
length (Platanios et al., 2019) has been utilized for
the former, it is limited to text-related instances.
Other research has used the norm value of the train-
ing corpus to characterize sample complexity and
model capability (Liu et al., 2020). Techniques
incorporating domain knowledge, LLMs’ genera-
tive abilities, and an integrated curriculum sched-
uler have been effective in training a genetic pro-
gramming agent player (Jorgensen et al., 2024).
Stronger LLM teachers creating a structured cur-
riculum for student LLMs have demonstrated no-
table improvements in language generation quality,
evaluated by GPT-4 (Feng et al., 2023). The in-
structional tuning phase in ICCL (Liu et al., 2024)
progressively adjusts prompt complexity, leading
to better LLM’s performances. Strategies such as
dataset decomposition (to the union of buckets)
and variable batch size utilization in conjunction
with a curriculum have proven to be time-efficient
in LLM training (Pouransari et al., 2024). (Erak
et al., 2024) show the automation of curriculum
design leveraging LLMs’ generative capabilities,
successfully improving the agent’s performance
and convergence rate while reducing manual effort.
Despite advances, limitations like high manual in-
tervention and the need for sturdy guiding models
affect the scalability of these methods. How to op-
timally use CL in LLMs instructional tuning for
dynamic sample recognition is still an unresolved
issue. In this paper, we propose an innovative com-
plementary approach that leverages the strengths of
both consistency learning and curriculum learning
to enhance the capabilities of CSG.

7 Conclusion

This paper introduces curriculum consistency learn-
ing (CCL), a novel approach designed to refine
the optimization process of conditional sentence
generation models with consistency learning. Our
method proposes a novel mechanism for measur-
ing difficulty and estimating model proficiency,
grounded in the analysis of consistency learning
loss observed during model training, which is user-
friendly and operates autonomously. Extensive
experiments confirm the effectiveness of CCL in
improving model performance and tackling chal-
lenges from complex instances.
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Limitations

While the proposed curriculum consistency learn-
ing (CCL) method can significantly optimize tra-
ditional CL methods, it has the following limita-
tions: (1) Compared with traditional CL, CCL ne-
cessitates the inclusion of extra parameters (de-
noted as λ) to govern the curriculum’s duration. (2)
CCL’s effectiveness relies on the joint evaluation of
the training and validation sets, posing challenges
for tasks without a dedicated validation set. (3)
Presently, CCL is primarily applied to supervised
learning tasks. Future efforts will aim to adapt CCL
for unsupervised learning scenarios.

Ethics Statement

Our work follows the ACL Ethics Policy. Our find-
ings are based on publicly available datasets for re-
producibility purposes. LLMs can contain potential
racial and gender bias. Therefore, if someone finds
our work interesting and would like to use it in a
specific environment, we strongly suggest the user
check the potential bias before usage. In addition,
it is hard to control the generation of LLMs. We
should be aware of the potential problems caused
by hallucinations.
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Figure 5: CL loss, derived automatically from the model, aligns closely with unique feature metrics across various
domains that need to be designed by human experts. These results fully demonstrate the rationality of CL loss as a
reasonable difficulty measurer of curriculum learning.

Configuration
TMT MMT ST IT

IWSLT WMT22 Mutil30K MUST-C Alpaca Alpaca

Architecture Transformer-base ALMA-7B T5-base SpeehUT LLaMA-2-7B LLaMA-2-13B
Encoder layer 6 - 12 12 - -
Decoder layer 6 32 12 6 32 40
Model dimension 512 4096 512 768 4096 5120
Attention head 4 32 12 8 32 40
Steps 300K 4200 30K 50K 1400 1400
Max tokens / Batch size 4,096 8 30 800K 128 128
Learning rate 5e-5 2e-5 5e-5 3e-5 2e-5 2e-5
Optimizer Adam AdamW AdamW Adam AdamW AdamW
Dropout 0.3 - 0.3 0.3 - -
Temperature - 0.1 - - 0.1 0.1
Beam size 5 4 5 10 4 4
Length penalty 1.0 1.0 1.0 1.0 1.0 1.0
α 5 0.0001 0.001 0.9 0.00012 0.00015

Table 6: Hyper-parameters of different models. CCL directly inherit all the hyper-parameters from the baselines and
CL methods, without any additional tuning.

A Appendix

A.1 Task-specific Difficulty Measurer

Our proposed CL-aware difficulty metric presents
distinctive and compelling advantages. To further
illustrate these, we compared the CL loss with
other prevalent task-specific difficulty measures
across various modalities, using four distinct tasks
for detailed task descriptions). We calculate the
parse tree depth and sentence length for all the
text sentence input. Particularly, taking into ac-
count the specificity of multimodal tasks, we also
estimate the number of objects for the image data
input of MMT and the frames of speech for the
speech signals of ST. Then we randomly selected
1,000 instances from the training set and arranged
them in ascending order based on the average CL
loss throughout the entire training process. Subse-
quently, we divided them evenly into five groups,
using the group with the highest value as the diffi-
culty reference and setting the difficulty coefficient
to 1. As shown in Figure 5, we found that the CL
loss exhibits strong alignment with distinct feature

metrics of each modality, which demonstrates that
our difficulty indicator is independent of the input
modality and showcases its widespread applicabil-
ity as a difficulty measurer for curriculum learning
in CL-enhanced models.

A.2 Datasets and Settings

Instruction Tuning (IT) In CCL, LLMs are de-
veloped on the Alpaca GPT-4 (Peng et al., 2023).
Specifically, we partition the Alpaca dataset into
two distinct sets: a validation set comprising
10% of the total data, and a training set contain-
ing the remaining 90%, approximately 5.2K and
46.8K instances, respectively. We evaluate our
IT models on the popular code repository: Open-
Instruction (Wang et al., 2023), which includes an
assessment of Factual knowledge, Reasoning, Mul-
tilinguality, Coding, and other abilities. For the
MMLU component, we adapt the original MMLU
framework’s approach, presenting results based on
five few-shot examples. In the case of the BBH
and the GSM evaluations, we implement differ-
ent few-shot in-context setups: three for BBH and
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Alpaca IT Task

Original input Write a short story in third person narration about a protagonist who has to make an important career decision.
Augmented input Write a red story in third person book about a protagonist who has to write an important career decision.

Target Sophie sat at her desk, staring blankly at the computer screen. Her mind was racing as she weighed the options ...

Table 7: Different views on IT.

IWSLT14 German-English TMT Task

Original input Jeder Vorsitzende bzw. jede Vorsitzende hat ja so viele Stimmen, wie die Fraktion Mitglieder hat.
Augmented input Kfefs wpstjuafoef cax. kfef wpstjuafoef ibu kb tp wjfmf tujnnfo, xjf ejf gsblujpo njuhmjfefs ibu.

Target As you know, each chairman has the same number of votes as his Group has Members.
WMT22 English-Chinses TMT Task

Original input We still have a lot of work to do in this area as recent events have proved.
Augmented input We still not a lot of work to do in this case as recent events have proved.

Target 最近的事件表明，大家在方面仍有多工作要做。

Table 8: Different views on TMT.

eight for GSM, both employing Chain-of-Thought
(CoT) reasoning. For the TydiQA evaluation, we
follow the setup described in the PaLM 2 technical
report (Anil et al., 2023) to evaluate models’ perfor-
mance in answering multilingual questions when
there is context given. Regarding the CodeX eval-
uation, we leverage the HumanEval (Chen et al.,
2021b) dataset to gauge the coding abilities of the
models. We report pass@10 results which were
obtained by sampling with a temperature of 0.8.

Textual Machine Translation (TMT) We con-
duct experiments on IWSLT14 German→English
and WMT14 English→German machine transla-
tion tasks. The IWSLT14 dataset2 consists of ap-
proximately 170,000 sentence pairs dedicated to
training purposes. This is supplemented with addi-
tional 7,000 sentence pairs each for the validation
and testing stages of our experimental procedure.
The WMT14 dataset3 is much larger, incorporat-
ing an impressive count of 4.5 million sentence
pairs for training. The validation and test sets are
newstest2013 and nestest2014, respectively.

Multimodal Machine Translation (MMT) We
assess the performance of multimodal machine
translation on the Multi30K dataset, which consists
of training, validation, and test subsets comprising
29,000, 1,014, and 1,000 instances, respectively.
The Multi30K dataset is specifically curated for

2https://github.com/facebookresearch/fairseq/
blob/main/examples/translation/prepare-iwslt14.
sh

3https://github.com/facebookresearch/
fairseq/blob/main/examples/translation/
prepare-wmt14en2de.sh

tasks pertaining to machine translation and image
captioning. It is essentially an extension of the
Flickr30K dataset and includes image-description
pairings across five unique languages - English,
French, German, Czech, and Russian, thereby es-
tablishing its multilingual nature.

Speech-to-Text Translation (ST) The MUST-C
dataset, a renowned and broadly employed resource
in speech-to-text (ST) tasks boasts an extensive and
heterogeneous corpus. It offers a generous alloca-
tion of approximately 400 hours of speech per lan-
guage, providing a rich, comprehensive repository
of multilingual data dedicated to ST tasks. This col-
lection emphasizes direct translations from English
into eight distinct languages. Further augmenting
its utility, the dataset consists of training, valida-
tion, and test subsets comprising 220K, 1.4K, and
2.6K instances, which are specifically tailored for
English-to-German translation exercises.

A.3 Data Consistency Learning

Instruction Tuning (IT) We employ HiddenCut
(Chen et al., 2021a) technique to randomly replace
the token with 1% probability for the original input,
generating multiple views of the same sample, as
shown in Table 7.

Textual Machine Translation (TMT) For
the TMT of IWSLT14, we employ Cipher-
DAug (Kambhatla et al., 2022) to transform the
source side of the dataset, creating two different
views for each sample. As shown in Table 8, each
character on the source side shifts from one posi-
tion to the right while maintaining the target side in
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Figure 6: Different views on MMT.

Figure 7: Different views on ST.

its original form. For the TMT of ALMA, we fol-
low HiddentCut (Chen et al., 2021a) to randomly
replace the token with 1% probability for the orig-
inal input, generating multiple views of the same
sample.

Multimodal Machine Translation (MMT) We
employ the CipherDAug technique to transform
the source data of text and apply the horizontal flip
on the source data of images, generating different
views of the same sample, as shown in Figure 6.

Speech-to-Text Translation (ST) Inspired by
the idea of HiddenCut (Chen et al., 2021a), we
mask audio frames with 1% probability during the
training process, generating multiple views of the
same sample, as shown in Figure 7.

A.4 Training Speed Comparison
To highlight CCL’s efficiency, we compared the
model’s processing time across different tasks. Our
study reveals that both CCL and traditional CL
require similar durations per step because our pro-
posed CCL method only alters the loss weights of
different samples while leaving all other elements
intact. This guarantees that the time spent on each
training step for both CCL and traditional CL re-
mains relatively equal. To substantiate our results,
we have included comprehensive data regarding
training speeds and total time used for various tasks
in Tables 10 to 13. Lastly, the IT task evaluation
was conducted with 4 A800 GPUs, while we used
4 3090 GPUs for the remaining tasks.

A.5 Case Study
Table 9 presents a translation example of challeng-
ing sentences whose consistency loss is high. We
observe that CL merely translates the short por-
tions at the end of the sentences without ensuring
the correctness of the sentence tense. In contrast,
CCL successfully translates the entire sentence, en-
suring the correctness of the sentence’s semantics
and tense. This can be attributed to CCL increasing
the loss weight of difficult instances in the later
stages of training, further demonstrating that CCL
performs better in handling difficult instances.
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Source Ich habe mich sofort seinem Bruder und seinem Vater verpflichtet. Ich sagte: “Also, hier ist der Deal: Tony wird sprechen.
Wir werden ihm eine Maschine besorgen und einen Weg finden, damit er wieder seine Kunst machen kann.”

Reference I committed to his brother and his father right then and there. I said,“I am like, here’s the deal”. Tony’s going to speak.
We are going to get him a machine, and we are going to figure out a way for him to do his art again.

CL I committed myself to the place and to his brother and father, saying, “Well, my suggestion is this: Tony will talk.
We get him a device, and we find a way to do his art again.”

CCL I am committed to the place, and I am committed to his brother and his father. Well, my proposal is the following:
“Tony’s going to talk. We’re going to get him a machine, and we’re going to find a way to make his art again.”

Table 9: An example of TMT that is regarded as a difficult instance.

Method Training Speed (Seconds/Steps) Steps(K) Time(H)

Vanilla 16.5 1.2 5.5
CL 21.6 1.4 8.4
CCL 21.9 0.6 3.7

Table 10: Comparison of training speed of different
methods in Instruction Tuning (IT).

Method Training Speed (Seconds/Steps) Steps(K) Time(H)

Vanilla 0.14 100 3.8
CL 0.15 300 12.2
CCL 0.15 140 5.8

Table 11: Comparison of training speed of different
methods in Textual Machine Translation (TMT).

Method Training Speed (Seconds/Steps) Steps(K) Time(H)

Vanilla 0.85 20 4.7
CL 1.03 30 8.6
CCL 1.04 22 6.4

Table 12: Comparison of training speed of different
methods in Multimodal Machine Translation (MMT).

Method Training Speed (Seconds/Steps) Steps(K) Time(H)

Vanilla 0.74 50 10.3
CL 0.95 70 18.4
CCL 0.95 55 14.5

Table 13: Comparison of training speed of different
methods in Speech-to-Text Translation (ST).
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