A Learning Rate Path Switching Training Paradigm for
Version Updates of Large Language Models

Zhihao Wang!”
Yixuan Liao?

Shiyu Liu**
Xiaoxin Chen?

Jianheng Huang'

Zheng Wang?

Junfeng Yao' Jinsong Su'*4'

'School of Informatics, Xiamen University, China 2vivo Al Lab, China
3Institute of Artificial Intelligence, Xiamen University, China
“Shanghai Artificial Intelligence Laboratory, China

{zhwang,liushiyu213}@stu.xmu.edu.cn

Abstract

Due to the continuous emergence of new data,
version updates have become an indispens-
able requirement for Large Language Mod-
els (LLMs). The training paradigms for ver-
sion updates of LLMs include pre-training
from scratch (PTFS) and continual pre-training
(CPT). Preliminary experiments demonstrate
that PTFS achieves better pre-training perfor-
mance, while CPT has lower training cost.
Moreover, their performance and training cost
gaps widen progressively with version updates.
To investigate the underlying reasons for this
phenomenon, we analyze the effect of learn-
ing rate adjustments during the two stages of
CPT: preparing an initialization checkpoint and
continual pre-training based on this checkpoint.
We find that a large learning rate in the first
stage and a complete learning rate decay pro-
cess in the second stage are crucial for version
updates of LLMs. Hence, we propose a learn-
ing rate path switching training paradigm. Our
paradigm comprises one main path, where we
pre-train a LLM with the maximal learning rate,
and multiple branching paths, each of which
corresponds to an update of the LLM with
newly-added training data. Extensive exper-
iments demonstrate the effectiveness and gen-
eralization of our paradigm. Particularly, when
training four versions of LLMs, our paradigm
reduces the total training cost to 58% compared
to PTFS, while maintaining comparable pre-
training performance.

1 Introduction

In recent years, there has been significant progress
in the research of Large Language Models (LLMs).
By performing large-scale training on massive
datasets, LLLMs have demonstrated remarkable ca-
pabilities, contributing to various fields (Wu et al.,

Work was done when Zhihao Wang, Shiyu Liu and Jian-
heng Huang were interning at vivo Al Lab.

* Equal contribution.
¥ Corresponding author.

jssu@xmu.edu.cn

2023; Cui et al., 2024; Wang et al., 2024; Guo et al.,
2024). However, the training cost of LLMs is sig-
nificantly higher than that of traditional NLP mod-
els. Particularly, in practical applications, LLMs
have to face the need for version updates due to
the continuous emergence of new data, which ex-
acerbates the training cost of LLMs. Therefore,
reducing training cost while maintaining optimal
pre-training performance across different versions
has become one of the pivotal challenges for LLMs.

Generally, training paradigms applicable for ver-
sion updates of LLMs can be categorized into
two types: 1) Pre-Training From Scratch (PTFS):
retraining new versions of LLMs on both old
and new data. The well-known LLMs including
LLaMA (Touvron et al., 2023a,b), GLM (Zeng
et al., 2023), and Baichuan (Yang et al., 2023)
are updated via this paradigm. 2) Continual Pre-
Training (CPT): further pre-training new versions
of LLMs on only new data based on the check-
points from old versions. This paradigm is often
utilized in resource constrained scenarios, such as
limited computational resources or unavailability
of old data.

In this paper, we firstly conduct preliminary ex-
periments to compare the above two paradigms in
version updates of LLMs. Compared with PTFS,
CPT uses previous checkpoints for initialization,
resulting in lower total training cost. However,
CPT suffers from inferior pre-training performance,
which becomes increasingly serious as version up-
dates progress. To study the reasons for this phe-
nomenon, we break down the CPT process into two
stages: the first stage involves preparing an initial-
ization checkpoint, and the second stage perform-
ing continual pre-training based on this checkpoint.
Then, we conduct two groups of experiments to an-
alyze the effect of learning rate adjustments during
these two stages, leading to two conclusions: 1) the
larger the learning rate in the first stage, the better
the performance of updated LLMs in the second

13581

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 13581-13594
November 12-16, 2024 ©2024 Association for Computational Linguistics

PTFS

Version 1
Version 2
Version 3 __,
Version 4

o CPT .

©

o

o

£

c

-

[

(0] i

- Ours

Training Step

Figure 1: The learning rate curves of cosine learning
rate schedule under PTFS, CPT! and our paradigm, all
of which are used to update four versions of LLMs.
Here, different color curves represent different version
updates of LLMs.

stage; 2) for the second stage, a complete learn-
ing rate decay process is beneficial to ensure the
optimal performance of updated LLMs.

Based on the above analyses, we propose a learn-
ing rate path switching training paradigm for ver-
sion updates of LLMs. To better illustrate our
paradigm, we take the most commonly used cosine
learning rate schedule (Smith and Topin, 2019) as
an example, and plot the learning rate curves of
PTFS, CPT and our paradigm in Figure 1. Please
note that our paradigm is also applicable to other
schedules, such as Knee (Iyer et al., 2023), and
multi-step (Bi et al., 2024) learning rate schedules.

In short, the learning rate curve of our paradigm
comprises one main path and multiple branching
paths, each of which corresponds to a version up-
date of LLM. As shown by the main path in Fig-
ure 1, we pre-train a LLM with the maximal learn-
ing rate, providing superior initialization check-
points for subsequent continual pre-training. When
we want to update the LLM with newly-added
training data, we perform continual pre-training
on the LLM with a dynamically-adjusted learn-
ing rate. Referring back to Figure 1, after a few
steps of training with the maximal learning rate,
the learning rate fast decays to its minimum, which

'n fact, multiple CPT variants can be used for version
updates of LLMs. We compare these variants in Appendix B
and retain only the best-performing variant in the subsequent
experiments.

20.1
=
A 19.8
o
<
a O PTFS (Cos)
2 195 |0 PTFS (Knee) O
Q X PTFS (Multi)
B CPT (Cos)
10} CPT (Knee)
{5 192 |» GPT (Mutti
O Ours (Cos) 2
O Ours (Knee) Q 6
% X
18.9 Ours (Multi)
0 0.275 0.55 0.825 1.1
Efficiency (Relative Cost)
Figure 2: The comparison of different training

paradigms. “APPL” () denotes the average perplex-
ity of LLMs across different versions, “Relative Cost”
({) s the ratio of the total training steps across different
versions of each paradigm to the total training steps of
PTFS. The lower left corner achieves the best trade-off.

effectively ensures the training performance of the
updated LLM. Meanwhile, on the main path, we
continue to pre-train the original checkpoint with
the maximal learning rate, facilitating subsequent
LLM updates.

Our paradigm better balances model perfor-
mance and training cost compared to the other two
paradigms, as detailed in Figure 2. To summarize,
our main contributions are as follows:

* We conduct preliminary experiments to compare
PTFS and CPT for version updates of LLMs.
Furthermore, our in-depth analyses show that ini-
tially using a large learning rate and subsequent
learning rate decay are crucial for improving the
performance of updated LLMs.

* We propose a learning rate path switching
paradigm for version updates of LLMs. To the
best of our knowledge, our work is the first at-
tempt to explore how to balance model perfor-
mance and training cost for version updates of
LLM:s.

* Experimental results and in-depth analyses
strongly demonstrate the effectiveness and gen-
eralization of our paradigm. Particularly, when
training four versions of LLMs, our paradigm
achieves comparable pre-training performance to
PTFES with only 58% of the total training cost.

13582

Cosine

Knee

Learning Rate

Multi-Step

Training Step

Figure 3: The learning rate curves of cosine (Smith and
Topin, 2019), Knee (Iyer et al., 2023), and multi-step (Bi
et al., 2024) learning rate schedules.

2 Preliminary Study

In this section, we first compare the performance
of PTFS and CPT in version updates of LLMs,
and then analyze the underlying reasons for their
performance gap.

2.1 Setup

Model In this study, we use LLaMA-1.2B (Tou-
vron et al., 2023a,b) as our base LLM and train for
four versions. When employing PTFS, the total
training steps for these four versions are 10K, 20K,
30K, and 40K, respectively. For CPT, each LLM
update only requires 10K training steps. We train
all LLMs with a batch size of 1.05M tokens.

Learning Rate Schedule We conduct experi-
ments with three learning rate schedules: co-
sine (Smith and Topin, 2019), Knee (Iyer et al.,
2023), and multi-step (Bi et al., 2024) learning rate
schedules.” The specific learning rate curves of
these schedules are plotted in Figure 3. Notably,
cosine learning rate schedule is the most commonly
used one for training LLMs (Zhao et al., 2023),
and both Knee and multi-step learning rate sched-
ules can achieve comparable or even superior per-
formance than cosine learning rate schedule. For
all learning rate schedules, we implement a linear
warm-up phase of 2K steps (approximately 2.1B
tokens). Besides, we set the maximum and mini-
mum learning rates for these schedules to 3e-4 and

2We also evaluate constant and inverse square root learn-
ing rate schedules, both of which yield inferior performance
compared to the three selected schedules.

LRS TP Cost PPL
V2 V3 V4
PTFS 1.00x 20.84 19.28 18.36
Cos CPT 040x 21.11 19.70 18.87
A - 027 -042 -051
PTFS 1.00x 20.22 18.80 17.98
Knee ~CPT 0.40x 20.56 19.27 18.52
A - -0.34 -047 -0.54
PTFS 1.00x 20.28 18.88 18.06
Mulii CPT_ 040x 2062 1937 1865
A - -0.34 -049 -0.59

Table 1: The comparison between PTFS and CPT for
training four versions of LLMs. “LRS” and “TP” indi-
cate learning rate schedule and training paradigm, re-
spectively. “V*” means the *-th version of LLM. No-
tably, regardless of PTFS or CPT, the learning rate curve
and pre-training performance of the first version remain
identical. Thus, we do not report the performance of the
first version in all experiments.

3e-5, respectively.

Dataset Similar to LLaMA (Touvron et al.,
2023a,b), our training corpus comprises a mixture
of data from publicly available sources, including
code, paper, Wikipedia, books, mathematics, Com-
monCrawl and C4, webpage, translation and others.
In total, our training data contains 764M English
and Chinese samples. Due to the limitation of
GPU resource, we do not experiment with the en-
tire dataset. To simulate the scenario of version
updates, we perform non-replacement sampling
on the training data to obtain 10.5B tokens as the
newly-added data for each update. Hence, when
using PTFS, we train four versions of LLMs from
scratch with 10.5B, 21B, 31.5B, and 42B tokens,
respectively. By contrast, using CPT to update the
LLMs only involves the newly-added 10.5B tokens
each time.

Evaluation Following previous studies (Qin
et al., 2022; Gupta et al., 2023; Bi et al., 2024),
we mainly use perplexity (PPL) to evaluate the pre-
training performance of LLMs. Meanwhile, we
also focus on the training cost of each paradigm,
defined as the total training steps required for dif-
ferent versions.

13583

3E-04 (25.67, 20.22)

(25,48, 20.27)

(25.38, 20.30)
2
©

o (24.91, 20.41)
(o))
£
£
[
()
|

3E-05 2nd (10K) (24.66, 21.11)

(0] SEEE 1st stage - M OKe:--- 2nd stage+- »20K
Training Step

Figure 4: The effect of learning rate adjustment in the
first stage. In the first stage, we vary the cosine cycle
length as 10K, 20K, 30K, 40K and +co steps, respec-
tively, where the checkpoints at the 10K-th steps are
selected as the initialization ones for the subsequent
10K-steps continual pre-training. “(-,-)” indicates the
PPLs of the initialization checkpoint and corresponding
updated LLM.

2.2 Comparison Between PTFS and CPT

Experimental results are shown in Table 1. It is
evident that CPT has lower training cost, whereas
PTFS achieves superior performance. More impor-
tantly, as the version updates progress, the perfor-
mance gap between PTFS and CPT progressively
widens.

To understand the underlying cause of this phe-
nomenon, we focus on the learning rate, the key
distinction between PTFS and CPT during version
updates of LLMs. Using the cosine learning rate
schedule, we conduct two groups of experiments to
examine its impact on updated LLM performance
across the two stages of CPT: 1) preparing an ini-
tialization checkpoint, and 2) continual pre-training
based on this checkpoint.

Effect of Learning Rate Adjustment During the
First Stage As depicted in Figure 4, in the first
group of experiments, we vary the cosine cycle
length across 10K, 20K, 30K, 40K, and + o0 steps,
respectively. The checkpoints at the 10K-th steps
are selected as initialization checkpoints for the sec-
ond stage. Then, we continually pre-train LLMs
for 10K steps, where the learning rate gradually
decays from its maximum to minimum. Referring
back to Figure 4, we observe that with the increase
in the cosine cycle length during the first stage,
the performance of the initialization checkpoint
drops, whereas its corresponding updated LLM
performs better. Therefore, we conclude that a

3E-04 22.21
21.90
o 21.67
©
T
2 21.11
£
£ 1t (+09)
2 — 2nd (10K)
— 2nd (20K)
— 2nd (30K)
— 2nd (40K)
3E-05 2nd (+e0) 20.22

OKa:oove 1st stage - *10K< 2nd stage - >20K
Training Step

Figure 5: The effect of learning rate adjustment in the
second stage. In the first stage, we directly use the
maximal learning rate after warm-up. During the second
stage, we try cosine cycle length with 10K, 20K, 30K,
40K and +oo steps, respectively, where the PPLs of
LLMs at the 20K-th steps are compared.

large learning rate in the first stage benefits contin-
ual pre-training in the second stage.

Effect of Learning Rate Adjustment During the
Second Stage Based on the above conclusion,
we directly set the cosine cycle length as +oo steps
in the first stage, as illustrated in Figure 5. Then,
during continual pre-training, we experiment with
the cosine learning rate schedule using different co-
sine cycle lengths: 10K, 20K, 30K, 40K, +oo steps,
and report the performance of updated LLMs at
the 20K-th steps. As shown in Figure 5, it is evi-
dent that a complete learning rate decay process
enables the updated LLMs to achieve the best
performance. This finding is consistent with the re-
sults from the first group of experiments mentioned
above. In other words, when the learning rate un-
dergoes complete decay during the first stage, the
performance of the initialization checkpoint is also
optimal.

Based on the findings of the above two groups of
experiments, we conclude that CPT is difficult to
achieve good performance across different versions
of LLMs. Specifically, according to the findings
from the second group of experiments, if the cur-
rent LLM is expected to achieve optimal perfor-
mance, its learning rate in the second stage should
undergo a complete decay process. However, such
decay results in a lower learning rate in the first
stage of the subsequent update, further degrading
the performance of the updated LLM.

13584

LRS «o Cost PPL
V2 V3 V4
02 049x 2034 19.13 18.44
Cos 04 053x 20.16 1891 18.21
0.6 0.58x 20.13 18.81 18.09
0.8 0.62x 20.15 18.77 18.02
02 049x 2033 19.12 1842
Knee 04 053x 20.16 1891 18.20
0.6 058x 20.12 18.81 18.08
0.8 0.62x 20.15 18.77 18.01
02 049x 2033 19.08 18.37
Multi 04 053x 2029 1891 18.16
0.6 0.58x 2040 18.88 18.09
0.8 0.62x 20.63 1891 18.06

Table 2: The effect of hyper-parameter « on the pre-
training performance and training cost of our paradigm.
Experiments are conducted on LLaMA-1.2B.

3 Our Paradigm

Based on the conclusions from Section 2, we pro-
pose a learning rate path switching paradigm for
version updates of LLMs in this section. The train-
ing cost of our paradigm is lower than that of PTFS,
and it achieves significantly better performance
than CPT, with performance even comparable to
that of PTFS.

3.1 Paradigm Overview

Let us revisit Figure 1, which shows the learn-
ing rate curves of our paradigm applied to the co-
sine learning rate schedule. Please note that our
paradigm is also applicable to other schedules, such
as Knee and multi-step and so on. The learning rate
curve of our paradigm comprises one main path
and multiple branching paths, each of which corre-
sponds to one version update. On the main path, we
pre-train the LLM from scratch with the maximal
learning rate, providing initialization checkpoints
for subsequent version updates. When we want to
obtain an updated LLM, we directly use the current
checkpoint of the main path as the initialization one,
and then perform continual pre-training. During
this process, the learning rate undergoes a com-
plete fast-decaying process, effectively ensuring
the performance of the updated LLM. Meanwhile,
on the main path, we still use newly-added data to
pre-train the existing checkpoint with the maximal
learning rate, so as to facilitate subsequent updates.

LRS TP Cost
V2 V3 V4
PTFS 1.00x 20.84 19.28 18.36
Cos CPT 0.40x 21.11 1970 18.87
Ours 0.58x 20.13 18.81 18.09
PTFS 1.00x 20.22 18.80 17.98
Knee ~CPT 0.40x 20.56 19.27 18.52
Ours 0.58x 20.12 18.81 18.08
PTFS 1.00x 20.28 18.88 18.06
Multi CPT 0.40x 20.62 1937 18.65
" Ours 0.58x 2040 18.88 18.09

Table 3: The comparison of different paradigms for
training four versions of LLaMA-1.2B.

Obviously, our paradigm has lower training cost
than PTFS, as it conducts continual pre-training
based on the initialization checkpoints from the
main path. Unlike CPT, these checkpoints are
obtained through training from scratch with the
maximum learning rate, which enables the updated
LLMs to achieve better performance, as analyzed
in Section 2. The following experiments fully con-
firm the superiority of our paradigm in balancing
model performance and training cost.

3.2 Time Complexity Analysis

To further compare different training paradigms in
terms of training cost, we define their time complex-
ity functions as the total training steps of version
updates.

Before providing our definitions, we first intro-
duce two symbols to facilitate the subsequent de-
scriptions: 1) N,: the number of version updates
of LLMs; 2) T': the amount of data added for each
update, assuming it remains consistent. When up-
dating the 7 — th version of LLMs, PTFS requires
updating ¢7'(1 < i < N,) steps each time, CPT
needs to train for 7' steps, and our paradigm re-
quires training 7'+ T steps, where o (0 < o < 1)
controls the proportion of fast-decaying steps to the
total steps in each update.

Formally, the time complexity functions of
PTFS, CPT and our paradigm can be described

13585

Ver. TP c’ GSM8K MMLU CSL C-EVAL BBH CMMLU GAOKAO AGIEval AVG
PTFS 38.00 4.63 24.00 38.25 30.09 17.43 25.37 18.10 14.59 23.38
vz CPT 3700 409 2352 3511 2742 1855 25.63 18.86 1340 22.62
Ours 38.60 5.08 2294 39.08 28.38 20.79 24.88 18.48 14.73 23.66
PTFS 40.30 3.34 2433 39.17 25.85 17.11 25.30 22.03 14.34 23.53
V3 CPT 38.30 4.70 23.32 36.40 28.38 21.11 24.76 17.85 13.47 23.14
“Ours 4210 4.63 2322 3491 2935 1970 2473 1924 1490 23.64
PTFS 35.70 425 2493 38.75 27.04 16.73 24.97 21.01 14.10 23.05
V4 CPT 4390 455 2220 38.69 27.19 21.62 2443 1823 13.50 23.81
Ours 41.90 5.53 24.09 40.24 2771 21.84 24.78 17.24 14.40 24.19

Table 4: The performance of LLMs across different versions on downstream tasks. “Ver.” indicates the version
number of the LLMs. Additional experimental results for LLMs with larger model sizes or data sizes are listed in

Appendix C.

as follows: 4.1 Effect of Hyper-Parameter o
As described in Section 3, « is one of the most
N
v important hyper-parameters in our paradigm, as it
. 2
Corts(Vo) = Z iI' = 0.5TNy + 0.5T'No, controls the proportion of fast-decaying steps to
i=1

Ny
Ccpt(Nv) = ZT = TNva
i=1

the total steps in each update. The fast-decaying
steps influence model performance and training
cost of our paradigm. To select an optimal « value,
we experiment with different o values, ranging

Ny—1 . .
Cours(Ny) = Z (T +aT)+T from 0.2 to 0.8 with ?n 1nterve'11 'of 0.2, and then
— observe the changes in pre-training performance

=(1+a)TN, —aT.

Please note that, for the last version, the additional
main path training for preparing the initialization
checkpoint for the next update can be omitted,
which counts as o7 steps. Thus, only 7' steps
are required.

Comparing the above functions, we observe that
Cois(IVy) is a quadratic function in terms of N,
whereas both Ccp (V) and Coyrs(IV,) are linear
functions. Moreover, the gaps between Ciyzs (V)
and the other two functions significantly widens
as N, increases. For example, when IV,, = 4, the
values of these three time complexity functions are
107, 4T and 5.8T, respectively. When N, = 10,
the gaps widen as the values of these functions
increase to 557, 107 and 15.47T'.

4 [Experiment

In this section, we still use the settings of the pre-
liminary study to conduct more experiments, com-
paring the performance and training cost of differ-
ent training paradigms.

and training cost.

Experimental results are listed in Table 2, show-
ing that the overall performance of LLMs across
different versions is optimal at « = 0.6 and
o = 0.8. However, when o = 0.6, our paradigm
achieves lower training cost. Thus, we adopt
a = (0.6 in subsequent experiments.

4.2 Main Experiments

Then, we compare different paradigms in terms of
training cost, pre-training performance and down-
stream performance. To comprehensively examine
our paradigm, we conduct a series of experiments
with the three aforementioned learning rate sched-
ules.

Pre-Training Performance From Table 3, we
observe that, compared to PTFS, our paradigm
reduces the total training cost to 58% while
maintaining comparable pre-training perfor-
mance. Particularly, when using the cosine learn-
ing rate schedule, our paradigm even slightly out-
perform PTFS. On the other hand, as expected, the
training cost of our paradigm is still higher than
that of CPT, however, it always achieves better per-
formance than CPT, regardless of the schedule used.

13586

LRS TP Cost
V2 V3 V4
PTFS 1.00x 2094 19.35 1841
Cos CPT 0.40x 2123 1978 1892
Ours 0.58x 20.23 18.87 18.11
PTFS 1.00x 20.30 18.84 17.98
Knee CPT 0.40x 20.67 19.34 18.56
Ours 0.58x 20.20 18.85 18.09
PTFS 1.00x 20.37 18.92 18.06
Multi CPT 0.40x 20.74 19.44 18.68
" Ours 0.58x 2049 18.92 18.09

Table 5: The generalization of our paradigm in terms of
model architecture. Based on Qwen-1.2B, we conduct
experiments with the same setting as LLaMA-1.2B.

Overall, our paradigm achieves a better balance be-
tween pre-training performance and total training
cost during version updates of LLMs.?

Performance on Downstream Tasks Further-
more, we investigate the performance of different
training paradigms across nine downstream tasks,
including C3 (Sun et al., 2020), GSM8K (Cobbe
et al., 2021), MMLU (Hendrycks et al., 2021),
CSL (Li et al., 2022), C-EVAL (Huang et al.,
2023), BBH (Suzgun et al., 2023), CMMLU (Li
et al., 2024), GAOKAO (Zhang et al., 2023) and
AGIEval (Zhong et al., 2024). To this end, we first
construct a general supervised fine-tuning (SFT)
dataset with 1.8B tokens and then we perform SFT
on each of the four versions of the updated LL.Ms.

From the results listed in Table 4, we clearly find
that our paradigm can still obtain better average
performance than PTFS and CPT, which further
proves the effectiveness of our paradigm.

4.3 Generalization of Our Paradigm

Subsequently, we explore the generalization of our
paradigm in the following aspects, including model
architecture, model size, data size, and maximum
learning rate, all of which are crucial for the prac-
tical applications of LL.Ms. In all of these experi-
ments, we maintain the use of the cosine learning
rate schedule.

3We also compare our paradigm with CPT based on equal
training cost, with results detailed in Appendix D. Besides,
we also compare PTES, CPT and our paradigm in the scenario
with varying data increments. The corresponding results are
listed in Appendix E.

Size TP PPL
V2 V3 V4
PTFS 3097 29.50 28.65
203M CPT_ 3131 2990 2907
Ours 30.25 28.94 28.19
PTFS 26.58 25.06 24.19
406M CPT 2689 2549 2467
Ours 25.85 24.52 23.79
PTFS 23.12 21.75 2093
60SM CPT 2350 2226 2152
Ours 22.59 21.43 20.77
PTFS 20.84 19.28 18.36
12B CPT 2122 19.79 18.97
Ours 20.13 18.81 18.09
PTFS 18.33 16.88 16.04
21 CPT_ 1876 1747 1672
Ours 17.82 16.63 15.97
PTFS 17.22 15.87 15.07
3B CPT 1767 1648 1577
Ours 16.84 15.72 15.09

Table 6: The generalization of our paradigm in terms of
model size. The model sizes range from 203M to 3.1B.

Model Architecture To demonstrate the gener-
alization of our paradigm on model architecture,
we use Qwen-1.2B (Bai et al., 2023) to re-conduct
experiments with the same setting as LLaMA-1.2B.

Similar to the experimental results of LLaMA-
1.2B presented in Table 3, the experimental results
of Qwen-1.2B shown in Table 5 further demon-
strate the superiority of our paradigm in balancing
model performance and training cost. This vali-
dates the generalization of our paradigm in terms
of model architecture.

Model Size We then focus on the generalization
of our paradigm on model size. To this end, we
vary the number of model parameters to conduct
experiments. In total, we consider the following
six model sizes: 203M, 406M, 608M, 1.2B, 2.1B,
3.1B, of which detailed hyper-parameters are listed
in Appendix A.

From the results shown in Table 6, we observe
that our paradigm achieves pre-training perfor-
mance comparable to PTFS across different sizes
of LLMs and outperforms CPT. This validates the
generalization of our paradigm in terms of model
size.

13587

Data TP
V2 V3 V4
PTEFS 24.66 2231 20.84
21B CPT 25.10 22.84 21.56
" Ours 2359 2141 20.27
PTFS 20.84 19.28 18.36
428 CPT 21.11 1970 18.87
Ours 20.13 18.81 18.09
PTFS 16.70 1597 15.54
168B CPT 1690 1625 1586
Ours 1647 15.86 15.51

Table 7: The generalization of our paradigm in terms of
data size. The total data sizes (for four versions) range
from 21B to 168B.

Data Size Next, we switch our attention to the
generalization of our paradigm on data size. To
do this, we conduct experiments using different
sizes of training data: 21B, 42B, and 168B tokens.
Correspondingly, the training steps are 5K, 10K
and 40K for each LLM update, respectively.

As shown in Table 7, our paradigm achieves opti-
mal pre-training performance across different data
sizes, which further demonstrates the generaliza-
tion of our paradigm.

Maximum Learning Rate Finally, we aim to
verify the generalization of our paradigm in terms
of the maximum learning rate. We conduct exper-
iments by setting the maximum learning rates as
5e-5, le-4, 3e-4, Se-4, 8e-4, respectively.

As shown in Table 8, as the maximum learning
rate increases, our paradigm consistently achieves
better or comparable performance than PTFS, and
significantly outperforms CPT. This strongly high-
lights the generalization of our paradigm in terms
of the maximum learning rate.

5 Related Work

Continual Training As one of the most direct
approaches for version updates of LLMs, continual
training has attracted increasing attention, of which
related studies can be broadly categorized into the
following four types: 1) methods introducing ad-
ditional parameters (Ke et al., 2022, 2023; Song
et al., 2023; PENG et al., 2024), 2) prompt-based
methods (Wang et al., 2022b,a; Razdaibiedina et al.,
2023), 3) multi-stage training methods (Liu et al.,
2021; Zhou et al., 2022, 2023; Liu et al., 2023;

MLR TP PPL
V2 V3 V4
PTFS 3478 29.53 26.65
Ses CPT_ 3523 3008 273
Ours 29.99 25.54 23.27
PTFS 26.34 2328 21.57
led CPT_ 2664 2370 2204
Ours 23.89 21.32 19.97
PTFS 20.84 19.28 18.36
Sed CPT_ 2122 1979 1897
Ours 20.13 18.81 18.09
PTFS 19.89 18.62 17.85
Se-d CPT_ 2007 19.05 1838
Ours 19.53 1845 17.85
PTFS 19.38 18.26 17.58
84 CPT_ 1969 1873 I8.16_
Ours 19.22 1830 17.78

Table 8: The generalization of our paradigm in terms
of the maximum learning rate. The maximum learning
rate ranges from 5Se-5 to 8e-4. “MLR” indicates the
maximum learning rate.

Huang et al., 2024), and 4) scenario-specific meth-
ods (Peng et al., 2023; Gogoulou et al., 2024; Xie
et al., 2024). Significantly different from the above
studies, our paradigm comprises one main learn-
ing rate path, where we perform pre-training from
scratch with the maximal learning rate, and mul-
tiple learning rate branching paths, where we per-
form continual pre-training with a complete learn-
ing rate decay process. Thus, our paradigm achieve
a better trade-off between the performance and
training cost than PTFS and CPT.

Learning Rate The learning rate is one of the
most crucial hyper-parameters for training LLMs.
Existing learning rate schedules can be broadly di-
vided into the following four policies (Wu et al.,
2019; Wu and Liu, 2023; Jin et al., 2023): 1) Fixed
learning rate policy, such as constant learning rate
schedule; 2) Decaying learning rate policy, such
as inverse square root learning rate schedule; 3)
Cyclic learning rate policy, such as cosine learning
rate schedule; 4) Composite learning rate policy,
such as Knee and multi-step learning rate schedules.
In addition, there are some recent studies explor-
ing learning rate schedules for LLMs, including
Warmup-Stable-Decay schedule (Hu et al., 2024)

13588

and constant learning rate with cooldown (Hégele
et al., 2024). Particularly, our paradigm is a well-
designed training paradigm for version updates of
LLMs, which is applicable to cosine, Knee, and
multi-step and other learning rate schedules.

6 Conclusion and Future Work

This paper focuses on how to effectively balance
model performance and training cost for version
updates of LLMs. We begin by comparing two
training paradigms: PTFS and CPT, concluding
that PTFES achieves better pre-training performance,
while CPT has lower training cost. Through the
analysis in the preliminary study, we find that 1) a
large learning rate is beneficial for providing better
initialization checkpoints for subsequent updates,
and 2) a complete learning rate decay process en-
ables the updated LL.Ms to achieve optimal per-
formance. Based on the above two findings, we
propose a learning rate path switching paradigm
for version updates of LLMs, which comprises one
main path and multiple branching paths. On the
main path, we pre-train the LLMs with the maxi-
mal learning rate to provide superior initialization
checkpoints for subsequent updates. When an up-
date is required, our paradigm switches from the
main path to a branching path, undergoing a com-
plete learning rate decay process. Experimental re-
sults and further analyses strongly demonstrate the
effectiveness and generalization of our paradigm.
In the future, we will further expand the practical
scope of our paradigm. Current research mainly
focuses on the pre-training phase and does not in-
clude supervised fine-tuning, safety alignment, etc.,
which could be integrated into the fast-decaying
stage of our paradigm. Additionally, we plan to
explore the applicability of our paradigm in the
context of multimodal large language models.

Limitations

Although the training cost of our paradigm is sig-
nificantly lower than that of PTFS, it is still higher
than that of CPT. Hence, we plan to design a pre-
cise method to determine the proportion of the fast-
decaying steps to the total steps, which can further
reduce the training cost of our paradigm.

Acknowledgements

The project was supported by National Key R&D
Program of China (No. 2022ZD0160501), Na-
tional Natural Science Foundation of China (No.

62276219), and the Public Technology Service Plat-
form Project of Xiamen (No. 3502720231043).

References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, et al. 2023. Qwen technical report.
arXiv.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, et al. 2024. Deepseek llm:
Scaling open-source language models with longter-
mism. arXiv.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, et al.
2021. Training verifiers to solve math word prob-
lems. arXiv.

Can Cui, Yunsheng Ma, Xu Cao, Wenqgian Ye, Yang
Zhou, Kaizhao Liang, et al. 2024. A survey on multi-
modal large language models for autonomous driving.
In WACVW Workshops.

Evangelia Gogoulou, Timothée Lesort, Magnus Boman,
and Joakim Nivre. 2024. Continual learning under
language shift. In TSD.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V. Chawla, et al. 2024. Large
language model based multi-agents: A survey of
progress and challenges. arXiv.

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim,
Mats L. Richter, Quentin Anthony, Eugene
Belilovsky, et al. 2023. Continual pre-training
of large language models: How to (re)warm your
model? In ICML Workshop.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In ICLR.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu
Cui, Xiang Long, et al. 2024. Minicpm: Unveiling
the potential of small language models with scalable
training strategies. In COLM.

Jianheng Huang, Leyang Cui, Ante Wang, Chengyi
Yang, Xinting Liao, Linfeng Song, Junfeng Yao, and
Jinsong Su. 2024. Mitigating catastrophic forget-
ting in large language models with self-synthesized
rehearsal. In ACL.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang,
Jinghan Zhang, Tangjun Su, et al. 2023. C-eval: A
multi-level multi-discipline chinese evaluation suite
for foundation models. In NeurIPS.

Alexander Higele, FElie Bakouch, Atli Kosson,
Loubna Ben Allal, Leandro Von Werra, and Mar-
tin Jaggi. 2024. Scaling laws and compute-optimal
training beyond fixed training durations. In /ICML
Workshop.

13589

https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.1109/WACVW60836.2024.00106
https://doi.org/10.1109/WACVW60836.2024.00106
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2311.01200
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://openreview.net/forum?id=pg7PUJe0Tl
https://openreview.net/forum?id=pg7PUJe0Tl
https://openreview.net/forum?id=pg7PUJe0Tl
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=3X2L2TFr0f#discussion
https://openreview.net/forum?id=3X2L2TFr0f#discussion
https://openreview.net/forum?id=3X2L2TFr0f#discussion
https://doi.org/10.18653/v1/2024.acl-long.77
https://doi.org/10.18653/v1/2024.acl-long.77
https://doi.org/10.18653/v1/2024.acl-long.77
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/c6ec1844bec96d6d32ae95ae694e23d8-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=ompl7supoX&referrer=%5Bthe%20profile%20of%20Martin%20Jaggi%5D(%2Fprofile%3Fid%3D~Martin_Jaggi1)
https://openreview.net/forum?id=ompl7supoX&referrer=%5Bthe%20profile%20of%20Martin%20Jaggi%5D(%2Fprofile%3Fid%3D~Martin_Jaggi1)

Nikhil Iyer, V Thejas, Nipun Kwatra, Ramachan-
dran Ramjee, and Muthian Sivathanu. 2023. Wide-
minima density hypothesis and the explore-exploit
learning rate schedule. JMLR.

Hongpeng Jin, Wenqi Wei, Xuyu Wang, Wenbin Zhang,
Hongpeng Wu, YanzhaoJin, Wenqi Wei, et al. 2023.
Rethinking learning rate tuning in the era of large
language models. In CogMI.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, et al. 2020.
Scaling laws for neural language models. arXiv.

Zixuan Ke, Haowei Lin, Yijia Shao, Hu Xu, Lei Shu,
and Bing Liu. 2022. Continual training of language
models for few-shot learning. In EMNLP.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi,
Gyuhak Kim, and Bing Liu. 2023. Continual pre-
training of language models. In ICLR.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2024. Cmmlu: Measuring massive multitask
language understanding in chinese. In Findings of
ACL.

Yudong Li, Yuqing Zhang, Zhe Zhao, Linlin Shen, Wei-
jie Liu, Weiquan Mao, and Hui Zhang. 2022. Csl:
A large-scale chinese scientific literature dataset. In
COLING.

Junpeng Liu, Kaiyu Huang, Hao Yu, Jiuyi Li, Jinsong
Su, and Degen Huang. 2023. Continual learning
for multilingual neural machine translation via dual
importance-based model division. In EMNLP.

Xin Liu, Baosong Yang, Dayiheng Liu, Haibo Zhang,
Weihua Luo, Min Zhang, Haiying Zhang, and Jinsong
Su. 2021. Bridging subword gaps in pretrain-finetune
paradigm for natural language generation. In ACL.

Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal,
A Neelakantan, et al. 2020. Language models are
few-shot learners. In NeurIPS.

Bohao PENG, Zhuotao Tian, Shu Liu, Ming-Chang
Yang, and Jiaya Jia. 2024. Scalable language model
with generalized continual learning. In /CLR.

Guangyue Peng, Tao Ge, Si-Qing Chen, Furu Wei, and
Houfeng Wang. 2023. Semiparametric language
models are scalable continual learners. arXiv.

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng
Li, Maosong Sun, and Jie Zhou. 2022. Elle: Efficient
lifelong pre-training for emerging data. In Findings
of ACL.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Ma-
dian Khabsa, Mike Lewis, and Amjad Almahairi.
2023. Progressive prompts: Continual learning for
language models. In ICLR.

Leslie N Smith and Nicholay Topin. 2019. Super-
convergence: Very fast training of neural networks
using large learning rates. In Artificial Intelligence
and Machine Learning for Multi-domain Operations
Applications.

Chenyang Song, Xu Han, Zheni Zeng, Kuai Li, Chen
Chen, Zhiyuan Liu, et al. 2023. Conpet: Continual
parameter-efficient tuning for large language models.
arXiv.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2020.
Investigating prior knowledge for challenging chi-
nese machine reading comprehension. TACL.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebas-
tian Gehrmann, Yi Tay, Hyung Won Chung, et al.
2023. Challenging big-bench tasks and whether
chain-of-thought can solve them. In Findings of ACL.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
et al. 2023a. Llama: Open and efficient foundation
language models. arXiv.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, et al. 2023b.
Llama 2: Open foundation and fine-tuned chat mod-
els. arXiv.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
Comput. Sci.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi
Sun, Han Zhang, Chen-Yu Lee, et al. 2022a. Du-
alprompt: Complementary prompting for rehearsal-
free continual learning. In ECCV.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, et al. 2022b. Learning to
prompt for continual learning. In CVPR.

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng
Wan, and Philip S. Yu. 2023. Multimodal large lan-
guage models: A survey. In IEEE BigData.

Yanzhao Wu and Ling Liu. 2023. Selecting and compos-
ing learning rate policies for deep neural networks.
ACM TIST.

Yanzhao Wu, Ling Liu, Juhyun Bae, Ka-Ho Chow, Arun
Iyengar, Calton Pu, et al. 2019. Demystifying learn-
ing rate policies for high accuracy training of deep
neural networks. In IEEE BigData.

Yong Xie, Karan Aggarwal, and Aitzaz Ahmad. 2024.
Efficient continual pre-training for building domain
specific large language models. In Findings of ACL.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, et al. 2023. Baichuan 2: Open
large-scale language models. arXiv.

13590

https://jmlr.org/papers/v24/21-0549.html
https://jmlr.org/papers/v24/21-0549.html
https://jmlr.org/papers/v24/21-0549.html
https://doi.org/10.1109/CogMI58952.2023.00025
https://doi.org/10.1109/CogMI58952.2023.00025
https://arxiv.org/abs/2001.08361
https://aclanthology.org/2022.emnlp-main.695/
https://aclanthology.org/2022.emnlp-main.695/
https://openreview.net/forum?id=m_GDIItaI3o
https://openreview.net/forum?id=m_GDIItaI3o
https://doi.org/10.18653/v1/2024.findings-acl.671
https://doi.org/10.18653/v1/2024.findings-acl.671
https://aclanthology.org/2022.coling-1.344
https://aclanthology.org/2022.coling-1.344
https://doi.org/10.18653/v1/2023.emnlp-main.736
https://doi.org/10.18653/v1/2023.emnlp-main.736
https://doi.org/10.18653/v1/2023.emnlp-main.736
https://doi.org/10.18653/v1/2021.acl-long.468
https://doi.org/10.18653/v1/2021.acl-long.468
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=mz8owj4DXu
https://openreview.net/forum?id=mz8owj4DXu
https://arxiv.org/abs/2303.01421
https://arxiv.org/abs/2303.01421
https://aclanthology.org/2022.findings-acl.220
https://aclanthology.org/2022.findings-acl.220
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=UJTgQBc91_
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/2309.14763
https://arxiv.org/abs/2309.14763
https://aclanthology.org/2020.tacl-1.10
https://aclanthology.org/2020.tacl-1.10
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136860617.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136860617.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136860617.pdf
https://openaccess.thecvf.com/content/CVPR2022/html/Wang_Learning_To_Prompt_for_Continual_Learning_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Wang_Learning_To_Prompt_for_Continual_Learning_CVPR_2022_paper.html
https://doi.org/10.1109/BigData59044.2023.10386743
https://doi.org/10.1109/BigData59044.2023.10386743
https://dl.acm.org/doi/full/10.1145/3570508
https://dl.acm.org/doi/full/10.1145/3570508
https://ieeexplore.ieee.org/abstract/document/9006104
https://ieeexplore.ieee.org/abstract/document/9006104
https://ieeexplore.ieee.org/abstract/document/9006104
https://doi.org/10.18653/v1/2024.findings-acl.606
https://doi.org/10.18653/v1/2024.findings-acl.606
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2309.10305

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, et al. 2023. GIm-130b: An
open bilingual pre-trained model. In ICLR.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying,
Liang He, and Xipeng Qiu. 2023. Evaluating the
performance of large language models on gaokao
benchmark. arXiv.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, et al. 2023. A survey of
large language models. arXiv.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2024. Agieval: A human-centric
benchmark for evaluating foundation models. In
Findings of NAACL.

Chulun Zhou, Yunlong Liang, Fandong Meng, Jie Zhou,
Jinan Xu, Hongji Wang, Min Zhang, and Jinsong Su.
2023. A multi-task multi-stage transitional training
framework for neural chat translation. TPAMI.

Chulun Zhou, Fandong Meng, Jie Zhou, Min Zhang,
Hongji Wang, and Jinsong Su. 2022. Confidence
based bidirectional global context aware training
framework for neural machine translation. In ACL.

13591

https://openreview.net/forum?id=-Aw0rrrPUF
https://openreview.net/forum?id=-Aw0rrrPUF
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://doi.org/10.1109/TPAMI.2022.3233226
https://doi.org/10.1109/TPAMI.2022.3233226
https://doi.org/10.18653/v1/2022.acl-long.206
https://doi.org/10.18653/v1/2022.acl-long.206
https://doi.org/10.18653/v1/2022.acl-long.206

Size MLR Hidden Head Layer
203M le-3 512 8 24
406M 6e-4 1,024 16 12
608M 6e-4 1,024 16 24

1.2B 3e4 1,536 16 24

2.1B 3e4 1,536 16 48

3.1B 3e-4 8,192 32 40

Table 9: The detailed hyper-parameters of LLMs with
different model sizes.

RewarmMax

o ResetMax

©

o

o

£

c

-

@

0]

—1' KeepMin
Version 1
Version 2
Version 3
Version 4

Training Step

Figure 6: The learning rate curves of different adapta-
tion method of CPT for version updates of LLMs. The
learning rate curves are plotted based on cosine learning
rate schedules.

A Detailed Hyper-Parameters

In this work, we compare PTFS, CPT and our
paradigm based on LLMs with different sizes,
whose hyper-parameters are listed in Table 9. Fol-
lowing Kaplan et al.; Mann et al., we set smaller
maximum learning rates for larger LLMs. Besides,
the minimum learning rate is configured to be 10%
of the maximum learning rate.

B CPT Variants

In order to adapt traditional CPT for version up-
dates of LLLMs, we compare three variants of CPT
in Figure 6:

* RewarmMax: Warm up the learning rate periodi-
cally, and use the learning rate schedule of the old
version to train the new version of LLMs (Gupta
et al., 2023).

PPL

LRS Variant
V2 V3 V4
RewarmMax 21.22 19.79 18.97
Cos ResetMax 21.11 19.70 18.87
KeepMin 23.00 21.99 21.26
RewarmMax 20.74 19.46 18.70
Knee ResetMax 20.56 19.27 18.52
KeepMin 2222 2136 20.37
RewarmMax 20.80 19.55 18.82
Multi ResetMax 20.62 19.37 18.65
KeepMin 22.11 21.24 20.60

Table 10: The comparison among RewarmMax, Reset-
Max and KeepMin for CPT.

* ResetMax: Directly set the learning rate as the
maximum periodically, and use the learning rate
schedule of the old version to train the new ver-
sion of LLMs (Gupta et al., 2023).

* KeepMin: Keep the learning rate at the mini-
mum by using a constant learning rate schedule
to ensure the convergence of LLMs during train-
ing (Gogoulou et al., 2024).

Experimental results are listed in Table 10. We ob-
serve that ResetMax achieves the best pre-training
performance among these variants. Therefore, we
use ResetMax for the other experiments.

C Performance of Downstream Tasks

In addition to the standard training scale (LLaMA-
1.2B trained for 42B tokens), we also evaluate
LLMs with a larger training dataset (LLaMA-1.2B
trained for 168B tokens) and a larger model size
(LLaMA-3.1B trained for 42B tokens). We report
the performance of downstream tasks across differ-
ent versions of LLMs, as shown in Table 11. Ex-
perimental results show that our paradigm achieves
superior average performance compared with PTFS
and CPT across different training scales for down-
stream tasks.

D Comparison between CPT and Ours

Existing experimental results show that while our
paradigm outperforms CPT in terms of perfor-
mance, it has higher training cost. To provide
a more direct comparison between CPT and our
paradigm, we conduct an experiment where the
training cost (measured by training steps) are kept

13592

Scale Ver. TP c? GSM8K MMLU CSL C-EVAL BBH CMMLU GAOKAO AGIEval AVG

PTFS 38.00 4.63 24.00 3825 30.09 1743 2537 18.10 1459 23.38
V2 CPT 37.00 4.09 2352 3511 2742 1855 25.63 18.86 13.40 22.62

1.2B PTFS 4030 334 2433 39.17 2585 17.11 25.30 22.03 14.34 23.53
4B V3 CPT 3830 470 2332 3640 2838 21.11 2476 17.85 13.47 23.14

V4 CPT 4390 455 2220 38.69 27.19 21.62 2443 18.23 13.50 23.81

V2 CPT 4380 7.13 2461 3722 2652 2296 2540 20.13 1425 24.67

1.2B PTFS 4740 849 2504 4242 2742 2688 25.06 18.23 16.59 26.39
168B V3 CPT 4030 842 2430 41.61 2630 2407 24.59 20.00 18.00 25.29

V4 CPT 49.10 834 2548 40.60 27.27 2254 2538 21.39 17.44 26.39

V2 CPT 46.00 6.14 2400 4081 27.04 2194 2357 20.89 13.28 24.85

3.1B PTFS 4430 834 2383 4099 2712 21.71 2473 21.65 1548 2535
4B V3 CPT 4390 8.11 2523 41.24 26.00 25.00 25.44 20.00 13.40 25.37

V4 CPT 50.60 978 25.12 41.03 28.08 2248 2538 21.01 13.93 26.38

Table 11: The performance of downstream tasks for LLMs across four versions. In addition to the standard training
scale (LLaMA-1.2B trained for 42B tokens), we further evaluate LLMs trained on more data (LLaMA-1.2B trained
for 168B tokens) and LLMs with a larger size (LLaMA-3.1B trained for 42B tokens).

13593

N TP PPL
V2 V3 V4
0o . CPT 2140 2069 2020
“ Ours 20.96 20.05 19.59
04 . CPT 2106 2043 20.18
" Ours 20.81 19.88 19.42
06 . CPT 2085 2021 19.85
) Ours 20.82 19.86 19.40

Table 12: The comparison between CPT and our
paradigm with equal training cost. The « ranges from
0.2 t0 0.6.

P PPL
10.5B 21.0B 31.5B
PTFS 20.84 19.28 1836
(CPT 211 1950 18.47
Ours 20.13° 1881 18.09

Table 13: The comparison of different paradigms for
training two versions of LLaMA-1.2B. The data incre-
ment of the second version varies from 10.5B to 31.5B
tokens.

consistent. Concretely, we sample a dataset of ap-
proximately 5.25B tokens (5K steps) and use it to
train four versions of LLMs. As mentioned in sec-
tion 3.2, we analyze the time complexity of CPT
and our paradigm, obtaining that the time complex-
ity of ours is about 1 + « times that of CPT.

We compare the results for different o (propor-
tion of fast-decaying steps) set as 0.2, 0.4 and 0.6,
respectively. To ensure that the total training cost
used for these two paradigms are consistent, our
paradigm always includes an additional 10K steps
for each version update, while CPT uses additional
12K (o = 0.2), 14K (o = 0.4) and 16K (@ = 0.6)
steps for each version update, respectively. The
experimental results in Table 12 demonstrate that
our paradigm remains effective even when the total
training cost are kept consistent with CPT.

E Version Updates with Inconsistent Data
Increments

Existing experiments are based on the assumption
of consistent data increments during version up-
dates of LLMs. The effectiveness of our paradigm
has not yet been validated in the scenario with vary-
ing data increments. Hence, we conduct a compar-

ative experiment involving PTFS, CPT, and ours,
training two versions of LLMs. For all paradigms,
the LLMs of the first version are trained with 10.5B
tokens (10K steps), while the LLMs of second
version are trained with 10.5B, 21B, and 31.5B
tokens, respectively. As the experimental results
shown in Table 13, our paradigm maintains a bet-
ter pre-training performance than PTFS and CPT
in the scenario with inconsistent data increments.
This further demonstrates the generalization of our
paradigm.

13594

