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Abstract

Speculative decoding is a widely used method
that accelerates the generation process of large
language models (LLMs) with no compro-
mise in model performance. It achieves
this goal by using an existing smaller model
for drafting and then employing the target
LLM to verify the draft in a low-cost paral-
lel manner. Under such a drafting-verification
framework, drafting efficiency has become a
bottleneck in the final speedup of specula-
tive decoding. Therefore, generating longer
drafts at less cost can lead to better decod-
ing speedup. To achieve this, we introduce
Ouroboros, which can generate draft phrases
to parallelize the drafting process and mean-
while lengthen drafts in a training-free man-
ner. The experimental results on various typical
text generation tasks show that Ouroboros can
achieve speedups of up to 2.4× over specu-
lative decoding and 3.9× over vanilla decod-
ing, without fine-tuning draft and target models.
The source code of Ouroboros is available at
https://github.com/thunlp/Ouroboros.

1 Introduction

Benefiting from recent advances in parallel com-
puting devices and distributed training algo-
rithms (Shoeybi et al., 2019; Rasley et al., 2020),
the training time of LLMs has been significantly
shortened. However, it is still challenging to
achieve parallelization in model inference because
most LLMs rely on autoregressive generation
mechanisms that exhibit sequential dependencies
among generated tokens. For these autoregressive
LLMs, they have to generate tokens one by one.

To accelerate the inference of LLMs, typical
model compression methods such as quantiza-
tion (Frantar et al., 2023; Lin et al., 2023; Kim
et al., 2023) and pruning (Han et al., 2015; Wang

* indicates equal contribution.
† indicates corresponding authors.
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Figure 1: The trade-off between drafting efficiency and
effectiveness. The figure illustrates the optimal spec-
ulative decoding speed of Llama-2-chat-70B on MT-
Bench (Zheng et al., 2024) and the corresponding aver-
age number of accurate draft tokens at each iteration.

et al., 2020; Xia et al., 2023b) may cause model
performance degradation and sometimes even re-
quire non-negligible additional training costs. To
losslessly accelerate the inference of LLMs, specu-
lative decoding (Xia et al., 2023a; Leviathan et al.,
2023; Chen et al., 2023a) has been proposed. Given
a target LLM, speculative decoding selects a much
smaller LLM as the draft model to generate multi-
ple tokens as a draft. The target LLM then reviews
the draft in parallel, accepting the longest accurate
prefix while discarding the remaining draft tokens.

Under such a drafting-verification framework,
how to efficiently generate long and accurate drafts
has become a critical factor in accelerating LLM
inference. As in Figure 1, we examine the trade-off
between draft model size and speculative decoding
speed. We observe that larger draft models tend
to achieve higher draft accuracy, but the cost of
generating drafts also rises, so that medium-sized
models offer the best decoding speed. Besides,
we investigate the trade-off between draft length
and speculative decoding speed. Our findings indi-
cate that the target model can accept more tokens
per iteration on average when the draft is longer,
but longer drafts introduce more forward passes
required for the draft model, and thus, the opti-
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mal draft length in speculative decoding is not the
largest one.

Based on the further analysis of the above pilot
experimental results, it is not difficult to observe the
limitations of speculative decoding regarding draft-
ing efficiency: (1) Insufficient Draft. Drafting
too short misses potential acceleration. However,
because of the time overhead involved in drafting
itself, generating long drafts may result in high
costs when these drafts fail. If longer drafts can be
generated more efficiently, the acceleration effect
will be enhanced significantly. (2) Underutilized
Draft. For current speculative decoding, tokens
that are not accepted by the target model are com-
pletely discarded, resulting in a high failure cost
when generating long drafts. In fact, some of the
discarded tokens may contain useful information
that could be utilized in future drafting iterations.

To overcome the above limitations, this paper
introduces a more efficient decoding framework
named Ouroboros, whose improvements over spec-
ulative decoding are as follows:

(1) Accelerating drafting via phrases. Given
that model generation is memory-bound rather than
computation-bound (Leviathan et al., 2023), draft-
ing at the phrase level rather than the token level
can make the drafting phase more efficient at pro-
ducing longer drafts. Inspired by previous efforts
such as lookahead decoding (Fu et al., 2023) that
successfully employed phrases to accelerate the
target model, Ouroboros adapts this method to
enhance drafting efficiency. In subsequent sec-
tions, we will demonstrate that accelerating the
draft model with phrases first and then using the
draft to accelerate the target model will be more
efficient than directly accelerating the target model
with phrases.

(2) Lengthening drafts via phrases. Concate-
nating phrases can extend the draft even longer at
a low cost. According to the last token of the draft,
phrases starting with the last token can be used to
extend the draft. By concatenating the draft and
k different phrases, Ouroboros generates k longer
drafts for the target model to verify, introducing
almost zero additional costs.

(3) Generating phrases from verification. Dur-
ing the verification phase, Ouroboros filters out
high-quality phrases from those discarded tokens
in speculative decoding. These discarded phrases
can be used to accelerate drafting in subsequent
iterations.

(4) Reusing phrases from history contexts. We

find that phrases generated from similar tasks can
be reused to speed up drafting with each other.
Ouroboros thus reuses phrases in history contexts
to accelerate drafting in subsequent iterations.

Notably, Ouroboros does not require any ad-
ditional training, and can be applied in all ap-
plications with speculative decoding. We im-
plement Ouroboros and conduct sufficient exper-
iments on various text generation tasks such as
code generation (Chen et al., 2021; Austin et al.,
2021), text summarization (See et al., 2017; Her-
mann et al., 2015) and machine translation (Bo-
jar et al., 2016). The experimental results demon-
strate that Ouroboros is completely lossless on task
performance and can achieve significant inference
acceleration without additional model fine-tuning.
Compared with the recent competitive decoding
methods, Ouroboros achieves speedups of up to
1.9× over lookahead decoding, up to 2.8× over
speculative decoding, and up to 3.9× over naive
autoregressive decoding.

2 Preliminary

For a target model T to accelerate inference, spec-
ulative decoding first finds a suitable draft model S .
Given an input prefix x1···n, speculative decoding
uses the draft model S to generate a draft d1···γ
consisting of γ tokens in an autoregressive manner,

d1 = argmax
d1

PS(d1 | x1···n),

di = argmax
di

PS(di | x1···n, d1···i−1), i = 2 · · · γ. (1)

Then, the target model T verifies the draft d1···γ ,
by inputting d1···γ and conducting the next token
prediction task using a single forward. Each ver-
ification result vi is sampled from the next token
prediction distribution of the target model,

v1 ∼ PT (· | x1···n),

vi ∼ PT (· | x1···n, d1···i−1), i = 2 · · · γ. (2)

There must exist an A ∈ [0, γ] satisfying that
{
v1···A = d1···A,

vA+1 ̸= dA+1 or A = γ.
(3)

Here, v1···A+1 will be the same as the result when
the target model autoregressively generates A+ 1
tokens from x, because at this time,

v1 ∼ PT (· | x1···n),

vi ∼ PT (· | x1···n, v1···i−1), i = 2 · · ·A+ 1.
(4)

We call A the number of accurate tokens in the
draft, A + 1 tokens d1···A, vA+1 are accepted as
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Figure 2: The framework of Ouroboros, which achieves better drafting efficiency than vanilla speculative decoding
while also lengthening the drafts.

the generation result of the target model while
the remaining draft tokens dA+1···γ are discarded.
Please note that the derivation above differs slightly
from the original speculative decoding (Chen et al.,
2023a): we set the temperature for the random
sampling in the draft model to 0 for a clearer expla-
nation, but this would not affect the correctness of
the target model.

We define A(γ) as the average number of accu-
rate tokens when the draft model is S and the draft
length is γ. The speedup of speculative decoding
is calculated as follows (Leviathan et al., 2023),
where tS and tT are the forward time of the draft
model and the target model, respectively,

[A(γ) + 1] · tT
γ · tS + tT

, (5)

where the numerator is the time for the vanilla
generation of the target model, and the denominator
is the time of the speculative decoding.

3 Method

In Ouroboros, we first accelerate drafting via
phrases, so that we can generate γ tokens with
fewer forward passes of the draft model, and we
denote this reduction ratio as c. Subsequently, due
to the fact that function A(γ) is monotonically
non-decreasing, we lengthen drafts via phrases, en-
abling the generation of more tokens without the
need for additional forward passes. We denote this
costless extended length as β. Following these two
optimization directions, Eq. (5) becomes

[A(γ + β) + 1] · tT
1
c
γ · tS + tT

. (6)

We further enlarge c by heuristically generat-
ing phrases from verification results and reusing
phrases from historically generated contexts, which
can lead to better drafting efficiency. Next, we will
delve into the details for each part of Ouroboros.

3.1 Accelerating Drafting via Phrases

We get inspiration from lookahead decoding (Fu
et al., 2023), which uses phrases to directly accel-
erate the target model T . However, each round of
phrase drafting requires a forward pass of the tar-
get model T to verify the draft, limiting the whole
acceleration effect of lookahead decoding. Differ-
ent from lookahead decoding, we use phrases to
indirectly accelerate the target model T through
a draft model S, allowing each forward pass of
the target model to simultaneously verify multiple
rounds of phrases, achieving a better acceleration.
As shown in Figure 2, in Ouroboros, the drafting
process of the draft model is performed phrase by
phrase instead of token by token. Multiple new
phrases are generated in parallel during each for-
ward of the draft model. We will not go into detail
how to generate new draft phrases in parallel due to
space constraints, and can refer to Fu et al. (2023).

3.2 Lengthening Drafts via Phrases

Given that model generation is memory-bound, the
time it takes for the target model to verify dozens
of tokens using a single forward is not much dif-
ferent from the time spent on verifying a single
token (Leviathan et al., 2023). Therefore, we pro-
pose to use phrases to heuristically extend drafts
since phrase concatenation is nearly zero-cost.
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Figure 3: The customized attention masking mechanism
for verifying lengthened drafts.

Trying multiple phrases to get multiple longer
drafts can increase the probability that one of these
phrases passes the verification of the target model.
But the cost of verifying these longer drafts one by
one is also unbearable. Inspired by Cai et al. (2024),
we construct a sophisticated Transformer attention
masking mechanism to complete the verification of
all longer drafts with only one forward pass of the
target model T , as shown in Figure 3.

Specifically, given a draft d1···γ , we select out K
phrases p11···β, · · · , pK1···β starting with the token dγ ,
i.e., p11 = p21 = · · · = pK1 = dγ . The K lengthened
drafts are





d1···γ , p
1
2···β ,

d1···γ , p
2
2···β ,

...

d1···γ , p
K
2···β .

(7)

The target model then calculates vji to verify pji for
all j = 2 · · ·K, i = 2 · · ·β + 1 in Eq. (8). All vji
are computed in parallel by a single forward using
the attention masking mechanism in Figure 3.

vji ∼ PT (· | x1···n, d1···γ , p
j
2···i−1) (8)

Similar to Eq. (3), we define Âj satisfying

{
vj
2···Âj = pj

2···Âj ,

vj
Âj+1

̸= pj
Âj+1

or Âj = β.
(9)

Once the draft d1···γ is fully accepted by the target
model, we use the phrase pj with the largest Âj

to enlarge the number of accepted tokens. More
specifically, d1···γ , p

j

2···Âj
, vj

Âj+1
will be accepted.

Yi-base 34B/6B MBPP CNN/DM WMT-16

A 12.7 8.4 5.3
#Match 18.9 17.8 17.0

Table 1: Average matched tokens compared with
the number of accepted tokens. Experiment on Yi-
base 34B/6B (Young et al., 2024) on three datasets,
MBPP (Austin et al., 2021), CNN/DM (See et al., 2017;
Hermann et al., 2015) and WMT16 (Bojar et al., 2016)
using Speculative Decoding, with draft length γ = 20.

3.3 Generating Phrases from Verification

In speculative decoding, the cost when a draft fails
is relatively high. If draft d1···γ is not fully ac-
cepted, traditional verification only accepts the cor-
rect draft prefix d1···A and discards dA+1···γ , as in
Section 2. To evaluate the information in these dis-
carded draft tokens, we define #Match(d1···γ , v1···γ)
the number of the matched tokens of the draft and
the verification result,

#Match(d1···γ , v1···γ) =
γ∑

i=1

[di = vi], (10)

where [di = vi] = 1 when di = vi and 0 otherwise.
As in Table 1, we find that #Match is much

larger than the length of the accurate prefix A. We
view some specific cases and find that sometimes
the emergence of this situation is caused by the
misplacement of the generation, as shown in Fig-
ure 4. Therefore, we propose to filter out those
sub-segments of the discarded draft that match the
verification results of the target model, as shown in
Figure 4. We then insert those segments into the
phrases pool to accelerate future drafts.

As in Section 3.2, if draft d1···γ is fully accepted,
only one phrase suffix pj is used, leaving all other
tried phrases unused. We suppose the verification
result vo2···β fixes some errors in the phrase po2···β
for all o ̸= j: we use po1, v

o
2···β to replace the phrase

po1···β in the phrase pool.

3.4 Reusing Phrases from History Contexts

In real-world scenarios, the adjacent conversations
from users may exhibit similarities. Leveraging
these similarities, we can further enhance the speed
of the model inference. Different from lookahead
decoding that cleanup phrases from history con-
texts when conducting the generation of subsequent
input queries, we propose to reuse phrases gener-
ated from previous generations to further accelerate
the drafting process.
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Figure 4: The illustration of generating phrases from the verification results of the target model.

3.5 The Advantages of the Training-free
Framework

Ouroboros is entirely training-free. We have not
employed methods like model distillation to in-
crease the function A(γ) or model compression
to decrease tS in Eq. (5). In terms of phrase gen-
eration, all our phrases generation strategies are
heuristic. All phrases are gradually accumulated
during the generation process of models, without
prior preparation on a large-scale corpus. All these
mean that, given a draft model in any speculative
decoding method, we can use Ouroboros to help
these methods achieve further speedup without in-
troducing additional costs.

4 Experiments

This section focuses on evaluating Ouroboros on
various text generation tasks to demonstrate the
efficiency and effectiveness of Ouroboros.

4.1 Experimental Settings

In order to evaluate the overall acceleration caused
by Ouroboros, we evaluate Ouroboros on various
typical text generation tasks, including code gener-
ation, arithmetic reasoning, document summariza-
tion, and machine translation.

Datasets. For code generation, we evaluate
Ouroboros on HumanEval (Chen et al., 2021) and
the validation set of MBPP (Austin et al., 2021).
There are 164 entries in HumanEval and they are

composed of a text prompt and a prefix of Python
function. The validation set of MBPP has 90 en-
tries, in which the whole function is expected to be
predicted with a given text prompt and test cases.
The maximum generation lengths on HumanEval
and MBPP are set to 512. For arithmetic reason-
ing, document summarization and machine transla-
tion, we evaluate our method on GSM8K (Cobbe
et al., 2021), CNN/DM (See et al., 2017; Hermann
et al., 2015) and WMT16 (Bojar et al., 2016), re-
spectively. We randomly sample 100 entries from
GSM8K and CNN/DM, and sample 100 entries
from the German-to-English translation subset of
WMT16. The maximum generation lengths on
GSM8k, CNN/DM and WMT16 are respectively
set to 256, 128, and 64.

Models. For HumanEval and MBPP, we use
Yi-base-34B/6B (Young et al., 2024), DeepSeek-
coder-instruct-33b/6.7B (Bi et al., 2024) and
CodeLlama-instruct-34B/7B (Roziere et al., 2023)
as the target/draft models for our experiments. For
GSM8K, CNN/DM and WMT16, we use Yi-base-
34B/6B and Llama-2-chat-70B/7B (Touvron et al.,
2023). We use the larger model as the target model
and the smaller one for drafting. All these models
are recently representative and popular LLMs.

Evaluation Methods. The baselines of our
experiments are vanilla autoregressive decoding,
speculative decoding (Leviathan et al., 2023; Chen
et al., 2023a), and lookahead decoding (Fu et al.,
2023). We report the decoding speed (token/s) and
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Figure 5: The greedy decoding speed (token/s) on HumanEval and MBPP.

Task Algorithm
Yi 34B/6B Llama-2 70B/7B

token/s speedup token/s speedup

GSM8k

Vanilla 15.33 1.00× 8.96 1.00×
Speculative 16.99 1.11× 16.86 1.88×
Lookahead 25.14 1.64× 13.77 1.54×
Ouroboros 28.23 1.84× 24.03 2.68×

CNN/DM

Vanilla 14.62 1.00 8.12 1.00
Speculative 17.82 1.22× 12.77 1.57×
Lookahead 18.77 1.28× 9.47 1.17×
Ouroboros 22.65 1.55× 14.67 1.81×

WMT16

Vanilla 14.78 1.00× 9.52 1.00×
Speculative 17.48 1.18× 14.72 1.55×
Lookahead 17.98 1.22× 14.65 1.54×
Ouroboros 19.94 1.35× 19.27 2.02×

Table 2: The greedy decoding speed (token/s) and
speedup ratio on GSM8K, CNN/DM and WMT16.

the speedup ratio compared with vanilla autore-
gressive decoding. More hyperparameters of our
experiments are included in Appendix B.

Hardware and Implementation. All experi-
ments are performed on 2 × NVIDIA 80GB A800
GPU with NVLINK × 8 interconnected. The CPU
used is the Intel(R) Xeon(R) Platinum 8350C. We
use the Huggingface transformers package to con-
duct automatic model parallelism for our methods
and all baselines.

4.2 Overall Results
We conduct experiments in both greedy decoding
and random sampling scenarios. The experimental
results are listed as follows.

Greedy decoding. As shown in Figure 5, in
the greedy generation scenario, Ouroboros outper-
forms vanilla greedy decoding, lookahead decod-
ing, and speculative decoding under all backbone
models and dataset configurations. Ouroboros can
achieve up to 61.2 token/s generation speed with
the max generation length of 512, which achieves
speedups of 3.9× compared to greedy decoding,

Task Algorithm
Greedy Random

(temp=0.0) temp=0.5 temp=1.0

GSM8k

Vanilla 8.96 8.97 8.96
Speculative 16.86 14.99 14.11
Lookahead 13.77 13.56 13.46
Ouroboros 24.03 22.04 19.27

CNN/DM

Vanilla 8.12 8.83 8.30
Speculative 12.77 13.43 13.75
Lookahead 9.47 9.31 9.47
Ouroboros 14.67 14.97 14.23

WMT16

Vanilla 9.52 9.75 9.75
Speculative 14.72 13.91 14.28
Lookahead 14.65 12.05 11.91
Ouroboros 19.27 19.95 19.33

Table 3: The random sampling speed (token/s) com-
pared with the greedy decoding speed (token/s), tested
on Llama-2-chat 70B/7B. “temp” means the tempera-
ture used in the random sampling scenario.

2.8× compared to speculative decoding, and 1.9×
compared to lookahead decoding. Table 2 shows
that Ouroboros can also get substantial speedups on
typical natural language tasks, where lookahead de-
coding and speculative decoding can only achieve
limited acceleration.

Random sampling. We test Ouroboros in the
random sampling scenario using Llama-2-chat-
70B/7B, considering that those models after SFT
are more suitable for well understanding rich se-
mantics distributed in human natural languages and
generating diverse outputs. For the sampling hy-
perparameters, the generation temperature is set
among 0.5 and 1.0, and top-p is set to 0.8. Ta-
ble 3 shows that Ouroboros can also be applied to
random sampling, and the speedup over baseline
methods are not much different from the observa-
tions in the greedy decoding scenario.
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Method token/s

Baseline 21.46

+ Accelerating drafting via phrases 49.90
+ Lengthening drafts via phrases 55.92
+ Generate phrases from verification 58.18
+ Reuse phrases from history context 61.20

Table 4: The ablation studies of each component in
Ouroboros on HumanEval using Yi 34B/6B.

0 1 2 3 4 5 6 7 8 9 20
K

54

55

56

57

58

to
ke

n/
s

Figure 6: The effect of selecting K phrases for Eq. (7),
tested on HumanEval using Yi 34B/6B without reusing
phrases from history contexts.

4.3 Ablation Studies and Analyses

In this section, to give a deeper insight into how
Ouroboros achieves higher generation speed, we
conduct ablation studies and analyses to answer the
following questions.

What are the effects of each component? To
demonstrate the specific speedup introduced by
each mechanism, the ablation results are in Table 4.
In the table, each component could bring a speedup
gain, while accelerating drafting and lengthening
the draft are the most effective ones.

How many phrases are needed to lengthen
the draft? Verifying too many phrases might
slow down the verification in real-model inference
scenarios. Here comes a trade-off between more
phrases for possible speedup and slower verifica-
tion. In Figure 6, there exists a best K value, fewer
or more phrases cause slower decoding speed.

Other ablation experiments. The results of
Ouroboros on different hyperparameter and length
settings are show in Appendix B and Appendix E,
respectively. The ablation of phrases reusing on
different context locality are in Appendix F.

4.4 Comparing with Training-based Methods

We compare our training-free Ouroboros with the
state-of-the-art training-based method Eagle (Li
et al., 2024) on Spec-Bench (Xia et al., 2024).
The main idea of Eagle is to specifically train a

Spec-Bench
Ouroboros Eagle

token/s #accept token/s #accept

MT-Bench 24.23 5.16 28.20 3.52
Translation 18.91 3.92 24.23 3.16
Summarization 19.91 4.93 22.03 3.16
QA 21.63 4.67 24.83 3.23
Math Reasoning 25.39 4.95 29.90 3.81
RAG 19.00 5.43 20.56 3.54

Average 21.51 4.96 24.96 3.48

Table 5: The speed (token/s) comparing with training-
based methods, tested on Llama-2-chat-70B. “#accept”
means the number of draft tokens accepted by the target
model in each iteration (on average). Ouroboros uses
Llama-2-chat-7B as the draft model while Eagle uses
its trained 1B model to draft.

tiny draft model under their newly-designed model
architecture and generate tree-style drafts for the
target LLM. In order to accelerate Llama-2-chat-
70B, it trains a 1B draft model by distilling from
Llama-2-chat-70B. The results in Table 5 show
that, although Eagle trains a much smaller draft
model with 1

7 of our scale to draft, it can only
achieve the speed slightly faster than our training-
free method. This is because the much smaller
model significantly reduces the number of draft to-
kens accepted by the target model in each iteration,
i.e., lossing draft effectiveness. We look back at
the training-based methods including Eagle, they
pursue ultimate drafting speed at the expense of
lossing draft accuracy. We, on the other hand, opti-
mize the drafting speed while keeping the accuracy
unchanged. Currently, Eagle cannot be integrated
into Ouroboros since the special model architecture
of their draft model only supports autoregressive
token-level drafting. We believe that our method
can find a better balance between drafting speed
and accuracy when combined with training, which
will be our future work.

4.5 Comparing with Phrases-based Methods

We compare Ouroboros with other phrases-based
method PLD (Saxena, 2023) and REST (He et al.,
2024) on Spec-Bench (Xia et al., 2024). These
methods retrieve phrases from prompts or doc-
uments as drafts for the target model to verify.
Ouroboros outperforms these baselines by a large
margin in Table 6, which shows the effectiveness
of using a draft model as an intermediary to filter
away low-quality phrases before providing them to
the target model.
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Spec-Bench
Ouroboros PLD REST

token/s #accept token/s #accept token/s #accept

MT-Bench 24.23 5.16 13.95 1.45 14.93 1.94
Translation 18.91 3.92 12.99 1.41 13.02 1.57
Summarization 19.91 4.93 16.98 1.97 12.60 1.69
QA 21.63 4.67 11.33 1.26 16.10 1.96
Math Reasoning 25.39 4.95 15.86 1.75 13.07 1.60
RAG 19.00 5.43 15.51 1.64 13.28 1.91

Average 21.51 4.96 14.44 1.51 13.83 1.83

Table 6: The speed (token/s) comparing with phrases-
based methods, tested on Llama-2-chat-70B. “#accept”
means the number of draft tokens accepted by the target
model in each iteration (on average).

5 Related Work

This section introduces existing efforts for efficient
LLM inference, including efficient decoding, effi-
cient implementation and model compression.

5.1 Efficient Decoding

To alleviate efficiency issues caused by autoregres-
sive decoding, non-autoregressive decoding meth-
ods have been proposed. Instead of generating
tokens one by one, non-autoregressive methods
generate multiple tokens in parallel at a time (Wei
et al., 2019; Guo et al., 2020; Ghazvininejad et al.,
2019). These non-autoregressive methods bring
an improvement in inference efficiency and also
significantly hurt model performance. To this
end, drafting-then-verifying methods have been
proposed (Stern et al., 2018; Xia et al., 2023a;
Leviathan et al., 2023; Chen et al., 2023a). The
drafting-then-verifying methods avoid LLMs from
serial generation and instead use them to ver-
ify drafts in a non-autoregressive parallel manner,
which do not reduce model performance and sig-
nificantly accelerate inference.

The key to drafting-then-verifying methods is to
generate drafts quickly and well.

(1) Methods such as speculative decoding (Xia
et al., 2023a; Leviathan et al., 2023; Chen et al.,
2023a) use a model smaller than the target model
to generate drafts. To further align the draft model
with the target model, distillation techniques are
applied (Miao et al., 2023; Zhou et al., 2023). Even
much smaller models can be used as a draft to speed
up the draft model, forming multi-staged specula-
tive decoding (Spector and Re, 2023; Chen et al.,
2023b). Apart from using different models, Self-
Speculative (Zhang et al., 2024a) and PPD (Yang
et al., 2023b) select part of the model layers as the
draft model, while these methods requires extra
training or pre-processing.

(2) Some other efforts explore to use the target
model itself to efficiently generate drafts. Block-
wise (Stern et al., 2018) and Medusa (Cai et al.,
2024) train multiple extra output heads on top of
LLMs and fine-tune heads to generate multiple
draft tokens in parallel. Parallel Decoding (Santilli
et al., 2023) and PaSS (Monea et al., 2023) add
auxiliary input suffixes such as padding tokens or
learnable padding tokens to generate draft output
suffixes. Lookahead Decoding (Fu et al., 2023)
generates n-gram pools using Jacobi-iteration and
uses those n-grams starting with the last generated
token as drafts.

(3) Other methods explore to retrieve phrases
from previous prompts or existing documents, such
as PLD (Saxena, 2023), LLMA (Yang et al., 2023a),
and REST (He et al., 2024). These methods use the
target model to directly verify phrases, incurring
high failure costs on each draft trial. However, we
are the first to use a draft model as an intermediary
to filter away low-quality phrases before providing
them to the target model.

Both the above methods are insufficiently effi-
cient, so we first introduce a small model for draft-
ing and then further accelerate the draft process
of the small model by using phrases. We list vari-
ous possibilities for the sources of phrases (from
draft model, from verification, and from histori-
cal contexts) in our method and conduct ablation
experiments for each source. This indicates the
possibility that other phrase sources (Saxena, 2023;
Yang et al., 2023a; He et al., 2024) can be integrated
into our framework to achieve further speedup.

Besides better generating drafts, traditional tri-
angular attention masking can only verify one draft
sentence using a complete forward pass. Tree-style
verification (Miao et al., 2023; Cai et al., 2024; Fu
et al., 2023) designs specific attention masking to
verify multiple possible drafts at a time.

5.2 Efficient Implementation
The most direct solution to achieving efficient LLM
inference is implementing LLMs efficiently to take
advantage of hardware devices (such as GPUs).
FlashDecoding (Dao et al., 2023) accelerates Trans-
former attention computation within LLMs by par-
titioning the decoding sequence into multiple small
blocks and performing block-wise computation in
fast GPU SRAM instead of GPU HBM. PageAtten-
tion (Kwon et al., 2023) using paged virtual mem-
ory management to organize the decoding cache
during the decoding process, thereby effectively
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utilizing GPU memory bandwidth to reduce the
memory access overhead of inference. Tensor Par-
allelism (Shoeybi et al., 2019) accelerates inference
by sharding matrices into distributed GPUs and per-
forming matrix multiplications in a distributed man-
ner. Some efforts implement LLMs by optimizing
underlying operators (Nvidia, a; Wang et al., 2021;
Nvidia, b) and achieve promising results. Note
that these efficient implementations of LLMs and
Ouroboros are orthogonal. Combining efficient im-
plementation methods and Ouroboros can achieve
more significant inference acceleration.

5.3 Model Compression

Model compression methods are proposed to re-
duce the number of operations needed for model ex-
ecution. Structure pruning (Fan et al., 2020; Wang
et al., 2020; Zhang et al., 2021; Xia et al., 2022) and
unstructured pruning (Han et al., 2015; Chen et al.,
2020; Xu et al., 2021) elimate non-essential pa-
rameters. Quantization (Zafrir et al., 2019; Frantar
et al., 2023; Lin et al., 2023; Kim et al., 2023; Stock
et al., 2021) methods quantize parameters into low-
bit representations. Distillation (Hinton et al., 2015;
Sun et al., 2019; Jiao et al., 2020; Liu et al., 2022;
Park et al., 2021) methods are used to help align
those compressed models to their original versions
to maintain model performance. Early-exiting (El-
bayad et al., 2019; Bae et al., 2023) methods end
the inference process when the output result in
shallow layers reaches the confidence threshold.
MoEfication (Zhang et al., 2022; Song et al., 2023)
turns a dense model into a sparse activated model.
Model compression and Ouroboros are also orthog-
onal and can be integrated for further acceleration.

6 Conclusion

In this paper, we propose a practical algorithm
Ouroboros to improve drafting efficiency for spec-
ulative decoding. We generate phrases in a heuris-
tic manner and use phrases to help draft models
accelerate drafting and lengthen drafts. Our exper-
iments verify that, compared to typical baselines
vanilla speculative decoding and lookahead decod-
ing, Ouroboros respectively achieves speedups of
2.8× and 1.9× and does not affect the generation
quality at all. Our method is completely training-
free, to make it easier to adopt for the users of
speculative decoding. And the training-based ver-
sion of Ouroboros towards extreme acceleration
will be our next work.

Limitations

We only focus on decoder-only model structure
in the experiment. However, Ouroboros is an ex-
tendable framework, which can be applied to var-
ious model structures. Our method currently fo-
cuses on optimization in training-free scenarios. If
the consistency of large and small models is im-
proved through training in the future, our method
can achieve higher acceleration. Both efficient im-
plementation and model compression are orthogo-
nal to our method, and can be combined for further
speedup.

We only focus on the single query scenario. The
application of speculative sampling in the batched
inference scenario is not within the scope of this
paper and can refer to (Liu et al., 2024; Qian et al.,
2024; Chen et al., 2024).

Ethical Considerations

Our method has no potential risk since we are
training-free and does not affect the generation re-
sults at all.
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A Ouroboros does not cause any
performance degradation

Model Yi
34B/6B

DeepSeek
33b/6.7B

CodeLlama
34B/7B

HumanEval

Greedy 18.3 64.6 36.0
Speculative 18.9 64.6 36.0
Lookahead 18.9 64.6 36.0
Ouroboros 18.9 64.6 36.0

MBPP

Greedy 37.8 70.0 46.6
Speculative 38.9 71.1 46.6
Lookahead 38.9 71.1 46.6
Ouroboros 38.9 71.1 46.6

Table 7: Task performance of HumanEval and MBPP
of Greedy, Speculative, Lookahead and Ouroboros us-
ing greedy generation. We report Accuracy(%) of Hu-
manEval and MBPP.

Model Yi
34B/6B

Llama
70B/7B

GSM8K

Greedy 61.0 66.0
Speculative 61.0 66.0
Lookahead 61.0 66.0
Ouroboros 61.0 65.0

CNN/DM

Greedy 35.2 37.1
Speculative 35.1 37.2
Lookahead 35.3 37.1
Ouroboros 35.3 37.1

WMT16

Greedy 21.7 31.1
Speculative 21.9 31.1
Lookahead 22.0 31.1
Ouroboros 21.1 31.1

Table 8: Task performance of GSM8K, CNN/DM
and WMT16 of Greedy, Speculative, Lookahead and
Ouroboros using greedy generation. We report Accu-
racy of GSM8K(%), Rouge1 score(%) of CNN/DM and
BLEU score(%) of WMT16.

Table 7, 8 and 9 show the task performance of
the experiments shown in Figure 5 and Table 2.
Theoreotically, Speculative Decoding, Lookahead
Decoding and Ouroboros generates the same to-
ken sequences compared with vanilla Decoding.
We observe no overall performance degradation of
Ouroboros from Table 7, 8 and 9. The small dif-
ference in task performance among vanilla, Spec-
ulative, Lookahead and Ouroboros is caused by
floating point error, since the calculations are not
fully the same between the methods (especially the
calculation order of attention). The experimental
results show that the calculation error would not
cause notable performance degradation.

Model Yi
34B/6B

HumanEval

Random Sampling 15.9
Speculative 18.9
Lookahead 18.9
Ouroboros 17.7

MBPP

Random Sampling 36.7
Speculative 33.3
Lookahead 35.6
Ouroboros 36.7

GSM8K

Random Sampling 67.0
Speculative 70.0
Lookahead 69.0
Ouroboros 69.0

CNN/DM

Random Sampling 34.6
Speculative 34.0
Lookahead 34.6
Ouroboros 35.6

WMT16

Random Sampling 20.6
Speculative 21.2
Lookahead 22.7
Ouroboros 25.0

Table 9: Task performance using random sampling. We
report accuracy for HumanEval, MBPP and GSM8K,
Rouge 1 score for CNN/DM and BLEU score for
WMT16.

B Hyperparameters

W is a hyperparameter used in Lookahead Decod-
ing to generate phrases. Larger W indicates more
phrases are generated in each forward of our draft
model in Ouroboros, but may also be more time-
consuming.

To investigate hyperparameters sensitivity, we
conduct a grid search on γ,W and β on GSM8K
with Yi-34B/6B. We report token/s of each setting.

W = 14 W = 15 W = 16
β = 5 β = 6 β = 7 β = 5 β = 6 β = 7 β = 5 β = 6 β = 7

γ = 3 28.17 28.07 27.30 27.97 28.23 27.38 28.34 27.64 27.21
γ = 4 28.52 28.42 27.91 29.06 28.77 28.23 29.00 28.68 27.64
γ = 5 28.13 29.32 28.20 28.31 28.96 27.99 27.94 29.03 27.90

token/s std: 0.57 speedup std: 0.04

Table 10: The results of grid search where γ ∈
[3, 5],W ∈ [14, 16], β ∈ [5, 7]. “std” represents the
standard deviation.

Table 10 shows that Ouroboros is stable to hy-
perparameters. This provides an opportunity to pro-
vide a general recipe or conduct heuristic search
instead of grid search to find a good combination
of hyperparameters within a short time.

B.1 Hyperparameters Recipe

Here, we offer a general recipe for hyperparameter
tuning in Table 11. We distinguish downstream
tasks into two types: (1) HH: High homogeneity
between draft and target model, e.g. code genera-
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tion; (2) LH: Low homogeneity between draft and
target model, e.g. machine translation.

Tasks γ W β K

HH 7 ∼ 14 15 ∼ 20 5 ∼ 7 3 ∼ 5
LH 2 ∼ 6 15 ∼ 20 5 ∼ 7 3 ∼ 5

Table 11: An empirical recipe for hyperparameters tun-
ing.

B.2 Hyperparameters Tuning
According to the stability of hyperparameters, we
conduct a heuristic search to find a good combi-
nation. The algorithm of the heuristic search is
described in Algorithm 1.

Algorithm 1: Heuristic Search of Hyperpa-
rameters

Input: Task type T , Dataset D, Objective function f .
Output: Hyperparameters γ,W, β,K
K0 := 3 // K is always 3 in our experiments

Ŵ ∼ [15, 20]

β̂ ∼ [5, 7]
if T = HH then

γ̂ ∼ [7, 14]
else

γ̂ ∼ [2, 6]
end if
γ0 := argminγ ClockTime(f(D; γ̂, Ŵ , β̂,K0))

W0 := argminW ClockTime(f(D; γ0, Ŵ , β̂,K0))

β0 := argminβ ClockTime(f(D; γ0,W0, β̂,K0))
return γ0,W0, β0,K0

B.3 Hyperparameters Used in Our
Experiment

The hyperparameters of our experiments are shown
in Table 12. In Table 4, we use γ = 12,W =
20, β = 8 and K = 3. In Figure 6, we use γ =
12,W = 20, β = 8. In Table 17, we use γ =
6,W = 18, β = 6 and K = 3. In Table 13, we
follow the hyperparameters in Table 12.

C Block Efficiency

In order to show the potential of further systematic
optimization, we follow Miao et al. (2023) to test
the Block Efficiency, with the hypothesis that the
drafting time can be fully ignored. Block efficiency
is the theoretical upper bound of the acceleration
ratio, without considering any resource constraints.

Definition C.1 (Block Efficiency). Define Block
Efficiency η as

η =
# Generated tokens
# Target model calls

Task Model Speculative Lookahead Ouroboros
γ W β γ W β K

HumanEval
Yi-34B/6B 12 16 7 12 20 8 3
DeepSeek-33b/6.7B 3 16 7 11 20 8 3
CodeLlama-34B/7B 5 17 5 10 20 7 3

MBPP
Yi-34B/6B 6 16 6 6 18 6 3
DeepSeek-33b/6.7B 5 15 7 7 15 6 3
CodeLlama-34B/7B 4 16 6 8 16 7 3

GSM8K Yi-34B/6B 7 15 6 4 15 7 3
Llama-70B/7B 7 15 6 6 17 7 3

CNN/DM Yi-34B/6B 5 15 6 10 15 6 3
Llama-70B/7B 4 16 5 4 13 6 3

WMT16 Yi-34B/6B 2 15 6 5 16 6 3
Llama-70B/7B 5 18 7 4 13 6 3

Table 12: Hyperparameters of experiments in Figure 5
and Table 2.

We measure Block Efficiency with Yi-34B/6B
on all 5 datasets following the settings of Figure 5
and Table 2. Results are in Table 13.

Speculative Lookahead Ouroboros

HumanEval 11.16 3.08 13.12
MBPP 6.14 2.71 7.43
GSM8K 5.23 2.30 4.65
CNN/DM 4.71 1.70 7.46
WMT16 2.41 1.37 4.05

Table 13: The Block Efficiency η of Yi-34B/6B on
HumanEval, MBPP, GSM8K, CNN/DM and WMT16.
The method with largest η is highlighted with the bold
font, and the second largest result is with the underlined
font.

From Tabel 13, Ouroboros has relatively high
Block Efficiency in most scenarios, showing that
it has a larger ideal speedup ratio that may be
achieved by future algorithms or systematic im-
plementation.

D Comparing with other
draft-accelerated methods

Cascade Speculative Decoding (Chen et al., 2023b)
is a typical method that accelerates the draft
model in speculative decoding by further using
an even smaller model to draft for the draft model.
The comparison between Ouroboros and Cascade
is described in Table 14. Results show that
Ouroboros outperforms Cascade, showing that the
way we accelerate the draft is more efficient.

Cascade performs slower than the original specu-
lative decoding. One possible reason is that the tiny
models which are utilized to accelerate the Llama-
2-7B model, i.e. Llama-160M (Miao et al., 2023)
and TinyLlama-1.1B (Zhang et al., 2024b), are not
officially trained by Meta. This has led to discrep-
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ancies in the model’s output, thereby slowing down
the drafting process.

Method Model Series token/s

Speculative 7B→70B 16.86

Cascade 160M→7B→70B 7.90
Cascade 1.1B→7B→70B 9.22

Ouroboros 7B→70B 24.03

Table 14: Comparing with various cascade versions of
speculative decoding, tested on GSM8K.

E Ouroboros under various generation
lengths

To investigate the speedup ratio under different
generation length limits, we conduct the following
experiment with generation length limits 64, 128,
256, and 512. This experiment is performed on
GSM8K with Yi-34B/6B, with other hyperparame-
ters aligned with Table 12.

Greedy Speculative Lookahead Ouroboros

l = 64
token/s 14.31 20.18 20.20 30.99
speedup 1.00 1.41 1.41 2.17

l = 128
token/s 14.57 21.90 22.68 35.32
speedup 1.00 1.50 1.56 2.42

l = 256
token/s 14.41 22.12 24.58 38.36
speedup 1.00 1.54 1.71 2.66

l = 512
token/s 15.35 21.45 25.14 40.94
speedup 1.00 1.40 1.64 2.67

Table 15: Speedup with multiple generation lengths. “l”
represents generation length limit.

Greedy Speculative Lookahead Ouroboros

l = 64 44.51 44.51 44.51 44.51
l = 128 60.98 60.98 60.98 60.98
l = 256 64.02 64.02 63.41 63.41
l = 512 64.63 64.63 64.02 64.63

Table 16: Task performance (accuracy) with multiple
generation lengths. “l” represents generation length
limit.

From Table 15, Ouroboros outperforms au-
toregressive decoding, Speculative decoding, and
Lookahead decoding under various lengths. In Ta-
ble 16, short generation length limit (l = 64, 128)
results in answer truncation, which leads to sig-
nificant lower task performance. Close task per-
formances and speedup ratios are achieved in l =
256, 512, showing that all algorithms halt immedi-
ately after generating “<EOS>”.

Two conclusions can be obtained. First, the
length limits used in our experiments are reason-
able, as shorter length limits result in ill-generated

Task 1
Task 2
Task 3
Task 4

4444333322221111

4343434321212121

4321432143214321

4434433322122111

CN=1

CN=2

CN=4

shuffle

Evaluation Order

Figure 7: The ablation studies on context locality. In
our experiments, the task 1,2,3,4 are MBPP, GSM8K,
CNN/DM, and WMT16, respectively.

answers. Second, phrase repetition in the genera-
tion is not the reason why Ouroboros achieves such
a high speedup. If so, we would be able to observe
lower task performance and much higher speedup
from l = 256 to l = 512.

F Context Locality

We further study how context locality accelerate
generation through the reused phases from history.

Context locality remains very high when con-
tinually generating within one task, but may vary
across different datasets. For example, the phrases
pool should contain code pieces when running on
code generation datasets such as HumanEval and
MBPP, but it might contain natural language pieces
when generating text. It remains a question that
whether one type of language pieces could accel-
erate another type of language’s generation. We
conduct the following experiments to further inves-
tigate to what extent and how context locality can
accelerate generation through reusing phrases from
history.

We select four datasets: MBPP, GSM8K,
CNN/DM, and WMT16, corresponding to code
generation, arithmetic reasoning, document sum-
marization, and machine translation, and sample
20 entries from each dataset to organize a new
dataset containing different domains. We evalu-
ate Ouroboros with multiple evaluation order, from
which we could change context locality. We de-
fine consecutive number CN as how many entries
from the same dataset are tested consecutively, as
shown in Figure 7. In the “shuffle” configuration,
we randomize the order of data entries. Higher CN
indicates a better locality, and the “shuffle” con-
figuration should have the worst locality. We then
measure the generation speed in different CN con-
figurations or random shuffling.

Table 17 shows that context locality indeed af-
fects the effectiveness of phrases reusing. With
phrases reusing, CN=20 leads to faster decoding
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Setting shuffle CN=20 shuffle CN=20 CN=10 CN=4 CN = 1

Phrases Reusing off off on on on on on

token/s 32.68 32.53 35.39 36.00 35.32 34.83 35.36

Table 17: The results of ablation studies on context
locality. “CN” stands for consecutive number.

compared to the shuffle setting. However, the effect
caused by context locality is smaller than whether
to turn on the phrases reusing. The speed of lower
CN is similar to the shuffle setting when apply-
ing phrases reusing, but both are approximately
3 token/s faster compared to the cold start setting,
proving that the phrases pool is still effective across
multiple tasks.
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