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Abstract

In-context learning (ICL) is a few-shot learn-
ing paradigm that involves learning mappings
through input-output pairs and appropriately
applying them to new instances. Despite
the remarkable ICL capabilities demonstrated
by Large Language Models (LLMs), existing
works are highly dependent on large-scale la-
beled support sets, not always feasible in prac-
tical scenarios. To refine this approach, we
focus primarily on an innovative selective an-
notation mechanism, which precedes the stan-
dard demonstration retrieval. We introduce
the Language Model-based Determinant Point
Process (LM-DPP) that simultaneously consid-
ers the uncertainty and diversity of unlabeled
instances for optimal selection. Consequently,
this yields a subset for annotation that strikes
a trade-off between the two factors. We apply
LM-DPP to various language models, includ-
ing GPT-J, LlaMA, and GPT-3. Experimental
results on 9 NLU and 2 Generation datasets
demonstrate that LM-DPP can effectively se-
lect canonical examples. Further analysis re-
veals that LLMs benefit most significantly from
subsets that are both low uncertainty and high
diversity.

1 Introduction

As large pre-trained language models (LLMs)
(Brown et al., 2020; Chowdhery et al., 2022; Zhang
et al., 2022a; Tay et al., 2023; Touvron et al., 2023;
Workshop, 2023) grow in scale, they not only ex-
hibit enhanced linguistic capabilities and expanded
world knowledge but also demonstrate a novel abil-
ity for in-context learning. Specifically, LLMs
have shown proficiency in learning from a limited
set of input-output examples (known as demon-
strations (Brown et al., 2020)), and effectively ap-
plying these learned mappings to new, unseen in-
stances. This novel few-shot learning paradigm,
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Figure 1: Left (Step 1): Without assuming access to
a large amount of labeled data, we employ active data
collection, selectively annotating demonstration exam-
ples. Right (Step 2): Prompt construction and model
inference.

which avoids parameter updates, has become a pop-
ular and efficient method for utilizing LLMs (Liu
et al., 2021b; Dong et al., 2023; Liu et al., 2021a).

Previous studies have investigated which in-
stances can serve as effective prompts for ICL
(Liu et al., 2021a; Zhang et al., 2022b; Li and Qiu,
2023). They have demonstrated that retrieving spe-
cific similar contexts for individual test queries
can significantly improve performance (instance
level) and ground truth matters for support ex-
amples. To assign appropriate demonstrations to
all test queries, support sets necessitate diversity
and broad coverage, usually achieved through large
labeled data, following the principle that Monte
Carlo estimation accuracy improves with larger
samples. Nonetheless, these extensive datasets are
often impractical to obtain.

We investigate the selection of demonstrations
from the perspective of Active Learning (AL)
(Cohn et al., 1996; Settles, 2009). Based on the
core principle that not all data points are of equal
value, AL aims to identify the most effective in-
stances in an unlabeled data pool for annotation.
Margatina et al. (2023) elucidates that high seman-
tic similarity, low uncertainty, and high diversity
comprise an effective and efficient annotation strat-
egy. Similarly, Gonen et al. (2022) demonstrates
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that lower prompt perplexity is closely associated
with better performance. While Su et al. (2022)’s
Vote-k framework adopts a data-centric perspective
(i.e., selecting examples that balance diversity and
representativeness), it neglects the assessment of
uncertainty and the inter-relationship among con-
text examples. In this paper, we pursue a more
universally applicable yet straightforward solution,
incorporating confidence signals of LLMs to select
annotation instances that are maximally diverse and
exhibit low uncertainty.

To address this need, we introduce a generic ap-
proach, LM-DPP, which jointly models uncertainty
and diversity within the support set through a con-
ditional Determinantal Point Process. Specifically,
we employ LLMs’ perplexity to score each candi-
date instance in the support set, which serves as a
measure of the LLMs’ uncertainty. Then a Gram
matrix is constructed to balance the uncertainty and
diversity of candidate instances and polynomial-
time maximum a posteriori (MAP) inference (Chen
et al., 2018) is applied to identify the most use-
ful subset of instances to be annotated. From the
perspective of selective annotation, we consider
extremely low-resource ICL scenarios as those in
which the available annotated examples are limited
to a few dozen instances. Our focus centers on iden-
tifying which specific set of demonstrations can
most effectively harness the capabilities of LLMs
within this challenging context.

We validate our method through extensive ex-
periments on 9 NLU and 2 Generation datasets.
We also demonstrate the versatility of LM-DPP
by adapting it to the large language model GPT-
3 (175B). The experimental results illustrate that
our approach can effectively balance two critical
factors, uncertainty and diversity. In summary, our
contributions are as follows.

• We revisit the setup of ICL from the perspec-
tive of selective annotation. We introduce a
novel approach, LM-DPP, to select instances
that balance uncertainty and diversity for an-
notation, aiming to reduce the human engi-
neering workload.

• The experimental results indicate that the pro-
posed method outperforms the previous best-
performing selection methods by a large rela-
tive improvement and exhibits commendable
generalizability across model size (§4.2) and
annotation budget (§4.3) scaling.

• Comprehensive analysis confirms that LLMs
can benefit from a demonstration set that
exhibits both low uncertainty and diversity
(§4.1) and gold annotation matters for ICL
performance (§5.2).

2 Methodology

In this section, we introduce technical details of
LM-DPP for selecting annotation instances ex-
hibiting both high diversity and low uncertainty.
Formally, given a set of unlabeled samples X =
{xi}Ni=1, LM-DPP aims to select a subset L ⊂ X
for annotation, where |L| = M is the annotation
budget, such that the Language Models (LLMs)
maintains high ICL performance on the test set
Dtest. As shown in Figure 2, given a Pre-trained
Language Model (PLM) G , we first score candi-
date instances xi using the perplexity of the LLMs
(§2.1). We then compute vector representations
for the candidate instances, utilizing a conditional
kernel matrix to balance diversity and low uncer-
tainty (§2.2). Subsequently, we perform a greedy
MAP inference algorithm to filter the candidate
annotation set (§2.3).

2.1 Uncertainty

As off-the-shelf LLMs do not contain a classifica-
tion head fine-tuned for specific tasks, calculating
entropy, a common measure of uncertainty used in
AL, across all possible outputs is challenging, if
not unfeasible. Alternatively, we adopt the SPELL
method proposed by (Gonen et al., 2022), using
the perplexity of the LLMs, to score candidate ex-
amples x̃. The scoring function r(x̃) is defined
as:

r(x̃) =
1

PPL(x̃)
= exp

(
1

t

t∑

i=1

logGθ(x̃i|x̃<i)

)

(1)
Recent research also delineates that LLMs are es-

sentially a form of lossless data compression (Delé-
tang et al., 2023), and perplexity, serving as a proxy
for the occurrence of the prompt in some form in
the training data, inherently indicates the model’s
expectancy of the prompt. Therefore, perplexity-
based demonstration selection can, to some extent,
avoid LLM sampling from low-frequency distri-
butions. We also conduct pilot experiments (Ap-
pendix B) that select instances of high uncertainty,
observing a substantial decrease in performance.
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Figure 2: An illustration of our proposed approach. There are three steps in LM-DPP: (1) Estimate the perplexity
for each unlabeled data point, with the reciprocal denoted as r(xi). (2) Employ conditional DPP to jointly model
uncertainty and diversity, selecting a small set of examples for annotation before test time. (3) At test time, the
context is constructed by retrieving relevant examples from the small annotated pool.

2.2 DPP Modeling
We consider similarity as the primary qualitative
feature of the DPP diversification process. In this
section, we present the decomposition of DPP that
more directly elucidates the tension between diver-
sity and the uncertainty measure for each candi-
date instance. Since the DPP kernel, L is typically
written as a Gram matrix, L = BTB, where the
columns of B represent vectors from the candidate
set X . We define Bi as the product of the LLMs
uncertainty term ri ∈ R+ and the normalized di-
versity feature vector ϕi ∈ RD, with |ϕi| = 1.
The new DPP kernel matrix can now be written as
Kij = riϕ

T
i ϕjrj = rirj⟨ϕT

i ϕj⟩ (Ye et al., 2023).
ri can be regarded as the intrinsic evaluation of the
LLMs for the candidate instance and ⟨ϕT

i ϕj⟩ as the
measure of similarity between instances xi and xj .
Therefore, we arrive at L = Diag(r) · ϕ · Diag(r),
and the unnormalized log probability for the subset
S is log det(LS) =

∑
i∈S log(r2i ) + log det(ϕS).

To adjust the trade-off between uncertainty and di-
versity, we introduce a balancing parameter λ, thus
modifying the log probability of LS to:

log det(LS)
′ = λ ·

∑

i∈S
ri + (1− λ) · log det(LS)

(2)
This corresponds to a DPP with kernel L′ =
Diag(exp(αr)) · ϕ · Diag(exp(αr)), where α =
λ/(2(1 − λ)). In Equ. (2), the first term corre-
sponds to the low perplexity of the selected in-
stances, while the second term increases with the
diversity of the selected instances. Without the di-
versity model, we would choose examples of low
uncertainty, but the DPP would tend to repeatedly
select similar examples. Without the low uncer-
tainty model, although we could obtain a highly
diverse set, we might fail to include in S those ex-
amples most favorable to the LLMs. By combining

them, we can achieve a more balanced outcome.

2.3 Inference
The solution to the MAP for DPP, which is to find
the set of examples with the highest probability, is
a complex process and an NP-hard problem. (Chen
et al., 2018) have proposed an improved greedy al-
gorithm that can quickly solve it approximately. In
specific, this algorithm greedily selects the demon-
stration from the candidate set that maximizes the
marginal gain to be added to the final result subset,
until the stopping condition is satisfied. That is,
each time an example j is chosen to be added to
the candidate set Smap, which is initialized as an
empty set. The formalization is as follows:

j = arg max
j∈X\Smap

log det(LSmap∪{j})

− log det(LSmap)
(3)

By performing a Cholesky decomposition on
LSmap , and incrementally updating the Cholesky
factor, the complexity of solving det(LSmap) can
be reduced from O(K3) to O(K). Therefore, the
complexity of each iteration is O(NK). This im-
plies that it is possible to return K annotation exam-
ples within O(NK2) time. Once we have selected
and annotated a subset of examplesL from the un-
labeled support set, following recent work (Liu
et al., 2021a), we retrieve examples from L that
are semantically similar to the test query samples.
We use Sentence-BERT (Reimers and Gurevych,
2019) representations for L and Dtest again and
employ cosine similarity as the metric. The under-
lying principle is that demonstrations most similar
to the test example will best assist the model in
answering the query. For the order of demonstra-
tions, we adhere to the configuration established by
Su et al. (2022), where the order of the retrieved
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Model Budget Method
Natural Language Inference Classification Multi-Choice

Avg
RTE MNLI MRPC QNLI SST-5 DBpedia TREC Hellaswag COPA

GPT-J
6B

|L| = 16

Random 48.243.1 40.923.0 64.755.0 51.863.5 46.493.6 82.727.7 56.9416.1 67.771.5 83.112.0 60.316.6

Kmeans 46.582.6 39.841.0 59.488.6 51.472.1 41.804.7 88.770.8 68.463.5 66.902.2 83.401.3 60.743.8

Vote-k 47.860.9 40.042.9 59.967.3 51.373.9 40.243.7 89.263.5 72.077.9 68.562.9 83.401.6 61.424.4

Fast Vote-k 48.340.7 39.263.9 58.895.0 50.391.7 50.805.8 89.653.4 75.105.5 67.383.8 83.100.8 62.543.8

LM-DPP (ours) 49.811.5 40.921.7 64.361.4 52.962.0 47.665.0 89.063.0 75.202.6 69.442.6 83.602.1 63.672.6

|L| = 100

Random 47.642.2 39.412.8 63.593.1 51.113.5 47.430.9 90.301.5 76.361.3 67.880.8 84.031.7 63.082.2

Kmeans 48.220.5 41.743.8 64.405.0 51.523.1 46.181.6 90.551.7 77.095.6 67.630.5 83.301.8 63.403.1

Vote-k 49.121.3 40.262.9 61.244.1 50.623.1 47.851.2 86.922.0 82.182.5 67.791.8 82.122.8 63.122.6

Fast Vote-k 51.934.1 39.534.2 65.731.2 50.412.6 49.390.9 91.602.1 81.455.4 68.231.0 83.843.9 64.683.2

LM-DPP (ours) 54.442.6 42.312.4 67.101.3 53.261.5 49.621.0 91.032.2 82.013.2 68.921.5 83.801.7 65.832.0

LLAMA-2
7B

|L| = 16

Random 54.701.4 38.811.4 60.421.9 53.032.1 54.104.1 86.826.0 67.4814.4 77.252.1 88.582.5 64.575.6

Kmeans 54.881.3 36.624.9 60.948.0 52.541.8 53.322.7 90.041.8 76.958.4 77.252.1 89.061.4 65.734.5

Vote-k 52.830.5 41.214.8 62.891.3 55.570.4 53.422.6 87.791.6 79.102.5 77.242.4 87.701.3 66.422.3

Fast Vote-k 52.251.2 38.284.0 59.674.4 53.131.7 53.324.3 88.281.8 75.464.7 77.152.9 88.481.9 65.113.3

LM-DPP (ours) 58.993.5 38.285.6 63.094.5 53.812.6 55.373.3 93.651.5 76.284.5 77.251.2 88.671.1 67.263.5

|L| = 100

Random 58.011.2 39.855.1 60.484.0 51.661.9 54.501.6 92.871.2 83.692.6 76.763.1 87.911.2 67.302.8

Kmeans 56.541.3 42.292.9 64.852.2 53.322.1 54.781.9 93.752.0 84.962.9 78.032.3 87.701.5 68.472.2

Vote-k 58.400.7 42.193.2 65.334.0 53.711.4 57.132.3 90.821.5 84.382.7 78.423.3 86.141.6 68.502.5

Fast Vote-k 61.720.3 39.551.5 63.181.4 51.951.0 56.152.1 93.460.7 85.741.9 77.833.0 88.181.5 68.641.7

LM-DPP (ours) 58.992.7 41.315.3 66.802.3 56.150.9 57.623.0 94.820.4 83.502.2 78.912.1 89.361.8 69.722.6

Table 1: Results with GPT-J and LlaMA-2-7B on NLU task. We compare various selective annotation methods
with {100, 16} annotated examples. Bold numbers indicate the highest accuracy among all methods, while those
underlined indicate the second-best. The subscript denotes the standard deviation.

examples is such that s(qi, x) ≤ s(qj , x) when-
ever i < j. s(qi, x) denotes the similarity between
the retrieved example qi and the test example x.
This setup potentially leverages the recency bias
inherent in LLMs (Zhao et al., 2021).

3 Experiments

3.1 Experimental Settings

Datasets We conduct experiments on 9 NLU
and 2 Generation tasks involving different task
formulations, including Sentiment Classification:
SST-5 (Socher et al., 2013); Natural Language
Inference: RTE (Bentivogli et al., 2009), MNLI
(Williams et al., 2017), MRPC (Dolan et al., 2004),
QNLI (Wang et al., 2018); Topic Classification:
TREC (Hovy et al., 2001), DBpedia (Lehmann
et al., 2015); Multiple-choice Question Answer-
ing: Hellaswag (Zellers et al., 2019), COPA (Roem-
mele et al., 2011); Abstractive Summarization:
XSUM (Narayan et al., 2018) and Open Domain
QA: NQ (Kwiatkowski et al., 2019). In the main
experiment, the budget of annotation is set as
({16, 100}). For datasets with publicly available
test data, we use the test data for evaluation. For
others, we follow previous work (Lan et al., 2019;
Su et al., 2022) and use the dev set for evaluation.

Baselines We compare LM-DPP with four strong
selective annotation methods. And in our study,
we primarily utilize GPT-J-6B (Wang and Komat-

Methods Random Kmeans Vote-k Fast Vote-k LM-DPP

L = 16

NQ ACC. 21.744.39 22.783.63 22.793.37 22.013.75 23.833.10

XSUM R-L 24.570.03 23.650.29 24.881.03 24.741.20 26.341.07
FactCC 35.074.26 36.722.41 32.491.44 34.682.86 33.533.70

L = 100

NQ ACC. 23.573.54 22.923.13 24.484.01 23.703.51 24.613.74

XSUM R-L 25.110.41 24.470.46 24.660.84 24.631.37 27.290.55
FactCC 35.645.86 34.862.97 36.122.40 36.533.84 35.162.01

Table 2: Results with LlaMA-2-7B on Generation Task.

suzaki, 2021) and LlaMA-2-7B (Touvron et al.,
2023) as scoring and inference language models,
More details about baselines and implementation
can be found in Appendix A.3, A.2 respectively.

Metrics We compare the predicted answers with
the true outcomes and report the accuracy (Acc.)
for all NLU tasks and exact matching scores (Ra-
jpurkar et al., 2016) for NQ. For summarization
tasks, we assess factual consistency using FactCC
(Kryscinski et al., 2020) 1, a BERT-based (Devlin
et al., 2019) metric for evaluating output faithful-
ness. Simultaneously, for quality assessment, we
report the ROUGE-L F1 score (Lin, 2004) to eval-
uate the summary against the reference.

3.2 Main Results
NLU Task From Table 1, we can observe that
LM-DPP consistently improves the on-average
accuracy across a variety of NLU tasks under

1https://huggingface.co/manueldeprada/FactCC
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different annotation budgets (|L| = 16, |L| =
100). Specifically, with a larger budget, LM-DPP
achieves an average absolute gain of 1.15% on
GPT-J and 1.08% on LlaMA, compared to the best-
performing baseline. This demonstrates that bal-
ancing uncertainty and diversity ensures that the
chosen demonstrations are more likely to contain
complementary information that enhances perfor-
mance. On GPT-J, LM-DPP exhibits the lowest av-
erage standard deviation (2.6, 2.0), and on LlaMA-
2, it shows greater stability than the Random base-
line, albeit marginally lower than Vote-k. This
indicates that LM-DPP can maintain a relatively
stable performance across different experimental
setups, substantially increasing the reliability and
robustness of contextual learning. Furthermore,
we observe that as the annotation budget increases,
performance fluctuations decrease across different
selection methods.

Generation Task Experiments on LlaMA-2 (as
shown in Table 2) reveal that LM-DPP achieves
notable improvement on the NQ task across var-
ious annotation budgets, especially at L = 16,
where it surpasses the best baseline by 1.04%. In
the XSUM task, applying LM-DPP consistently
enhances Rouge scores, particularly achieving a
2.18% increase at L = 100. This underscores the
efficacy of the proposed method in improving the
generality and reference similarity of generated
text. However, this improvement comes at the cost
of some degree of factual consistency with the
reference, potentially due to the pursuit of diver-
sity reducing the focus on task-specific relevance
(see Appendix C.2 for a more detailed analysis).
Overall, LM-DPP boosts the model’s generaliza-
tion and accuracy and highlights the potential for
performance optimization with increased annota-
tion budgets. Despite some variability in factual
consistency, these insights pave the way for fu-
ture research on efficiently allocating annotation
resources in NLG tasks (Dong et al., 2022).
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Figure 3: LlaMA-2-7B Results with L = 4.

Smaller In-Context Examples We investigate
the impact of the number of examples and labels on
ICL performance. As shown in Figure 3, LM-DPP

λ MRPC QNLI TREC DBpedia Hellaswag

0.0 62.57 51.43 79.40 90.67 67.16
0.2 66.42 52.64 78.82 89.47 66.73
0.4 65.34 53.21 77.69 90.22 65.05
0.5 66.89 53.38 81.43 91.52 68.89
0.6 67.10 53.26 82.01 91.03 68.92
0.8 66.39 52.18 81.24 90.77 67.42
0.9 66.51 52.97 79.36 84.25 66.27
1.0 66.14 51.45 81.57 79.49 59.73

Table 3: The GPT-J performance of different trade-off
factors λ. (λ = {0.0, 1.0}) correspond respectively to
the vanilla DPP and the Perplexity baseline (§A.3).

surpasses the other baselines in terms of accuracy
and stability on MRPC and TREC but is slightly
inferior to Vote-k on DBpedia. Further analysis
suggests that a well-balanced demonstration set
does not always result in improved performance
or reduced variance (see Appendix C.3 for more
details). In TREC, performance increases with
more labels, whereas in MRPC, demonstrations
with a single label (all being equivalent) lead to
better performance than a balanced demonstration
set, with less variance.

4 Analysis

4.1 Impacts of the Trade-off Between
Uncertainty and Diversity

We analyze to investigate how the trade-off be-
tween diversity and uncertainty impacts the perfor-
mance of downstream tasks. With an annotation
budget of 100, we test the performance under dif-
ferent (λ) values utilizing GPT-J as the inference
model. As evident from Table 3, a complete in-
clination towards uncertainty (λ = 1.0) generally
yields poorer outcomes across all tasks, likely due
to selective annotation excessively concentrating
on a small portion of data, thereby diminishing
ICL’s generalization capacity. Optimal effects are
often observed at (λ) values of 0.5 or 0.6 (which
approximate a balance between the two factors),
suggesting that moderate uncertainty coupled with
a degree of diversity is beneficial for the model’s
downstream task performance. Moreover, differ-
ent tasks demonstrate varied sensitivities to the (λ)
value. For instance, QNLI shows minor perfor-
mance shifts (±1.95%), whereas DBpedia exhibits
significant performance variations at certain (λ)
values (exceeding ±10.00%), indicating that the
optimal selection of (λ) may relate to the tasks’
characteristics and difficulty levels. Despite such
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Figure 5: Results of GPT-3-Turbo (175B) with 100
annotated examples. LM-DPP consistently improves
in-context learning on various datasets.

variability, we find that introducing this trade-off
factor consistently surpasses the vanilla DPP and
Perplexity baselines, which consider only diversity
or uncertainty, thereby validating the effectiveness
of LM-DPP.

4.2 Transferability across Different LMs
Small model for scoring Scoring every sample
from the extensive unlabeled pool using a more
resource-intensive LLM could be computationally
demanding, particularly when the size of the un-
labeled sample pool is substantial. Therefore, we
attempt to use GPT2 (Radford et al., 2019) (117M,
which possesses basic language modeling capa-
bilities) as a surrogate for the source language
model GPT-J, while maintaining GPT-J for the in-
ference model. Across 9 NLU tasks (annotation
size=100), the average accuracy was 64.76 (details
in Appendix C.1). This indicates that LM-DPP
exhibits strong transferability across different infer-
ence LMs, which means that the selected demon-
strations can be reused.

Transfer to LLMs To gain some intuition on
the effect of model size, we endeavor to transfer
the proposed method to LLMs that are aligned

with human expectations (gpt-3.5-turbo-instruct)
(Ouyang et al., 2022).

In specific, we take the logprobs returned by the
official API as a reference for measuring uncer-
tainty, from which we calculate r(xi) and perform
standard LM-DPP. As depicted in Figure 5, we
report the experimental results of GPT-3.5-Turbo
(175B) with LM-DPP on several datasets and com-
pare them with the Random and Fast Vote-k base-
line. In comparison to random selection, our results
indicate that LM-DPP can significantly enhance the
performance of GPT-3.5, as evidenced by the 5.6%
improvement in TREC accuracy, 1.8% in MNLI,
0.2% in SST-5, and 0.6% in COPA. The proposed
LM-DPP approach surpasses Fast Vote-k by an
average of 3.25%, indicating that considering rep-
resentativeness alone is not sufficient to extract a
high-quality demonstration subset.

4.3 Varying budget of annotated examples

We further investigate how the size of the annota-
tion set affects the performance of in-context learn-
ing. Under annotation sizes of ({16, 100, 300,
800}), we compare LM-DPP with Random selec-
tion, Fast Vote-k, and Vote-k, and report the results
in Figure 4. It is observable that with increasing
annotation budgets, most selective methods gener-
ally show a consistent overall improvement trend.
This is in line with the expectation that more la-
beled data is more likely to retrieve relevant ex-
amples to assist LLMs in accurately answering,
thereby improving the performance of in-context
learning. The proposed approach, LM-DPP, out-
performs other methods at an annotation size of
16 on RTE, Hellaswag, and QNLI, suggesting that
even with extremely low annotation budgets, LM-
DPP can ensure the effectiveness and diversity of
context. Additionally, with a sufficient annotation
budget (L = 800), LM-DPP exhibits commend-
able performance, achieving the best results on two
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Figure 6: The time consumed to select 300 demonstra-
tions from the RTE dataset (comprising 2491 instances).

datasets, MRPC and QNLI. In contrast, the perfor-
mance decline of Vote-k on QNLI may be attributed
to the annotation of noisy data (high perplexity),
with some case analyses provided in the appendix
A.1. This reaffirms the necessity of balancing un-
certainty and diversity.

4.4 Time Efficiency

We explore the execution efficiency of both the
baseline methods and LM-DPP. As illustrated in
Figure 6, the LM-Free approach significantly re-
duces the time required to select demonstrations
compared to methods that require scoring by LM.
Selecting 300 samples takes 4039.1s with Vote-k,
382.6s with LM-DPP, and only 0.3s with random
selection. Since LM-DPP only requires a single
forward pass per sample, we can optimize time effi-
ciency in two ways: (1) preemptively compute per-
plexity for data samples in practical scenarios and
devise methods to reset or update cached demon-
stration samples periodically. (2) using smaller-
parameter scoring models (see §4.2) can achieve
more than tenfold acceleration (24.4s).

5 Discussion

5.1 Case Study

We compare demonstrations selected via LM-DPP
against Random in CosmosQA dataset (Huang
et al., 2019). It reveals that demonstrations se-
lected by the LM-DPP exhibit greater diversity in
content, covering 16 distinct topics such as natural
disasters, personal emotions, political views, so-
cial interactions, and school life, compared to only
8 topics covered by random selection (Figure 7).
The selected demonstrations not only span a broad
range of subjects but also offer a variety in style,

[Annotation_size=16, Scoring_model=GPTJ, CosmosQA]

Random

work and education, 
     social activities, 
         birthday, 
         hobbies …

8 Topics

Demonstration 
Selection

natural disasters, personal emotions,  
political views, social interactions, and school life, etc. LM-DPP

16 Topics

Figure 7: Case Study of selected demonstrations under
the condition of annotation_size=16.

Hellaswag COPA DBpedia TREC QNLI MNLI

Random† 67.88 84.03 90.30 76.36 51.11 39.41

LM-DPP† 68.92 83.80 91.03 82.01 53.26 42.31

UN-LM-DPP 68.48 -0.64 83.20 -0.72 90.74 -0.32 76.48 -6.74 53.37 +0.21 41.09 -2.88

Table 4: The GPT-J performance on various datasets.
†Resulting numbers are taken from Table 1. The anno-
tation budget is 100. In UN-LM-DPP, the annotation
set consists of two parts: Di and Du, with standard ICL
being implemented.

including personal narratives, descriptive events,
emotional expressions, and dialogues. This diver-
sity enhances the model’s ability to interpret and
respond to questions.

5.2 Does annotation benefit from gold labels?

Min et al. (2022) observed that random substitution
of labels in demonstrations minimally impacts the
performance across a suite of tasks, while Yoo et al.
(2022) highlighted that the integrity of input label
mapping is a crucial factor. In this section, we ex-
plore whether Gold Labels (i.e., providing correct
labels) are essential for achieving high performance
in ICL.

Specifically, we divide the selective annotation
process into several steps. Step 1: Annotate 50 in-
stances to construct an in-domain dev set Di (con-
taining gold labels). Step 2: For the unannotated
instances, we pair each input xi with every possi-
ble label y ∈ C (C is the label set) to construct a
train set D′ carrying pseudo-labels. Step 3: Given
the prompts Z ∈ D′, the ICL accuracy on the in-
domain dev set Di is denoted as Acc(Z). We select
the Top-50 Z , represented as Du. Therefore, the
final annotation set (|L| = 100) comprises two
parts: Di with gold labels, and Du selected post-
hoc. This process is referred to as UN-LM-DPP,
followed by conducting standard ICL experiments.

As shown in Table 4, we observe that UN-LM-
DPP, compared to LM-DPP with gold annotations,
exhibits a certain performance decline in most

1272



tasks but still surpasses Random selection in some
datasets. The performance fluctuation varies sig-
nificantly across different tasks, depending on the
specific characteristics of the datasets, as evidenced
by a decrease of -6.74% in TREC, yet only -2.88%
in MNLI.

Dataset Hellaswag COPA DBpedia TREC QNLI MNLI

Gold-Labeled 47.63% 38.86% 25.11% 11.52% 52.30% 37.43%

Table 5: The proportion of golden-labeled examples
identified within an unlabeled setting in UN-LM-DPP.

This suggests that, to a certain extent, ICL gener-
ally benefits from gold demonstrations. In addition,
we report the proportion of gold demonstrations
within the constructed Du during Step 2, with the
results presented in Table 5. In QNLI, there is a
52.30% gold label ratio, and surprisingly, we ob-
serve a slight performance improvement compared
to LM-DPP. It is evident that within similar tasks,
a higher ratio of gold-standard examples correlates
with a smaller decline in ICL performance. How-
ever, this is not a generalized finding across the
board, and we consider annotation-free ICL as a
direction for future work.

6 Related Work and Background

Determinantal Point Process The Determinan-
tal Point Process (DPP) is an elegant probabilistic
model that captures negative correlations and al-
lows for efficient algorithms in sampling, marginal-
ization, and conditioning (Kulesza, 2012). For-
mally, a point process P is a probability measure
on the power set of V , that is, the set of all discrete
items 2V . If Y is a random subset drawn according
to P , then for every S ⊆ Y :

P (S ⊆ Y ) = det(LS) (4)

for some kernel matrix L ∈ Rn×n that is symmet-
ric, real and positive semidefinite. LS denotes the
submatrix of L obtained by restricting to the rows
and columns indexed by S. The operator det(·)
represents the determinant of a matrix. Typically,
the DPP kernel L can be written as a Gram matrix,
Lij = K(ai, aj), where K(·, ·) is the kernel asso-
ciated with the determinantal point process, often
expressed as ϕ(ai)Tϕ(aj), ϕ is the feature map of
a reproducing kernel (Ye et al., 2023).

Under distribution P , our objective is maximum
a posteriori (MAP) inference, which is to find the

subset of items with the highest probability, corre-
sponding to the most diverse subset of items.

Smap = argmax
S∈Y

det(LS) (5)

Although finding the mode of a DPP is NP-hard,
pioneering works (Kulesza, 2012; Lee et al., 2009;
Chen et al., 2018; Gillenwater et al., 2012) have
largely relied on greedy algorithms or sampling
methods, and have succeeded in performing greedy
MAP inference within polynomial time.

In-context Learning The capacity for in-context
learning has been observed in large-scale Pre-
trained Language Models (PLMs) such as GPT-
3, representing a few-shot learning paradigm that
does not require any parameter updates. It involves
pre-pending a small number of demonstrations as
prompts before the test input, allowing LLMs to
discern patterns and “learn” to predict.

Formally, let x̂ be the test query to be addressed,
and s(·, ·) be the cosine similarity. Standard ICL
prompts the language model G with a set of exam-
ple input-output pairs {(x1, y1) . . . (xm, ym)} and
predicts the answer ŷ for the query. Typically, the
pairs (xi, yi) are retrieved from a train set D within
the same domain through similarity.

ŷ = argmax
y

Gθ(y | x̂, C), (6)

C = TopK
(xi,yi)∈D

(s(x̂, xi)).

Recent works have aimed to enhance ICL by se-
lecting valuable demonstrations (Liu et al., 2021a;
Rubin et al., 2022), optimizing the order of demon-
strations (Lu et al., 2022), etc. Su et al. (2022)
utilize selective annotation to significantly reduce
annotation costs while ensuring high ICL perfor-
mance. Yang et al. (2023) explore the corpus-level
in-context learning via DPP and mention the need
to use gold labels to score candidate samples. CEIL
(Ye et al., 2023) train the demonstration retriever
with a learnable conditional DPP. However, these
existing works are highly dependent on large anno-
tated support sets.

7 Conclusion and Future Work

In this work, we focus primarily on an innovative
selective annotation mechanism and introduce an
efficient annotation practice, LM-DPP. It selects
both diverse and low-uncertainty examples for an-
notation and demonstrates promising results in var-
ious LMs. Moreover, empirical results validate the
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generalizability of LM-DPP across model size and
annotation budget scaling. In the future, we plan
to apply LM-DPP to more NLP tasks and explore
annotation-free selection methods.

Limitations

The proposed work still has some limitations.

Selection Method. Previous studies have eluci-
dated that low uncertainty ensures familiarity of the
LLMs with the demonstrations (Gonen et al., 2022),
while diversity ensures that the selected demonstra-
tions may encompass a broad range of information,
thereby enhancing the overall effectiveness of ICL
(Margatina et al., 2023). However, we still lack pi-
lot experiments tailored to these factors to examine
their impact on ICL performance thoroughly.

Retrieval Method. We have implemented
prompt retrieval based on similarity (TopK). How-
ever, it is currently unclear whether the proposed
method applies to other prompt retrieval methods,
such as Random Retrieval, Coverage-based
Retrieval (Gupta et al., 2023), and Retrieval based
on Mutual Information (Sorensen et al., 2022). We
plan to extend our work to cover more scenarios.

Retriever. Retriever is indeed one of the vari-
ables in our experiments. However, we have solely
employed a retriever based on the SentenceBert ar-
chitecture. Validating our experimental results on
a more diverse array of retrievers constitutes future
extension work.

Language. We also acknowledge that all datasets
considered in this work are in English, which does
not ensure that our work can be broadly generalized
to other languages.

Potential Risk

Previous works have shown Large language mod-
els contain rich biased data (Bender et al., 2021).
Since we use LLMs like LlaMA, GPT-J, and GPT-
3, the proposed LM-DPP approach may elicit some
content with offensive language or discrimination.
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A Appendix

A.1 Details with perplexity estimation

QNLI

|L| = 16 |L| = 100

Perplexityavg 75.16 95.43
Perplexitymax 143.48 278.62

Table 6: Annotation Set (selected by Vote-k) Perplexity
Statistics.

We report the perplexity of annotated instances
when (|L| = {16, 100}) (as shown in Table 6). It’s
observed that as the annotation cost increases to
100, there is a corresponding significant rise in per-
plexity. For instance, in COPA, the Perplexityavg in-
creases by 4.01, and Perplexitymax rises by 125.70.
A similar phenomenon is also observed in DBpe-
dia. This indicates to some extent that introducing
demonstrations with high perplexity can lead to a
decrease in ICL performance.

A.2 Implementation Details

The inference method we employed is direct (a
regular inference used in (Brown et al., 2020)),
which involves presenting demonstrations and can-
didate answers to the LLMs to select the candidate
with the highest likelihood. For each test dataset,
a specific prompt template (Table 12) is used for
scoring and inference. For each test instance, we
include as many retrieved samples as possible in
the preceding prompt, up until the maximum to-
ken length was reached (e.g., 2048 for GPTJ, 4096
for LlaMA-2-7B). Sentence-BERT (Reimers and
Gurevych, 2019) is used as the demonstration re-
triever. Following (Rubin et al., 2022), we adopt
the paraphrase-mpnet-base-v2 to encode the test in-
put xtest and the inputs of the train set. All experi-
ments are conducted on a single Tesla V100 GPU
with 32GB of memory. Empirically, obtaining em-
beddings for unlabeled examples using Sentence
BERT as described in Section 2.1 varies between
0.2 to 2 hours, contingent upon the dataset size. In
Section 2.2, our approach requires approximately
6 seconds to generate the annotation set on a single
CPU. Notably, ICL obviates the need for model
training.

Dataset Task Type Split
SST-5 Sentiment Classification 8544/1101/2210

RTE Natural Language Inference 2491/277/3000

MNLI Natural Language Inference 392702/19647/19643

MRPC Natural Language Inference 3668/408/1725

QNLI Natural Language Inference 104743/5463/5463

TREC Topic Classification 5452/0/500

DBpedia Topic Classification 560000/0/70000

Hellaswag Multiple-choice Question Answering 39905/10042/10003

COPA Multiple-choice Question Answering 1000/0/500

CosmosQA Multiple-choice Question Answering 9471/1221/1140

XSUM Abstractive Summarization 204045/11332/11334

NQ Open Domain QA 307373/7830/0

Table 7: Dataset Statistics in the Experiments.

We also acknowledge that acquiring unlabelled
samples in practice is a process marked by signifi-
cant variance(Su et al., 2022). To simulate this real-
istic scenario, we randomly sample 3K instances
from the training set multiple times to serve as the
pool of samples awaiting annotation. In all the ex-
perimental setups described in this paper, we utilize
four distinct seeds (0, 1, 42, 123), and the values
presented in the tables (figures) reflect the aver-
age across four runs. Additionally, we provide the
corresponding standard deviations for these values.

A.3 Baselines

Random A randomly selected annotation base-
line is necessary, as it directly picks unlabeled
training instances at random. Ideally, data points
selected by any heuristic algorithm should yield
better performance compared to it.

Perplexity (Gonen et al., 2022) reported that
lower perplexity correlates with better performance.
We rank candidate instances by their perplexity and
select the top |L| instances with the lowest perplex-
ity as our annotation set.

K-means As a representative selection method
in the series of diversity approaches, we employ
clustering techniques. Following (Yu et al., 2022),
we first encode all data points using an Encoder,
then perform k-means clustering with |L| clusters
and select instances accordingly.

Vote-k (Su et al., 2022) selects |L|/10 samples
through a graph-based voting mechanism, after
which the |L|/10 labeled samples are used as con-
text for the LLMs, to calculate confidence scores
for the other unlabeled candidate instances. Finally,
the instances are grouped according to percentile
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variables

The UK's job market slowed in May, with the rate of growth in hiring employees sinking to a four-month low, according to a report.

The number of people hired by UK firms fell in May, according to a report.

LM-DPP summary

Rouge F1: 43.24               FactCC: 98.06

Rouge F1: 58.06               FactCC: 7.97 

- - - - 
In-context evidence in LM-DPP
…… 
The availability of temporary staff saw its fastest drop in seven months, leading recruitment consultants to report difficulties in hiring suitable 
people. 
KPMG partner Bernard Brown said: "The UK job market saw a slight slowdown in May, as those on boards took time to digest the election result 
and work out the ramifications for their business. 
……

❌

 

KPMG and the Recruitment and Employment Confederation (REC) reported that the rate of expansion in hiring employees sank to a four-month low. 
The number of job vacancies made available also fell to their slowest in 2015. Although starting salaries for permanent employees continued to 
grow, the pace of growth sank to its lowest since April's nine-month high. Recruitment agencies reported that the pay of temporary and 
contracted staff also continued to grow, although at its slowest since January. 
The availability of temporary staff saw its fastest drop in seven months, leading recruitment consultants to report difficulties in hiring suitable 
people. KPMG partner Bernard Brown said: "The UK job market saw a slight slowdown in May, as those on boards took time to digest the election 
result and work out the ramifications for their business. “ The public sector continues to suffer, with pay growth rising by just 0.2% in the last 
reported quarter." 

Gold summary: The pace of hiring permanent staff in the UK slowed down in May, according to a report.

 

Figure 8: Case analysis in XSUM, we compare the performance of Random and LM-DPP on generation quality and
fact consistency

ranks of confidence scores, and selection is made
through voting within each group.

Fast Vote-k A rapid and efficient alternative to
Vote-k, it circumvents the use of LLMs to com-
pute confidence scores. It directly selects the |L|
samples with the highest voting scores.

A.4 Dataset Statistics

Table 7 presents the data statistics of the datasets
employed in our experiments.

A.5 Prompt Template

The prompt templates utilized for each task are
reported in Table 12.

B High Uncertainty

LM-DPPhigh_uncertainty

RTE MNLI MRPC QNLI SST-5

51.29 42.91 66.17 52.30 48.74

DBpedia TREC HellaSwag COPA

93.18 81.40 66.95 83.80

Table 8: Results of selecting high-uncertainty in-
stances (GPTJ + annotation_size=100+LM-DPP). Im-
provements in high uncertainty are underlined.

Apart from the MNLI and DBpedia datasets,
selecting instances of high uncertainty led to a
certain degree of performance degradation (Table
8). Therefore, we prioritize the selection of low-
uncertainty instances in our experiments and hope
to inspire further work in the area of perplexity
estimation.

C Analysis and supplement

C.1 Small Model for scoring

LM-DPPgpt2_scoring

RTE MNLI MRPC QNLI SST-5

51.96 41.79 66.81 51.43 47.32

DBpedia TREC HellaSwag COPA Avg

90.67 81.85 67.94 83.09 64.76

Table 9: Results of using GPT2 as a surrogate.

Table 9 presents the results of using GPT2 as a
surrogate.

C.2 Fact Consistency in XSUM

Upon closer analysis (as shown in Figure 8), we
find that in pursuit of diversity and uncertainty in
demonstrations, LM-DPP may retrieve content that
is topically related but not completely factually
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Examples

LM-DPP: equivalent, equivalent,
equivalent, equivalent

Random: equivalent, not equivalent,
not equivalent, not equivalent

Table 10: In MRPC, the four demonstration label exam-
ples selected by Random and LM-DPP.

consistent. For example, while the source text em-
phasizes a "The UK job market saw a slight slow-
down in May," the LM-DPP generated summary
mentions "fell in May," shifting the focal point of
the information and potentially misleading readers
to interpret a deterioration in actual employment
conditions rather than a deceleration in growth rate.
This discrepancy is also reflected in the context
evidence cited by LM-DPP, which notes "the avail-
ability of temporary staff saw its fastest drop in
seven months," further reinforcing a negative por-
trayal of employment circumstances, despite not
fully reflecting the source’s focus or theme.

We further observe that balancing the Rouge
scores with FactCC scores, ensuring factual consis-
tency while maintaining high levels of abstractive-
ness and textual similarity, presents a significant
challenge for LM-DPP. This observation suggests
that future research might need to explore more
nuanced demonstration selection strategies or intro-
duce stronger fact-checking and correction mecha-
nisms to mitigate the potential risks to factual con-
sistency arising from the pursuit of diversity and
uncertainty. This provides valuable insights on how
to further optimize the method moving forward.

C.3 Impact of label coverage
At L = 4, the Acc. of Random and LM-DPP on
MRPC and TREC are respectively (47.30, 40.63)
and (61.36, 49.64). Combined with Tables 10 and
11, it can be seen that as the label coverage in-
creases, performance on MRPC decreases, while
TREC shows an expected pattern. This may be
related to the difficulty of the task; moreover, from
the perspective of data, an imbalanced label dis-
tribution might more closely approximate the sta-
tistical characteristics of real-world data. In cer-
tain cases, imbalanced examples could reflect key
signals of specific categories, aiding the model in
learning effective decision boundaries more swiftly.
We look forward to further research in this area.

Random

Input: What are the factors leading to the high teen preg-
nancy rate in Spartanburg , South Carolina?
Label: description and abstract concept

Input: Who invented Make-up ?
Label: human being

Input: Who is the current UN Secretary General ?
Label: human being

Input: What does God create in the first sentence of the
Bible ?
Label: entity

LM-DPP

Input: How much caffeine is in a 16 oz cup of coffee ?
Label: numeric value

Input: What is the fastest growing state in the U.S.A. in
1998 ?
Label: location

Input: What British female pop singing star of the 1960s
and early 1970s was a child actress in the 1940s and ’50s
Label: human being

Input: Why was Muhammad Ali stripped of his title and
barred from boxing in 1967 ?
Label: description and abstract concept

Table 11: In TREC, the four demonstration examples
selected by Random and LM-DPP.
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Dataset Prompt Template Example

SST-5
How do you feel about the following sentence?
\n {Input} \n answer:{Output}

Input: this is a stunning film, a one-of-a-kind tour de force.
Output: very positive

RTE
{Input1}. Based on that information, is the claim
{Input2} "entailment", or "contradiction"? \n answer:{Output}

Input1: No Weapons of Mass Destruction Found in Iraq Yet.
Input2: Weapons of Mass Destruction Found in Iraq.
Output: contradiction

MNLI
{Input1}. Based on that information, is the claim
{Input2} "True", "False", or "Inconclusive"? \n answer:{Output}

Input1: Good luck, my friends.
Input2: I wish my friends luck.
Output: True

MRPC
Are the following two sentences "equivalent" or "not equivalent"?
\n {Input1}.\n {Input2}. \n answer:{Output}

Input1: Staff writer Dave Michaels contributed to this report.
Input2: Staff writers Frank Trejo and Robert Ingrassia contributed to this report.
Output: equivalent

BoolQ
{Input1}. Based on that information, is the claim
{Input2} "True", or "False"? \n answer:{Output}

Input1: is there going to be another season of Britannia.
Input2: In March 2018, is was announced that Sky Atlantic had renewed the show for a second season.
Output: True

QNLI
{Input1}. Based on that information, is the claim
{Input2} "entailment", or "contradiction"? \n answer:{Output}

Input1: About 40,000,000 tons were produced in 1984.
Input2: How many tons of bitumen ere produced in 1984?
Output: entailment

TREC content: {Input} \n {Output}
Input: What films featured the character Popeye Doyle ?
Output: entity

DBpedia title: {Input1}; content: {Input2} \n {Output}
Input1: Panay Technological College
Input2: Panay Technological College is a higher institution in Kalibo Aklan.
Output: educational institution

Hellaswag The topic is {Input1}. {Input2} \n {Output}
Input1: Hurling
Input2: A group of lacrosse players are shown on a field. they
Output: run around, trying to get the ball away from each other.

COPA {Input2}. What was the {Input1} of this? \n {Output}
Input1: cause
Input2: My body cast a shadow over the grass.
Output: The sun was rising.

CosmosQA {Input1}. {Input2} \n {Output}
Input1: El dropped me off at B. ’s house. She welcomed El . and me into her home .
Input2: Why did she welcome us into the house ?
Output: She liked us and enjoys our company .

Subj Input: {Input}. \n Type: {Output}
Input: katie is a young girl who loves to climb .
Output: objective

XSUM write a short summary:\n {Input}. \n TL;DR: {Output}
Input: A lone hiker salutes the aptly named Wet Sleddale Reservoir in Cumbria, as it overflows down a 21 metre high dam wall...
Output: Photograph by Jeff Overs / BBC

NQ Write an answer: {Input} \n {Output}
Input: who is credited with creating the gothic art movement
Output: Abbot Suger

Table 12: Prompt templates and corresponding examples used in each dataset.
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