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Abstract

Accurate text summarization is one of the most
common and important tasks performed by
Large Language Models, where the costs of
human review for an entire document may be
high, but the costs of errors in summarization
may be even greater. We propose Detecting
Errors through Ensembling Prompts (DEEP)
- an end-to-end large language model frame-
work for detecting factual errors in text summa-
rization. Our framework uses a diverse set of
LLM prompts to identify factual inconsisten-
cies, treating their outputs as binary features,
which are then fed into ensembling models. We
then calibrate the ensembled models to produce
empirically accurate probabilities that a text is
factually consistent or free of hallucination. We
demonstrate that prior models for detecting fac-
tual errors in summaries perform significantly
worse without optimizing the thresholds on sub-
sets of the evaluated dataset. Our framework
achieves state-of-the-art (SOTA) balanced ac-
curacy on the AggreFact-XSUM FTSOTA, To-
fuEval Summary-Level, and HaluEval Summa-
rization benchmarks in detecting factual errors
within transformer-generated text summaries.
It does so without any fine-tuning of the lan-
guage model or reliance on thresholding tech-
niques not available in practical settings.'

1 Introduction

The advancement of cutting-edge Large Language
Models (LLMs) like GPT-4, Claude 3, LLaMA-2,
and Gemini variants introduces a significant chal-
lenge: despite producing content that is linguis-
tically coherent, their outputs frequently contain
misleading or false information, often referred to
as hallucinations or factual inconsistencies. Hal-
lucinations in Large Language Models refer to in-
stances where the model generates usually plau-
sible but entirely fabricated information. Factual
inconsistencies, a specific type of hallucination,
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occur when generated text contradicts the source
material or other well-established facts not explic-
itly mentioned in the source.

Traditional automatic evaluation methodologies
like ROUGE (Lin, 2004), METEOR (Banerjee and
Lavie, 2005), and BLEU (Papineni et al., 2002)
have been instrumental in assessing Natural Lan-
guage Generation tasks. However, numerous stud-
ies demonstrate the lack of correlation between ini-
tial automatic evaluation models and human judg-
ment in tasks such as machine translation (Callison-
Burch et al., 2006; Bhattacharyya et al., 2007),
image captioning (Cui et al., 2018), and notably,
factuality (Fu et al., 2023; Mao et al., 2023). In par-
ticular, these models struggle to capture semantic
equivalence when there are substantial discrepan-
cies in length, syntax, and wording between two
texts (Guo and Vosoughi, 2023; Stent et al., 2005).
Consequently, specialized models (Laban et al.,
2021; Kryscinski et al., 2019; Goyal and Durrett,
2021) have been developed to assess textual factual
consistency, verifying the truthfulness of a claim
or summary based on given ground truth textual
content.

However, existing models, often fine-tuned vari-
ants of ROBERTa (Liu et al., 2019) for assessing
factual consistency, exhibit significant limitations.
As highlighted in Tang et al. (2023), these mod-
els show reduced effectiveness in detecting fac-
tual inconsistencies in content produced by recent
state-of-the-art text-generating models. Ensemble
learning is the practice of merging the outputs of
multiple models to produce a more accurate predic-
tion (Dietterich, 2000). Forbes et al. (2023) demon-
strated that ensembling factual consistency mod-
els by calculating their weighted mean surpassed
the performance of individual models in detect-
ing hallucinations within a small dataset of GPT-3-
generated Wikipedia abstractive summaries.

In light of these limitations, this study evaluates
benchmarks exclusively featuring summaries from
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recent transformer-based language models. This ap-
proach more accurately reflects actual usage scenar-
ios, where users commonly need to validate texts
generated by newer LLMs rather than texts from
older text generation models. We assess factual
consistency using the AggreFact-XSUM FTSOTA,
TofuEval Summary-Level, and HaluEval Summa-
rization (Tang et al., 2023, 2024; Li et al., 2023)
benchmarks, consisting of transformer-generated
abstractive summaries featuring hallucinations that
existing models struggle to identify.

Existing factual consistency encoder models out-
put numerical scores, requiring thresholding to map
the scores to binary labels. However, Tang et al.
(2023) demonstrates that the optimal threshold for
factual consistency models varies depending on the
recentness of the summarization model within the
AggreFact dataset. Previous studies that report the
performance of these factual consistency models
have fine-tuned each model’s threshold using the
development subset of the same dataset under eval-
uation (Laban et al., 2021; Fabbri et al., 2022; Tang
et al., 2023, 2024).

This approach is problematic and unrealistic, as
it assumes access to labeled data from the target
dataset, which may not be available in real-world
scenarios. In this study, we benchmark five popu-
lar state-of-the-art factual consistency models and
demonstrate a substantial decline in performance
when thresholds are learned from different datasets
or set to their default midpoint.

We extend the findings of Tang et al. (2023) and
discover that the optimal threshold for each fac-
tual consistency model varies widely across differ-
ent datasets, even when evaluating text generated
solely from recent summarization models. Fig-
ure 1 reveals that, even when considering only
datasets with summaries from recent transformer
models, the optimal linear threshold for maximiz-
ing balanced accuracy differs widely for each fac-
tual consistency model, covering a broad range of
their possible output scores.”> Moreover, Figure 2
demonstrates that optimizing thresholds on non-
test data or setting them to the midpoint of each
model’s score range substantially reduces balanced
accuracy compared to test-set optimization. The
reliance of these models on dataset-specific thresh-
olds, as demonstrated by our findings, limits their
practical utility in evaluating factual consistency

2QuestEval, SummaC-Conv, and AlignScore (with mode

nli_sp) generate scores from O to 1. SummaC-ZS scores
range from -1 to 1. QAFactEval scores range from 0 to 5.

across a diverse range of text without further fine-
tuning or adjustments.

Comparing Optimal Thresholds of Factual
Consistency Models Across Datasets
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Figure 1: Optimal thresholds of factual consistency
models when set to maximize balanced accuracy on
each test dataset.

Previous efforts to use LLMs for identifying fac-
tual inconsistencies include Wang et al. (2023),
who prompted ChatGPT to return numerical fac-
tuality scores for summarization, and Luo et al.
(2023), who used ChatGPT to produce binary fac-
tuality judgments. However, Tang et al. (2023)
showed that these existing prompts had shown poor
performance on detecting factual consistencies over
the AggreFact FTSOTA benchmark of transformer-
generated summaries. . However, reliably mapping
the generated token probabilities from the reason-
ing steps to the final answer’s confidence remains
unclear, especially considering factors like temper-
ature and sampling methods that influence token
generation.

Existing LLLM solutions are frequently overcon-
fident in their assessments of a text’s factual con-
sistency. Tang et al. (2024) showed that their
summary-level binary factual consistency prompts,
when used with GPT-4, frequently failed to identify
sentences with factual errors, resulting in False Pos-
itive Rates of 69% and 46% on the MediaSum and
MeetingBank subsets of the TofuEval Summary-
Level dataset, respectively. This issue of overcon-
fidence is not unique to their approach but rather
a general problem that neural networks, including
LLMs, tend to be overconfident in their predictions
(Guo et al., 2017; Minderer et al., 2021; Jiang et al.,
2021; Xiong et al., 2023).3

3Binary prompts, by their very nature, force models to
reduce nuance and uncertainty into a single decision, con-
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Effect of Thresholding Strategies on
Factual Consistency Models' Performance
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Figure 2: Factual consistency models’ performance
varies significantly based on threshold optimization
strategy. The bars show balanced accuracy for factual
consistency models under three threshold optimization
strategies: optimizing the thresholds on the test dataset
("Optimizing on Test"), setting thresholds to the mid-
point of each model’s score range ("Optimizing at Cen-
ter"), or optimizing on all datasets except the test set
("Optimizing on Train"), which reflects a realistic sce-
nario of applying the model to unseen data. Numbers
above bars quantify the decrease in balanced accuracy
when thresholds are optimized on non-test data com-
pared to the test dataset itself, underscoring the difficulty
of effectively applying these models to unseen data in
practice.

Confidence elicitation, an increasingly popular
method, involves prompting the LLLM to output
its uncertainty along with its prediction (Lin et al.,
2022; Xiong et al., 2023; Tian et al., 2023). Despite
its potential, no confidence elicitation approach has
yet consistently yielded accurate confidence esti-
mates across diverse LLMs and tasks, limiting its
current practical utility. Calibration, the process of
adjusting model-predicted probabilities to match
their empirical accuracies, has remained the lead-
ing solution to correct model overconfidence (Guo
et al., 2017).

We propose a novel approach - crafting a di-
verse set of LLM prompts that each output a binary
score, indicating each prompt’s belief of whether
the summaries contain any factual errors. These bi-

tributing to the overconfidence observed in their responses.

nary features are then fed into ensembling models,
which integrate the multiple perspectives of each
prompt to produce a single probability. Finally, we
calibrate the ensemble models to obtain empirically
accurate probabilities that a given summary is fac-
tually consistent or free of hallucination.* The full
pipeline of our framework can be seen in Figure 3.

The primary contributions of our work can be
outlined as follows: 1: We demonstrate that prior
methods for detecting factual errors in summariza-
tions perform significantly worse without the com-
mon practice of an optimized threshold on sub-
sets of the dataset under test. 2: We introduce a
large and diverse set of prompts, each employing
unique methods and evaluation protocols to detect
hallucinations and factual inconsistencies in gen-
erated summaries. 3: Our end-to-end framework
achieves state-of-the-art balanced accuracy on the
AggreFact-XSUM FTSOTA, TofuEval Summary-
Level, and HaluEval Summarization benchmarks
in detecting factual errors in transformer-generated
text summaries, all without fine-tuning the lan-
guage model or relying on impractical thresholding
techniques.

2 Datasets

The AggreFact FTSOTA benchmark (Tang et al.,
2023) tests a model’s ability to identify factual
inconsistencies in summaries produced by fine-
tuned transformer-based summarization models.
The dataset combines nine existing annotated fac-
tuality datasets, converting all factual consistency
scores to binary. AggreFact is categorized based
on the development timeline of the underlying sum-
marization models into FTSOTA, EXFORMER,
and OLD categories, and is divided into AggreFact
CNN/DM and AggreFact-XSUM subsets. We
benchmark AggreFact-XSUM FTSOTA and ex-
clude its CNN/DM counterpart due to its insuf-
ficient number of factual inconsistencies and its
more extractive summary style, compared to the
more abstractive style of current SOTA LLMs.
HaluEval (Li et al., 2023), a comprehensive
benchmark for assessing hallucination in LLMs,
uses a ChatGPT-based two-step sampling-then-
filtering framework to create the dataset. We focus
*We craft prompts that aim to detect either factual incon-
sistencies or hallucinations, allowing the ensembling model
to determine the importance of each prompt for the datasets it
is trained on. This approach enables us to sidestep the subtle
distinction between factual inconsistencies and hallucinations,

and instead let the ensembling model decide what prompts are
most relevant for the training data.
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Figure 3: Diagram of our end-to-end framework.

on the summarization subset of HaluEval, which
pairs each of the 10,000 sampled document con-
texts with two summaries: one with hallucination
and one without.

TofuEval (Tang et al., 2024) is a topic-focused di-
alogue summarization benchmark containing 1.5K
LLM-generated summaries from the MediaSum
(Zhu et al., 2021) and MeetingBank (Hu et al.,
2023) datasets. TofuEval uses a two-stage annota-
tion process, where two expert linguists indepen-
dently assess the binary relevance, completeness,
and factual consistency of each sentence in the sum-
maries. We focus solely on the factual consistency
annotations of main topic summaries, merging sum-
marization sentences into one paragraph deemed
consistent if all summarization sentences are indi-
vidually marked as consistent.> We thus refer to
this concatenation interchangeably as "TofuEval
Summary-Level" or simply "TofuEval Summary".

We use the provided test subsets of each dataset,
except for HaluEval Summarization, which lacks a
train-test split. For HaluEval Summarization, we
use a balanced random sample of 3,000 summaries
as our test set.

3 Methodology

3.1 Ensembling Methods

We train and evaluate 16 ensembling methods.
When applicable, parameters for all relevant meth-
ods are determined using a grid search over the

STang et al. (2024) separated summaries into Main and
Marginal, with the majority of sentences categorized as Main.
We focus on the Main summaries because the Marginal dataset
in TofuEval is insufficiently small for reliable analysis.

parameter feature space. Below is a listing of these
methods:

» Linear Models: LogisticRegression, LDA

¢ Tree-Based Methods: RandomForest, Gra-
dientBoosting, AdaBoost, DecisionTree, Cat-
Boost, XGB, LGBM

* Ensemble Voting: MajorityLabel Voter,
WeightedMajorityLabel Voter

* Label Aggregation Models: LabelModel,
Dawid-Skene®

* Other Methods: Support Vector Machines,
Nearest Neighbors, Naive Bayes (Bern-
boulliNB)

We consider MajorityLabel Voter as an ensem-
bling baseline, conceptually similar to averaging
binary scores with a threshold of 0.5. By com-
paring the results of the majority vote to other en-
sembling methods, we can empirically assess the
additional performance gains achievable through
more sophisticated ensembling techniques.

%The LabelModel, as delineated in Ratner et al. (2017),
is particularly effective in learning the conditional probabili-
ties of labeling functions, adeptly reweighting their outputs in
semi-supervised contexts. The LabelModel represents an evo-
lution in semi-supervised learning, encompassing techniques
such as those in FlyingSquid (Fu et al., 2020), Dawid-Skene
(Dawid and Skene, 2018), Data Programming (Ratner et al.,
2016), and MeTaL (Ratner et al., 2019), all of which were
originally included as part of the Wrench benchmark (Zhang
et al., 2021).
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3.2 Maetrics Used

Following Tang et al. (2023) and Laban et al.
(2021), we use balanced accuracy to assess each
model’s proficiency in detecting factual errors. Bal-
anced accuracy helps provide a less biased evalua-
tion by balancing the importance of sensitivity and
specificity, ensuring that the predominance of the
majority class does not skew the results.

We measure the reliability of predicted proba-
bilities for factual consistency using Expected Cal-
ibration Error (ECE). Expected Calibration Error
(ECE) is calculated by partitioning predictions into
n bins based on their confidence levels, computing
the absolute difference between the actual accuracy
and the predicted probability in each bin, and then
taking the weighted average of these differences
across all bins. We use a ECE effectively measures
the discrepancy between a model’s confidence in its
predictions and its actual performance, with lower
values indicating better calibration.

M
| B
ECE = mz_:l N lacc(By,) — conf(B,,)| (1)

Where: M is the number of bins, [V is the total
number of samples, B,, is the set of samples in
bin m, |B,,| is the number of samples in bin m,
acc(B,,) is the accuracy of predictions in bin m,
and conf(B,,) is the average predicted probability
in bin m. We selected M = 8 for all ECE eval-
uations, as it offers reasonable balance between
statistical reliability and resolution.

3.3 Calibrating Ensembled Models for
Reliable Probability Estimates

Histogram Binning (Zadrozny and Elkan, 2002),
Bayesian Binning into Quantiles (BBQ) (Naeini
et al., 2015), and Isotonic Regression (Zadrozny
and Elkan, 2002) are non-parametric methods meth-
ods of calibration, while Temperature Scaling (Guo
etal., 2017) and Platt Scaling (Platt, 1999) are para-
metric. Platt Scaling applies a sigmoid function to
model outputs to calibrate them. We test and ap-
ply Platt Scaling, BBQ, Histogram Binning, and
Isotonic Regression, to obtain reliable probability
estimates from our ensembled models.

3.4 Methodology for Prompt Creation

Our LLM prompts, created using GPT-4 in the
OpenAl playground, employs various Chain of
Thought (CoT) (Wei et al., 2023) approaches to

guide models through a structured evaluation of
factual consistency. Most prompts have various
explicit evaluation criteria, requiring the LLM to
determine if each claim in the summary can be
inferred directly from the context.

3.5 Selection of Prompt Pool

Prompt selection for each prompt pool size was
determined using Recursive Feature Elimination
(RFE) and Minimum Redundancy Maximum Rele-
vance (MRMR) methods (Guyon et al., 2002; Ding
and Peng, 2005). Recursive Feature Elimination
(RFE) is a feature selection technique that itera-
tively fits a model and removes the least significant
feature based on the model’s coefficients or feature
importances, until the desired number of features
is reached. The Minimum Redundancy Maximum
Relevance (mRMR) algorithm iteratively selects
features by maximizing their relevance to the target,
typically measured through methods like mutual
information, while minimizing redundancy among
them, often using Pearson correlation.” We select
the best-performing subset of prompts of these two
methods for each prompt size.

4 Results

4.1 Individual Prompt Results

Table 1 displays the top five prompts’ performance,
highlighting an average 2.5% increase in balanced
accuracy when using GPT-4-Turbo over GPT-3.5-
Turbo.?

4.2 Ensemble Benchmarking and Comparing
to Existing Methods

For each test dataset, we train ensemble models
on the binary LLM prompt outputs using only the
three remaining non-test datasets. Table 2 shows
the impact of different LLM prompt sizes and en-
sembling methods on balanced accuracy for the
AggreFact-XSUM FTSOTA, HaluEval Summariza-
tion, and TofuEval Summary-Level test datasets.”
The LabelModel (Ratner et al., 2017) is the most

"We use the mRMR library and Scikit-Learn’s RFE for
their respective feature selection methods.

8Preliminary API calling over a smaller sample revealed
roughly comparable results with Claude 3 Opus and worse
performance with open source LLMs. The use and analysis
of other LLMs and open-source models are deferred to future
work.

“Table 2 reports pre-calibration performance for ensem-
bling results. Calibration had minimal effect on balanced
accuracy, ranging from 0% to 0.2%.
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AggreFact- HaluEval TofuEval MediaSum TofuEval MeetingBank
Prompt LLM XSUM FTSOTA Summarization Summary-Level Summary-Level
Bal. Acc. Precision Recall | Bal. Acc. Precision Recall | Bal. Acc. Precision Recall | Bal. Acc. Precision Recall

Prompt 1 GPT-3.5 67.4 64.5 81.8 69.7 62.8 96.3 57.6 61.4 84.1 67.0 73.9 87.0

GPT-4 69.1 65.9 82.8 71.5 64.3 96.5 60.2 63.2 84.1 73.2 78.4 88.2
Prompt 2 GPT-3.5 66.4 63.8 80.4 67.2 62.8 96.3 58.4 61.2 96.0 61.0 69.3 93.5

GPT-4 68.4 65.5 81.4 68.7 64.2 84.6 61.4 63.0 96.0 70.3 75.1 94.7
Prompt 3 GPT-3.5 65.0 71.6 51.2 70.2 67.0 79.3 63.2 65.5 84.1 60.0 70.2 75.1

GPT-4 66.8 73.8 533 72.7 69.3 81.3 63.9 66.0 84.8 64.3 73.1 78.1
Prompt 4 GPT-3.5 61.7 60.0 76.8 63.7 61.4 73.9 65.4 70.0 69.5 68.7 774 75.1

GPT-4 62.8 60.9 71.5 66.4 63.7 75.9 66.6 71.1 70.2 72.0 79.6 78.7
Prompt 5 GPT-3.5 60.2 58.8 76.5 66.4 62.8 80.4 61.0 63.8 84.1 63.3 71.9 81.7

GPT-4 61.8 60.1 71.5 68.2 64.4 81.6 61.8 64.3 84.8 67.6 74.2 83.2

Table 1: Individual performance of the top-five performing prompts across all test datasets. GPT-4 refers to
GPT-4-Turbo (gpt-4-0125-preview), while GPT-3.5 refers to GPT-3.5-Turbo (gpt-3.5-turbo-1106) for all datasets
except HaluEval Summarization, where GPT-3.5-Turbo-16K (gpt-3.5-turbo-16k-0613) is used due to the longer
context length. The best performing individual prompt-model-metric combination for each dataset is shown in
bold. Prompts generally exhibit higher recall than precision, indicating a higher risk of failing to identify factual
inconsistencies or hallucinations in generated text compared to misclassifying an accurate summary as erroneous.

frequent top performer among the ensemble mod-
els across dataset and prompt size combinations.
Snorkel’s LabelModel emerges as the top per-
former among the ensemble models, likely because
it is designed to effectively combine weak and
noisy classifiers, which accurately describe the in-
dividual performance of the LLM prompts.

Table 2 demonstrates that ensembling binary out-
puts from multiple prompts can substantially im-
prove performance compared to the best individual
LLM prompts, shown in Table 1. Increasing the
number of ensembled prompts from 5 to 9 does not
consistently improve performance, likely because
the top-5 prompts use GPT-4 while the remaining
prompts use GPT-3.5. The limited training data
may hinder the ensembling models’ ability to ben-
efit from the less reliable GPT-3.5 prompts.

Table 3 compares the balanced accuracy of state-
of-the-art encoder-based factual consistency mod-
els and LLM solutions to our ensemble methods in
identifying factual inconsistencies and hallucina-
tions. As shown in Table 3, our proposed ensemble
approach outperforms all existing methods across
the benchmark datasets.!?

4.3 Calibration Analysis

We investigate the effectiveness of applying calibra-
tion to obtain reliable probability estimates from
our ensembled models. Table 4 shows that apply-
ing Platt Scaling significantly reduces Expected
Calibration Error (ECE) across various ensembling

1"The QAFactEval and QuestEval results for HaluEval Sum-
marization were obtained using a balanced random sample of
2,000 context-summary pairs. LLM Solution method results
on HaluEval were obtained using a slightly larger balanced
random sample of 3,000 context-summary pairs. All other
results use the full datasets.

techniques. Appendix Table 5 provides ECE scores
before and after calibration across all four datasets
including other popular calibration methods such
as BBQ, Histogram Binning, and Isotonic Regres-
sion. As seen in Table 5, Platt Scaling (Platt, 1999)
generally outperforms the other tested calibration
methods, achieving post-calibration ECE scores of
under 7%.

Reliability diagrams are tools for assessing the
accuracy of probability estimates from both uncali-
brated and calibrated ensemble models. The relia-
bility diagram in Figure 4 shows that Platt Scaling,
when applied to an ensemble model, can signifi-
cantly reduce overconfidence in predicting a text’s
factual consistency.

4.4 Statistical Testing

We assess if the performance gains in LLM en-
sembling over existing methods in models are sta-
tistically significant. For the AggreFact-XSUM
FTSOTA, TofuEval, and HaluEval Summarization
dataset, we execute distinct evaluations using boot-
strap resampling techniques (Efron, 1982), com-
paring the best Ensembling Method against the
previous top performing model for each dataset.
Following Laban et al. (2021), we conduct compar-
isons at a statistical significance level of p = 0.01,
incorporating the Bonferroni adjustment (Bonfer-
roni, 1935) due to the multiple tests conducted
on the datasets. Our LLM ensembling methods
demonstrate statistically meaningful advancements
on the HaluEval dataset, with statistically signif-
icant p-values of under .01 in both the original
and Bonferroni-adjusted analyses. However, the
statistical tests do not confirm a statistically signifi-
cant advantage, with p-values below .01, compared
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AggreFact- HaluEval TofuEval MediaSum | TofuEval MeetingBank
Ensembling XSUM FTSOTA Summarization Summary-Level Summary-Level
Method Number of Prompts | Number of Prompts | Number of Prompts Number of Prompts
3 5 9 3 5 9 3 5 9 3 5 9

Baseline 50.00 50.00 50.00 | 50.00 50.00 50.00 | 50.00 50.00 50.00 |50.00 50.00 50.00
AdaBoost 67.04 67.04 70.21 | 71.47 73.73 72.67 | 65.80 63.80 64.74 | 71.17 72.89 7197
BernoulliNB 67.04 71.02 68.07 | 73.27 7233 68.57 | 6424 6596 64.80 | 74.07 76.38  77.16
CatBoost 67.04 67.04 68.73 | 71.47 71.80 71.53 | 65.80 63.80 64.74 | 71.17 72.89  73.80
DawidSkene 69.17 69.62 70.28 | 73.27 70.53 6737 | 64.17 6433 6347 | 74.07 73.70 7191
DecisionTree 67.04 67.04 66.11 | 73.27 68.67 71.50 | 60.16 6490 63.31 | 73.16 7391  67.00
GradientBoosting 67.04 66.53 68.91 | 73.90 71.07 67.63 | 65.80 64.67 6430 | 71.17 7391 73.80
KNeighbors 67.04 67.04 67.39 | 7487 71.43 68.77 | 64.24 64.17 63.28 | 74.07 69.55 71.08
LDA 67.04 67.04 69.79 | 73.27 73.83 70.60 | 6580 63.80 6444 | 71.17 7289 71.03
LabelModel 69.40 71.92 6793 | 7390 71.67 68.50 | 64.24 66.33 65.53 | 74.10 79.38 79.74
LGBM 67.04 67.04 68.73 | 73.90 74.07 73.43 | 65.80 64.67 65.17 | 74.07 7391 73.58
LogisticRegression 67.04 67.04 70.17 | 73.27 72.53 7040 | 6580 63.80 63.77 | 71.17 72.89  70.74
MajorityLabel Voter 69.17 69.62 71.05 | 73.27 70.37 67.87 | 64.17 6433 63.50 | 7410 73.70  70.67
RandomForest 67.04 66.72 6791 | 73.90 70.87 70.77 | 65.80 6490 63.54 | 71.17 7399  73.58
Svc 67.04 66.72 67.61 | 73.90 72.87 72.03 | 65.80 64.67 6430 | 71.17 7391 7227
WeightedMajority Voting | 67.04 67.04 70.17 | 73.27 73.73 72.60 | 65.80 63.80 63.77 | 71.17 72.89  70.74
XGB 67.04 66.72 70.39 | 7390 71.73 66.73 | 65.80 6490 63.87 | 71.17 7399 72.14

Table 2: Exploring the impact of various LLM prompt sizes and ensembling methods on balanced accuracy across
all test datasets. The top performing ensemble method for each prompt size-dataset combination is shown in bold.
Ensembling as few as three prompts consistently yields performance improvements across all datasets compared to

the best-performing individual prompt.

Method Type Method AggreFact- HaluEval TofuEval MediaSum | TofuEval MeetingBank
XSUM FTSOTA | Summarization Summary-Level Summary-Level
AlignScore 702 + 3.8 65.8 £0.7 623 £5.8 70.1 £ 5.4
Encoder Models QuestEval 51.3+42 554 +22 53.7+£6.0 50.8 £5.9
SummaC-ZS 53.0+4.2 60.5 £ 0.7 48.6 £ 6.0 574+£59
SummaC-Cv 509 +4.2 58.7+0.7 533+5.9 452 £ 6.1
QAFactEval 62.4 +£4.0 52.0+2.2 54.6 £5.9 57.8 £5.7
ChatGPT-ZS (GPT-3.5) 62.1 £4.0 64.3 + 1.8 63.6 £5.8 69.0 £5.3
ChatGPT-COT (GPT-3.5) 554 +4.1 62.5+ 1.8 63.1 £5.8 66.8 £5.2
LLM Solutions ChatGPT-DA (GPT-3.5) 56.4 £ 4.1 59.6 £ 1.8 527+£59 523+5.8
ChatGPT-Star (GPT-3.5) 554 +t4.1 615+ 1.8 574 +£538 557+5.7
Tang2024-Summary (GPT-3.5) 62.4 +4.0 64.0 +0.9 61.9+34 719 £3.1
Tang2024-Summary (GPT-4) 62.9 +4.0 66.1 +£0.9 623 +34 729 +3.1
Ensemble-Top-3 (GPT-4) 69.4 + 3.8 749 + 1.6 65.8 +£5.7 74.1+5.1
LLM Ensembles | Ensembled-Top-5 (GPT-4) 719+ 3.8 741+ 1.6 66.3 + 5.7 79.4 +£5.1
Ensemble-Top-9 (Mixed) 71.1 £ 3.8 734+ 1.6 65.5£5.7 79.7 £ 4.9

Table 3: A chart comparing the balanced accuracy of encoder-based models and LLM solutions in identifying
factual inconsistencies and hallucinations. For each test dataset, the encoder-based model scores are obtained using
linear thresholds optimized on the other three datasets, ensuring that neither the test data nor its validation set is
used for threshold tuning. Lower performance in encoder models compared to existing studies is due to evaluating
without fine-tuning each model’s threshold using the test dataset’s development subset. 95% confidence intervals
are shown, with the highest performing method for each dataset in bold. Mixed refers to ensembling the binary
LLM outputs from both GPT-3.5 and GPT-4. The existing prompts and relevant citations use in Method Type LLM

Solutions can be found in Appendix Section B.

to the second-best methods across the remaining
three datasets. The limited number of samples
in the AggreFact-XSUM FTSOTA and TofuEval
datasets, in contrast to the larger HaluEval dataset,
necessitates a significantly greater improvement in
performance to achieve statistical significance. !

"o eliminate any biases caused by varying sample sizes
across models, we exclusively conduct statistical testing on
the overlapping subsets of all samples under consideration,

5 Conclusion

We introduce Detecting Errors through Ensembling
Prompts (DEEP), a state-of-the-art LLM-based
method for detecting factual consistencies and hal-
lucinations in summaries. Our findings reveal that
factual consistency encoder models exhibit a pro-

thereby ensuring that differing sample sizes do not affect our
statistical significance testing.
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AggreFact-XSUM FTSOTA
Model 3 Prompts 5 Prompts 9 Prompts
Uncal. (%) Platt (%) | Uncal. (%) Platt (%) | Uncal. (%) Platt (%)
AdaBoost 5.1 2.1 12.0 5.7 18.7 4.3
BernoulliNB 9.2 5.1 15.9 5.0 21.5 7.2
CatBoost 8.2 2.5 8.1 5.2 7.7 6.7
DecisionTree 8.9 6.4 7.2 5.3 9.3 4.9
GradientBoosting 7.5 4.6 6.1 5.2 8.6 5.4
KNeighbors 11.0 4.9 10.4 4.7 9.8 4.5
LabelModel 14.7 4.1 23.8 4.7 22.8 5.3
LDA 6.9 4.5 7.4 6.1 7.1 4.1
LGBM 15.5 4.9 20.0 7.7 15.9 6.1
LogisticRegression 13.4 4.9 6.5 5.8 6.6 39
MultinomialNB 8.3 8.1 4.2 2.6 4.4 2.6
RandomForest 9.8 6.3 6.0 4.1 9.8 4.5
SvC 9.3 0.9 8.4 6.5 9.5 5.7
XGB 7.2 6.4 6.9 4.8 16.0 6.9

Table 4: Comparison of the Expected Calibration Error (ECE) for ensembling models before (uncalibrated) and
after calibration using Platt Scaling, across various models and prompt pools. The calibration model was trained
only on the three non-test datasets.

Example Reliability Diagram: Applying Platt Scaling
to LabelModel with Nine Prompts
Uncalibrated Uncalibrated Calibrated Calibrated

Positive Predictions Negative Predictions Positive Predictions Negative Predictions
5 1.0 5 1.0

0.9 0.9
0.8 0.8
0.7 0.7

>

e 0.6 0.6

o 0.5 0.5

>

S 0.4 0.4

< 0.3 0.3
0.2 0.2

ECE: 26.35% | 01 ECE: 17.77% | © ECE: 5.95% | 01 ECE: 4.30%
0.0 . 0.0
0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0

Confidence Confidence Confidence Confidence

Hl Empirical Accuracy [ Output Confidence

Figure 4: An example reliability diagram highlighting the difference in reliability between the predicted probabilities
before and after calibration. The reliability diagram is separated by positive and negative predictions, highlighting
the contrast in model confidences between predicting whether a summary is factually consistent with the source
context versus inconsistent. In this visualization, LabelModel was trained with the output of nine LLM Prompts on
the non-test datasets and tested on the AggreFact-XSUM FTSOTA test dataset.

nounced sensitivity to threshold settings, with their  strate that DEEP surpasses the performance of ex-
performance markedly declining if the threshold is  isting methods and models in evaluating the factual
not adjusted based on the test datasets. We demon-  consistency of summaries produced by recent trans-
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former models. Finally, we show that by calibrating
ensemble models using binary input features de-
rived from LLM prompts, DEEP achieves reliable
probabilities indicating a text’s factual consistency
or presence of errors.

Limitations

LLM approaches for identifying factual errors are
significantly more resource-intensive than existing
fine-tuned encoder models, requiring up to three
orders of magnitude more parameters. Our method
requires more computation; however, this cost may
be justified in high-stakes situations where failing
to identify factual errors is costly.

Future research should explore the performance
of these prompts on more powerful language mod-
els as they become available. Additionally, future
work should create a dataset of quality examples
of chain-of-thought reasoning to identify factual er-
rors, enabling few-shot learning to boost LLM per-
formance. Future work should consider comparing
the performance of ensembling factual consistency
model scores to LLM prompt ensembling.

Future work should investigate why encoder
models for factual consistency evaluation require
dataset-specific linear thresholding for optimal per-
formance. Possible reasons include: (1) the depen-
dence of optimal binary classification thresholds on
the average number of sentences per summary, as
most models calculate summary factuality scores
by averaging sentence-level scores; (2) dataset im-
balances in the ratio of summaries with factual
errors, with thresholding balancing specificity and
sensitivity; and (3) inherent differences in iden-
tifying factual errors across datasets, even when
controlling for summary length and annotation im-
balances, due to factors like summarization models
or the context’s source. However, these reasons are
speculative, and further experiments are needed to
test these hypotheses and explore approaches that
reduce model sensitivity to dataset characteristics.

It is uncertain how many labeling errors exist in
the AggreFact-XSUM-SOTA and HaluEval Sum-
marization datasets. Future datasets should create
summarization error datasets, where, like TofuEval,
ground truth labels are generated by combining
multiple humans annotations. Additionally, the
datasets under test contained solely English Sum-
maries. To evaluate LLMs’ ability to identify errors
across languages, there is a need for multi-lingual
summarization error datasets.

Fine-tuning LLMs for error detection and ap-
plying our end-to-end pipeline for spotting wider
ranges of language generation errors, including
those in QA and machine translation, should be
explored.
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A Our Prompts

Assess the factual consistency of the fol-
lowing claim based solely on the informa-
tion provided in the summary. Do not make
inferences or assumptions beyond the pro-
vided information.

Summary: {...}

Claim: {...}

Assessment: Think step by step. Use the
following chain of thought.

Step 1: Remember the claim.

Step 2: Remember the summary.

Step 3: Break down all the lines in the claim
and remember them. Pay close attention
to numbers associated with the events and
store them separately.

Step 4: Follow the given chain of thought.
After following these steps, decide if
the claim is SUPPORTED or NOT SUP-
PORTED. If you are not sure, output NOT
SUPPORTED. Only output SUPPORTED
if you are 100 percent confident that the
claim is fully supported by the summary.
But regardless, be sure that you output your
answer.

Assess the factual consistency of the fol-
lowing claim based solely on the informa-
tion provided in the summary. Do not make
inferences or assumptions beyond the pro-
vided information.

Summary: {...}

Claim: {...}

Assessment: Think step by step. Use the
following chain of thought.

Step 1: Remember the claim.

Step 2: Remember the summary.

Step 3: Break down all the lines in the
claim and remember them. Pay close
attention to numbers associated with the
events and store them separately.

Step 4: Use multiple factuality metrics (e.g.,
ChatGPT-based metrics, FEQA, QAGS)
to evaluate the factuality of every line.
Compare and contrast the results from each
metric, discussing any variations in their
effectiveness in detecting factual errors.
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Explain which metric appears to be most
effective and why, based on the specific
characteristics of the summary.

Step 5: Summarize results.

Step 6: Be strict. Even if one line is
factually inconsistent, mark as UNSUP-
PORTED; else mark as SUPPORTED.

In this task, you are required to analyze the
factual consistency of a summary against
the original article by directly comparing
key points.

Procedure:

1. Identify Key Points: - List the key points
and claims made in the summary and the
corresponding points in the article.

2. Comparative Analysis: - Create a side-
by-side comparison for each key point be-
tween the summary and the article. - Note
any discrepancies, no matter how minor, in
each comparison.

3. Detailed Discrepancy Evaluation: - For
each noted discrepancy, determine whether
it falls under any specific error type (e.g.,
Negation, Adjective, Coreference, etc.). -
Evaluate the impact of each discrepancy
on the overall factual consistency. - For
each noted discrepancy, determine whether
it falls under any specific error type (e.g.,
Adjective Error, Coreference Error, Num-
ber Error, Entity Error, Attribute Error, Pro-
noun Error, Commonsense Error, Temporal
Error, Predicate Error, Discourse Link Er-
ror, Relation Error, Quantity Error, Event
Error, Noun Phrase Error, Circumstance
Error, Hallucination Error). - ENSURE
THAT YOU THOROUGHLY AND COM-
PREHENSIVELY CHECK FOR ANY Ad-
jective Error, Coreference Error, Number
Error, Entity Error, Attribute Error, Pronoun
Error, Commonsense Error, Temporal Er-
ror, Predicate Error, Discourse Link Error,
Relation Error, Quantity Error, Event Er-
ror, Noun Phrase Error, Circumstance Error,
Hallucination Error - If any of the follow-
ing discrepancies fall under the listed error
types, output NOT SUPPORTED.

4. Strict Criteria for Comparative Support:
- Classify the summary as 'SUPPORTED’
only if there are no discrepancies in the com-
parative analysis. - If any discrepancy is
found, classify the summary as "'NOT SUP-
PORTED’.

Article: {...}

Summary: {...}

Answer (SUPPORTED or NOT SUP-
PORTED):
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Existing Prompts

Li et al. (2023) Prompt For Identifying Fac-
tual Consistencies

Follow the instructions. ### Instruction:
Determine if the text is consistent or incon-
sistent with the provided knowledge and
dialogue history. If there is a logical con-
flict, respond with ’inconsistent’. If there is
no conflict, respond with ’consistent’.
Input: Text: {...}.

Dialogue History: {...}: Please summarize
the given knowledge.

Response:

Luo et al. (2023) Zero-Shot

Decide if the following summary is consis-
tent with the corresponding article. Note
that consistency means all information in
the summary is supported by the article.
Article: [...]

Summary: [...]

Answer (yes or no):

Luo et al. (2023) Chain-of-Thought

Decide if the following summary is consis-
tent with the corresponding article. Note
that consistency means all information in
the summary is supported by the article.
Article: [...]

Summary: [...]

Explain your reasoning step by step then
answer (yes or no) the question:




Wang et al. (2023) ChatGPT-DA

Score the following news summarization
given the corresponding news with respect
to consistency on a continuous scale from 0
to 100, where a score of zero means “incon-
sistency” and score of one hundred means
“perfect consistency”. Note that consistency
measures whether the facts in the summary
are consistent with the facts in the original
article. Consider whether the summary does
reproduce all facts accurately and does not
make up untrue information.

Article: [...]

Summary: [...]

Scores:

Wang et al. (2023) ChatGPT-Star

Score the following news summarization
given the corresponding news with respect
to consistency with one to five stars, where
one star means “inconsistency” and five
stars means “perfect consistency”. Note
that consistency measures whether the facts
in the summary are consistent with the facts
in the original article. Consider whether the
summary does reproduce all facts accurately
and does not make up untrue information.
Article: [...]

Summary: [...]

Stars:

C Supplemental Results

Table 5 provide the full calibration results before
and after calibration across all datasets. Table 6
shows the performance gained through ensembling
compared to using the best performing individual
prompt.
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Model AggreFact-XSUM FTSOTA AggreFact-CNN/DM FTSOTA TofuEval MediaS: TofuEval MeetingBank
Uncal. Platt BBQ Hist. Isotonic | Uncal. Platt BBQ Hist. Isotonic | Uncal. Platt BBQ Hist. Isotonic | Uncal. Platt BBQ Hist. Isotonic
AdaBoost 5.1 2.1 3.5 3.7 3.7 11.2 6.9 8.6 74 57 12.6 8.2 63 110 10.9 5.7 6.7 1.7 9.5 8.7
BernoulliNB 9.2 5.1 4.8 4.8 42 11.8 72 106 8.1 6.1 7.3 103 7.1 78 8.3 14.8 4.6 1.9 1.7 29
CatBoost 8.2 2.5 42 58 52 6.1 74 9.1 9.1 9.1 9.8 128 128 73 8.5 6.8 6.7 53 9.8 54
DecisionTree 8.9 64 6.6 6.6 4.6 3.9 29 49 715 39 58 10.8 8.0 8.9 58 52 9.9 8.2 11 52
GradientBoosting 7.5 46 58 7.1 4.1 6.3 93 98 9.3 73 9.8 112 89 9.1 8.7 53 94 26 9.8 6.3
KNeighbors 11.0 49 132 175 45 54 84 76 6.3 74 6.9 94 145 90 78 7.0 54 80 5.7 48
LabelModel 14.7 4.1 43 84 6.2 159 8.5 9.9 5.6 73 1.8 149 163 9.7 13.7 18.8 1.9 6.2 29 5.4
LDA 6.9 4.5 4.5 3.6 3.4 6.8 6.1 9.8 78 6.4 8.5 11.8 63 11.0 10.8 7.6 55 45 8.0 4.3
LGBM 155 49 6.0 58 53 11.0 60 73 6.2 55 13.1 103 11.3  10.7 9.5 7.3 4.9 32 6.5 5.6
LogisticRegression | 13.4 49 57 517 517 5.7 6.7 9.6 8.5 6.3 10.8 11.1 6.1 10.9 9.8 43 54 73 73 73
MultinomialNB 8.3 8.1 78 79 79 129 68 102 9.0 6.7 10.1 4.7 50 7.1 6.7 17.7 54 49 32 4.0
RandomForest 9.8 63 70 9.9 6.0 109 126 154 105 10.0 132 197 173 128 13.0 8.4 163 63 147 9.2
svC 9.3 09 111 57 83 5.8 107 169 111 78 134 148 117 135 11.0 54 105 11.1 8.1 53
XGB 7.2 64 88 124 6.5 11.9 69 230 167 124 14.5 82 144 224 12.9 8.2 4.9 6.9 8.1 6.9

Table 5: ECE comparison for ensembled models: uncalibrated vs. calibrated with Platt Scaling, BBQ, Histogram
Binning, and Isotonic across datasets. Highlighted text denotes the ensemble-calibration pair with the lowest ECE
per dataset.

.. - Best Ensemble Model

Dataset Best Individual Prompt | Majority Label Voter Model Bal. Acc.
AggreFact-XSUM FTSOTA 69.1 71.1 (+2.0) LabelModel | 71.9 (+2.8)
HaluEval Summarization 72.7 73.3 (+0.6) KNeighbors | 74.9 (+2.2)
TofuEval-Summary-Level-MediaSum 66.6 64.3 (-2.3) LabelModel | 66.3 (-0.3)
TofuEval-Summary-Level-MeetingBank 73.2 74.1 (+0.9) LabelModel | 79.7 (+6.5)

Table 6: Showcasing the improvement in balanced accuracy achieved by ensembling compared to the top-performing
individual prompts for each dataset. The number in parentheses shows the difference in balanced accuracy between
the best individual prompt and the ensemble for each dataset. MajorityLabel Voter serves as our baseline ensemble,
offering a simple, training-free method to combine results. Numbers in all columns are sourced from Figure 2
for ensembling results and Figure 1 for individual prompt performance and are chosen by performance. The
performance improvement in parentheses in the final column is the difference between the best ensemble model and
the individual prompt performance. This represents an optimistic view of the possible the performance gain from
ensembling for each dataset.
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