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Abstract

In text generation, hallucinations refer to the
generation of seemingly coherent text that
contradicts established knowledge. One com-
pelling hypothesis is that hallucinations occur
when a language model is given a generation
task outside its parametric knowledge (due to
rarity, recency, domain, etc.). A common strat-
egy to address this limitation is to infuse the
language models with retrieval mechanisms,
providing the model with relevant knowledge
for the task. In this paper, we leverage the plan-
ning capabilities of instruction-tuned LLMs
and analyze how planning can be used to guide
retrieval to further reduce the frequency of
hallucinations. We empirically evaluate sev-
eral variations of our proposed approach on
long-form text generation tasks. By improving
the coverage of relevant facts, plan-guided re-
trieval and generation can produce more infor-
mative responses while providing a higher rate
of attribution to source documents.

1 Introduction

Large, parametric language models (LLMs) pro-
vide highly fluent text for many applications such
as summarization, dialogue, and translation (De-
vlin et al., 2019; Brown et al., 2020; Thoppilan
et al., 2022; Chowdhery et al., 2024; Anil et al.,
2023, inter alia). Among the errors made by these
models, producing generations with factual and/or
grounding errors, often referred to as hallucina-
tions, limit the broader applicability and capability
of language models (Gao et al., 2023a; Manakul
et al., 2023; Min et al., 2023; Ji et al., 2023a; Peng
et al., 2023). Hallucinations differ from other kinds
of errors in that the generated text is syntactically
correct and semantically plausible. These halluci-
nations are generations that, were they factually
accurate, would be satisfactory model output.

†Work done as a Student Researcher at Google.
∗Equal contribution.

As an example of such hallucinations, we con-
sider the following generation from the Falcon
180B model demo1 for the query write a bio about
the author lorrie moore.

lorrie moore is an american writer born in glas-
gow, kentucky in 1957. she graduated from
saint lawrence university in canton, new york in
1978, and earned her mfa from the university of
wisconsin-madison in 1982. moore has written
numerous works of fiction, including short story
collections such as self help, like life, and birds
of america, as well as novels like anagrams, who
will run the frog hospital?, and a gate at the stairs.
moore has won many awards, including the na-
tional book critics circle award for fiction in
1990, the pen/malamud award for excellence in
short fiction in 1994, and the rea award for the
short story in 2018. her writing style is often de-
scribed as sharp, funny, and introspective, with
themes centered around family relationships, love,
loss, and the complexities of modern life.

While the model accurately generates the book ti-
tles, it hallucinates many facts (red, bold-faced)
about Moore such as the place of her birth (she was
born in Glens Falls, New York), the university of
her MFA (she received an MFA from Cornell Uni-
versity). The model also confuses all of the awards
given to the author (incorrect years, award names,
missing awards).

Recent work on detecting and mitigating such
hallucinations has included modeling uncertainty
(Lee et al., 2024), constrained decoding (Lu et al.,
2022), specially trained or auxiliary model-based
decoding (Zhou et al., 2023; Roit et al., 2023),
question-answering planning (Narayan et al., 2023;
Huot et al., 2023), and retrieval-based verifica-
tion of claims (Gao et al., 2023a). These methods
demonstrate success by leveraging the model’s abil-
ity to accurately produce factual information via

1https://huggingface.co/spaces/tiiuae/falcon-180b-demo
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its parameters or through text provided in-context.
However, understanding and analyzing where and
why such hallucinations appear and why providing
evidence in-context can successfully mitigate hallu-
cinations has only begun to be studied recently (Li
et al., 2023b; Das et al., 2022; Sadat et al., 2023).

In this work, we study how planning can be used
to guide retrieval to improve factual text generation.
We hypothesize that language models hallucinate
when they are required to generate certain facts
based on the prompt but do not have the informa-
tion either memorized or in their context. Thus,
we hypothesize that with specific, comprehensive
facts in-context can mitigate hallucinations. Our
investigation considers the following questions:
Q1. How to effectively discover the comprehensive
collection of facts needed to generate text about a
particular subject? (§3.2,§3.3, Table 1, 2, 7)
Finding: We observe that generating search
queries based on the LLM plans lets the retrieval
system gather fine-grained facts that the LLM
needs to write its final response.
Q2. How can we effectively retrieve and represent
these needed facts? (§3.3, §4.2, Table 3, 4 5)
Finding: We observe that the groundedness of the
final model response is heavily influenced by the
retrieved information and not as much by the word-
ing of the prompts. We also show that including
unanswerable search queries (and explicitly mark-
ing them as unanswerable) is influential in reducing
the generation of ungrounded outputs.

We demonstrate the generality of the approach
in writing grounded text by evaluating model re-
sponses in two domains: writing biographies and
writing event descriptions. In addition to entities
and events that may have a significant internet pres-
ence, we specifically consider 2 settings that would
challenge LLMs: (1) writing biographies for people
(researchers) who do not have Wikipedia profiles
(long-tail, low-frequency entities) and (2) writing
about current news events (outside of the paramet-
ric knowledge of the LLMs).

2 Related Work

The focus of our paper is to provide analysis as
to how retrieval augmented language models can
reduce hallucinations by conditioning on relevant
facts in-context. This work abuts many related ar-
eas in text generation (factuality-focused and oth-
erwise), in-context learning, retrieval, and more.
Refer to other related work in App A.3.
Verifying Attribution. Rashkin et al. (2023) in-

troduce formal definitions of what it means for a
piece of text to be attributable to a given source, re-
ferred to as AIS (Attributable to Identified Sources).
This definition has been used to design datasets and
models to automatically predict whether a partic-
ular source document supports a claim. Verifica-
tion models have considered a variety of formula-
tions such as question-answering based (Honovich
et al., 2021), lexical alignment based (Goyal and
Durrett, 2020) and NLI-based (Honovich et al.,
2022; Gekhman et al., 2023). Among these, NLI-
based models are a commonly used automated AIS
metrics to measure whether a particular output is
grounded in provided sources (Bohnet et al., 2023;
Gao et al., 2023a, inter alia).

By incorporating web or corpus search, the AIS
models can be used to check whether a particular
claim is true with respect to general world knowl-
edge (Min et al., 2023; Peng et al., 2023). FactScore
(Min et al., 2023) prompts an LLM to break down
claims into atomic facts to be verified. We use
a simplified version of the FactScore metric by
compute sentence-level entailment scores. These
search-enabled verification models have enabled
the study of how language models can generate
attributed text along with citations and study accu-
racy of such deployed approaches (Liu et al., 2023;
Gao et al., 2023b).
Retrieval for Generating Attributable Text. It
is well known that language models store a large
amount of knowledge in their parameters (Petroni
et al., 2019, 2020). Retrieving evidence documents
allows LLMs to synthesize text about facts outside
their parametric knowledge (Mallen et al., 2023),
including using up-to-date (Zhu et al., 2020; Vu
et al., 2024) and proprietary (Min et al., 2024) in-
formation. Past work has incorporated retrieval for
post-hoc verification and editing (Gao et al., 2023a;
Chen et al., 2023a). Other approaches incorporate
search results throughout the generation process
either based on heuristics (Trivedi et al., 2023; Am-
playo et al., 2023; Jiang et al., 2023b; Press et al.,
2023, inter alia) or based on trigger tokens gener-
ated by the model (Asai et al., 2024).
Planning of Long-form Generation. Past work
has demonstrated that planning (outlining the out-
put) before generation can help to improve the
factuality and quality of the model output. QA
blueprint-based methods (Narayan et al., 2023;
Huot et al., 2023) use question-answer pairs to
change the LLM distribution over output text to
make summarization models more grounded. Huot
et al. (2024) extend this approach to cross-lingual
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initial generation prompt

write a clear, fluent 
paragraph about lorrie moore

web search:
lorrie moore produce QA plan

...for each paragraph, 
write a descriptive set 
of instructions...

Paragraph 1:
- where was lorrie 
moore born?
- where did lorrie 
moore receive her 
advanced degrees?

...

Paragraph 1: Describe lorrie moore’s early 
life, birthplace, education.

Paragraph 2: Describe lorrie moore’s 
writing, style, and major themes

Paragraph 3: List the awards that lorrie 
moore has received.

Paragraph 2:
- what books has 
lorrie moore written?
- what are the 
themes of lorrie 
moore’s novels?

Paragraph 3:
- which of lorrie 
moore’s writing has 
won awards?
- what awards did 
lorrie moore receive?

independently generate questions per paragraph

web search + 
QA model for 
each question: 
e.g., where 
was lorrie 
moore born?

produce generation 
from QA plan

...{Ques. N} 
{Ans. N} Write 
a fluent, clear 
paragraph...

The American author Lorrie Moore was born in 
Glenn Falls, NY in 1957. She received an MFA 
from Cornell University following her 
undergraduate studies at St. Lawrence College.

Moore has published numerous novels and 
short story collections including: Who Will Run 
the Frog Hospital and Birds of America. 
Moore’s ….

Figure 1: Summary of Planning and Retrieval used to generate text. Given an initial prompt, a plan is first
generated that outlines the segments to be written. Next, search queries are generated for each segment which are
then used for fine-grained retrieval retrieval of source documents. The final response is generated conditioned on
the plan, the queries and the retrieved documents.

summarization. Akash et al. (2023) use a trained
model to generate a keyword plan before generat-
ing a each new sentence and use the plan to inform
search. Our contribution: We study whether zero-
shot LLM generated plans can be used to retrieve
relevant information beyond simple search and how
the plans along with the new, diverse search results
can guide the final generation to be more grounded.
Concurrently with this work, Shao et al. (2024) also
demonstrate the importance of pre-writing (outlin-
ing, iterative search and outline refinement) for
long-form expository writing, further supporting
the findings of our work.

3 Empirical Study

Our goal is to understand the effect of providing
more complete contextual information to language
models on hallucination in text generation. We com-
pare different strategies for performing retrieval
and placing facts into context.

We consider the task of generating descriptive
text about an entity. This task effectively consti-
tutes writing a bio about an individual (such as
author Lorrie Moore in the previous example)
or a summary about an event. This text will then be
verified against web sources for attribution using
automated methods (Honovich et al., 2022).

3.1 Direct Generation without Retrieval

The simplest approach is to directly prompt the
LLM to generate text about the given entity. This
approach relies on information known by the para-
metric language model without any additional re-

trieval. We provide examples of the prompts used
in §A.2.1, which use entity name and possibly a dis-
ambiguating attribute (occupation, location, etc.).

3.2 Incorporating Retrieval

Towards providing the relevant facts needed for the
LLM to write about a particular entity, we simply
perform web search with the entity name as the
query and provide the search results (titles and text)
in the model context to allow retrieval augmented
generation (Gao et al., 2023b) (see § A.2.2).

3.3 Planning and Blueprints

Past work has demonstrated that LLMs can gener-
ate reasoning chains to improve their task perfor-
mance (Wei et al., 2024, interalia). Additionally,
Narayan et al. (2023) have shown that question-
answer based plans allow models to generate more
faithful text. We combine these abilities of LLMs
to guide retrieval and provide the information that
the model may need to generate a response without
(or with fewer) hallucinations.

We first prompt the model to write a list de-
scribing what paragraphs should be produced (see
§A.2.3). Each item in this outline provides short
sentence or two about the content for each para-
graph. The outline is conditioned on the initial
search results (using a query of the entity name)
to guide the LLM outline to generate targeted,
entity-specific outlines rather than generic plans.

Next, we generate search queries from the para-
graph descriptions. We take the content description
for each paragraph and the initial search results
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as context and generate web search queries (see
§A.2.4). These queries allow the search engine to
gather information about specific aspects of the
entity. The result of this prompt is a list of ques-
tions such as those shown in Figure 1 for each
paragraph. These questions will be used to gather
additional web search results.

We consider two variants for incorporating these
newly gathered web-search results. The first, sim-
ply places the new results in context. The second
uses a separate off-the-shelf span-selection QA
model to provide answers for each question. We
use a confidence threshold to decide how many
answers to include in the prompt for the final gener-
ation. If there are no answers that the QA model is
confident about, we keep the question but mark the
answer as ‘unanswerable’. We combine the ques-
tions for all paragraphs together to form the prompt
we use to generate the final output (see §A.2.5).

4 Empirical Analysis

We will measure quantitatively the ability of mod-
els to provide attributed generations. We will an-
alyze how producing attributed text is affected by
the way in which evidence is retrieved and used. In
particular, we aim to investigate the following:

Q1: Does providing more comprehensive collec-
tions of facts yield more attributable generations?

§4.4 Observations: 1-3
Q2: Can planning and additional web-searches im-
prove the collection of facts used for generations?

§4.4 Observations: 4, 7, 8
Q3: Which representations of facts in-context are
most effective for producing grounded texts?

§4.4 Observations: 5, 6

4.1 Datasets

As described in §3.1, the task we consider is writing
a biography of an entity or summary of an event.
We select this task because it likely necessitates
gathering of knowledge more so than tasks such
as summarization in which most (if not all) of the
required information is provided. These datasets
used for the task are meant to cover both entities
and events from the head and the tail of the para-
metric knowledge of LLMs.

The setting we consider is one where the system
is presented only with an entity or event name and
(possibly) an adjective for entity disambiguation
(e.g., Gerhard Fischer (inventor)). Since our
evaluation focus is about hallucination, we do not
consider defining a “ground-truth” biography or

event summary, but rather determine if the gener-
ated text is grounded. We collect entity and event
names using the following:
Researcher. We consider writing bios for the or-
ganizing boards and committee for: NeurIPS 2023,
2023 organizing committee for ASTMH (American
Society for Tropical Medicine and Hygiene), the
27th Nordic Particle Physics Meeting (2023), and
the American Comparitive Literature Association
(ACLA). This results in a list of 106 entity names.
We observe that there is sufficient information on
the internet to write a biography for these entities,
yet most do not have a Wikipedia page. We hypoth-
esize that the entities in this dataset are likely in the
‘tail’ of the distribution of entity mentions.
Wiki-Ent. To select a collection of entities closer
to the ‘head’ of the distribution of entity mentions,
we select a subset of 81 entities from the list of
entities used by (Min et al., 2023). Each entity
has a Wikipedia page (though we do not treat the
Wikipedia page in any special way, it may or may
not be retrieved by search-based methods).
Wiki-Event. We collect a list of 233 events from
the validation set of the WEC corpus (Eirew et al.,
2021). These events that are the target for coref-
erence resolution in the original dataset. Simi-
lar to the Wiki-Ent collection, these event names
have corresponding Wikipedia pages (we neither
forcibly include nor exclude that page from search).
News Events. We select a list of 52 News Events
that began in August 20232. These events are cho-
sen for their recency, i.e. they occurred after the
knowledge cutoff of the LLM.

4.2 Methods Compared

We evaluate two models of different sizes from
Google Cloud VertexAI3, namely (the smaller) text-
bison-001 and (the larger) text-unicorn-001 (Anil
et al., 2023) with zero-shot instructions follow-
ing the templates as described in §3. Additionally,
we report the effectiveness of grounded genera-
tion with Plan-based Retrieval on the open-weight
Mistral-7B-Instruct model in § 4.5.

We compare the following retrieval methods:
No Retrieval: Baseline approach described in § 3.1
where the language model prompted to use it’s para-
metric knowledge to directly generate the output
without any external context.

2https://en.wikipedia.org/wiki/Portal:
Current_events/August_2023

3https://cloud.google.com/vertex-ai/docs/
generative-ai/learn/model-versioning
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Approach AIS Rouge Prec. Length
Strict Macro Micro R1 R2 RL # Tokens

W
ik

i-
E

ve
nt No Retrieval 0.00 15.30 15.74 69.45 30.16 66.63 88.63

One-Retrieval 74.54 90.46 90.35 96.23 84.94 95.09 79.26
One-Retrieval (2x snippets) 75.39 90.99 91.10 97.65 87.01 97.04 78.63
Plan-based Retrieval (Var.A) 89.99 96.18 95.14 99.59 94.52 99.44 82.76
Plan-based Retrieval (Var.B) 72.96 92.02 91.85 99.43 90.30 99.19 113.92

W
ik

i-
E

nt

No Retrieval 0.00 13.80 16.27 55.67 16.95 53.14 97.29
One-Retrieval 60.91 83.09 83.11 91.52 74.17 90.12 87.62
One-Retrieval (2x snippets) 67.03 87.44 86.67 95.79 80.45 94.92 86.86
Plan-based Retrieval (Var.A) 84.77 95.16 94.23 99.59 92.99 99.44 93.03
Plan-based Retrieval (Var.B) 63.37 90.40 90.70 99.28 89.45 99.04 134.47

R
es

ea
rc

he
r No Retrieval 0.00 6.74 6.73 57.10 17.85 54.84 80.58

One-Retrieval 62.89 83.68 84.70 91.55 73.90 90.53 74.24
One-Retrieval (2x snippets) 69.81 86.34 87.57 95.90 80.03 95.27 75.01
Plan-based Retrieval (Var.A) 79.56 91.63 92.16 97.87 83.99 97.48 77.71
Plan-based Retrieval (Var.B) 64.78 88.31 88.93 97.72 83.40 97.23 98.00

N
ew

s
E

ve
nt

s No Retrieval 0.00 5.46 5.14 68.81 24.41 66.00 89.44
One-Retrieval 64.10 84.76 87.77 95.95 80.93 94.61 83.51
One-Retrieval (2x snippets) 61.54 86.72 87.62 97.63 80.70 96.50 79.83
Plan-based Retrieval (Var.A) 80.77 94.47 93.72 99.76 93.47 99.60 92.15
Plan-based Retrieval (Var.B) 66.67 90.88 91.49 99.61 92.53 99.46 124.67

Table 1: Comparison of Generation Approaches using text-bison-001 model. The plan-based retrieval models
that are at the center of our analysis yield more attributable text than One- and No- Retrieval methods. Of the two
variants, Var.A produces more attributable sentences and Var.B produces longer texts.

One-Retrieval: This is the approach described in
§ 3.2 which uses one round of web search and con-
catenates the results in-context to the model. This
formulation provides the language model external
knowledge for conditional text generation.
One-Retrieval (2x snippets): This approach uses
a single round of retrieval, but uses double the num-
ber of search results compared to One-Retrieval.
Note this is also double the number of search re-
sults used by the plan-based methods in their first
round of search as well.
Plan-based Retrieval: The proposed approach
that uses planning (§ 3.3) to retrieve additional web
search results. There are two variants, which differ
in how the additional plan-based retrieved informa-
tion is used to write the final response: i) Variant
A simply puts the web search results in-context,
and ii) Variant B performs the aforementioned QA-
based outline. We further describe and compare
several ablations of Plan-based Retrieval in §4.4.

4.3 Metrics

Our goal is to measure the rate at which models
generate hallucinated text about the given entities
and events. We will focus on the case where halluci-
nation detection is about having a source document
that supports the generated text. (We acknowledge
that this differs from the case of generating objec-
tively true statements.) To measure whether or not
a generated sentence is attributable to one of the

On 31 August 2023 at around 01:30 SAST, a fire engulfed an 
illegally occupied, abandoned, government-owned building in 
Johannesburg, South Africa. 77 people were killed and 88 
others were injured. It was one of the deadliest fires in 
South African history. The cause of the fire is not currently 
known. It spread through the building, trapping many people 
due to flimsy partitions and gates between makeshift rooms 
constructed by residents. The sprawling red-brick building 
housed hundreds of people. Some were South Africans, while 
others were migrants from across the region who had arrived in 
Johannesburg in search of a better life. The authorities in 
South Africa have yet to identify many of those killed in the 
fire.

Plan-based 
Retrieval

On 31 August 2023 at around 01:30 SAST, a fire engulfed an 
illegally occupied, abandoned, government-owned building in 
Johannesburg, South Africa. The fire killed 77 people and 
injured 88 others. It was one of the deadliest fires in South 
African history. The building was used as temporary housing by 
squatters. The fire is believed to have started on the second 
floor of the building and quickly spread throughout the 
structure. The cause of the fire is still under investigation.

...
 6. What was the cause of the 2023 Johannesburg building fire? 
2023 Johannesburg building fire - Wikipedia The cause of the 
fire is not currently known. It spread through the building, 
...

One- 
Retrieval

Plan 
Includes:

Event: 2023 Johannesburg 
building fire

Figure 2: Example Generation. One of the hallucina-
tions in the One-Retrieval model is the focus of one of
the questions provided in the question-based plan.

sources used by the model to produce the generated
text, we compare the following metrics:

Attribution. We evaluate whether a model gen-
eration is hallucinated by checking whether it can
be attributed to the source documents. Specifically,
we use an automated metric that approximates the
Attributable to Identified Sources (AIS) metric of
Rashkin et al. (2023). The AutoAIS model (Hon-
ovich et al., 2022)4 is trained on several natural
language inference (NLI) datasets and predicts

4https://huggingface.co/google/t5_xxl_true_nli_mixture
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Approach AIS Rouge Prec. Length
Strict Macro Micro R1 R2 RL # Tokens

W
ik

i-
E

ve
nt No Retrieval 1.00 25.80 23.70 70.39 33.34 67.82 135.91

One-Retrieval 68.67 89.39 88.47 95.58 85.77 94.71 98.76
One-Retrieval (2x snippets) 67.53 88.32 85.96 96.74 86.65 95.99 100.90
Plan-based Retrieval (Var.A) 88.27 96.33 96.25 99.66 94.45 99.52 98.61
Plan-based Retrieval (Var.B) 82.40 94.50 94.13 99.36 92.82 99.19 115.45

W
ik

i-
E

nt

No Retrieval 0.00 17.79 20.31 56.11 19.00 53.53 115.45
One-Retrieval 63.79 86.70 87.37 92.28 74.72 90.87 87.30
One-Retrieval (2x snippets) 58.65 85.67 83.96 94.46 79.43 93.42 110.23
Plan-based Retrieval (Var.A) 76.54 94.31 94.25 99.41 91.81 99.26 127.22
Plan-based Retrieval (Var.B) 69.96 93.58 93.02 99.28 90.96 99.06 164.23

R
es

ea
rc

he
r No Retrieval 0.00 7.90 7.82 55.38 15.96 52.73 99.20

One-Retrieval 62.26 86.38 87.36 91.95 75.05 90.99 78.82
One-Retrieval (2x snippets) 63.21 85.09 86.04 95.91 82.08 95.26 93.65
Plan-based Retrieval (Var.A) 85.22 94.31 94.68 98.33 87.74 98.07 87.73
Plan-based Retrieval (Var.B) 81.76 93.29 93.81 98.12 86.86 97.84 104.62

N
ew

s
E

ve
nt

s No Retrieval 1.92 12.69 9.89 68.91 25.33 66.36 120.89
One-Retrieval 67.31 90.27 88.21 95.83 83.48 94.52 96.42
One-Retrieval (2x snippets) 63.46 88.42 85.79 96.37 82.81 95.46 104.11
Plan-based Retrieval (Var.A) 87.18 96.86 96.68 99.73 94.05 99.62 100.91
Plan-based Retrieval (Var.B) 82.69 95.85 96.01 99.72 93.62 99.55 135.72

Table 2: Comparison of Generation Approaches using text-unicorn-001 model. We observe that Plan-based
Retrieval improves upon One-Retrieval and No Retrieval methods, even when One-Retrieval retrieves more results.
Plan-based Retrieval Var.B produces much longer texts, which are more attributable compared to One-Retrieval.
Var.A produces slightly more attributed texts and at shorter length.

AIS Rouge P. Len.
Strict Macro Micro R2 RL # Tok

One-Retr. 60.91 83.09 83.11 74.17 90.12 87.62

Plan-based (Var.B) 63.37 90.40 90.70 89.45 99.04 134.47
w/o 2nd search 61.32 85.46 85.13 80.05 94.11 98.72

Table 3: Importance of Gathering Additional Infor-
mation from Second Search. We compare Plan-based
Retrieval (Var.B) with text-bison-001 in two settings,
where we use the typical (secondary retrieval step) and
using only the original search results as the source for
the documents. We measure performance on the Wiki-
Ent dataset. We find that attribution is indeed improved
by gathering more facts and information.

whether a given context passage supports a claim.
We segment the language models’ output into sen-
tences and evaluate whether a sentence can be at-
tributed to any of the context passages (retrieved
snippets and QA model answers). We report 3 vari-
ants of the metric based on aggregation. Strict
AIS measures what fraction of the model outputs
have all sentences correctly attributed. Macro AIS
reports what fraction of the output sentences per
query can be attributed on average. Micro AIS re-
ports what fraction of all output sentences across all
prompts are attributable to the context. For No Re-
trieval, we check attribution to web search snippets

obtained with the original query.
Rouge Prec. We also measure the overlap be-

tween the generated text and the evidence sources
using ROUGE precision metrics for ROUGE-1
(R1), ROUGE-2 (R2) and ROUGE-Lsum (RL)
with the retrieved documents and answers as the
reference.

Length Since different approaches use different
prompts and different amounts of context, they nat-
urally tend to differ in terms of the length of the
final LM output. We report the number of words
in the output from different approaches. Measuring
length is important to consider when observing the
strict AIS metric since writing more means there
are a larger number of required sentences to be cor-
rectly attributed (or in other words, more chances
for mistakes).

Human Evaluation The focus of this work is to
improve attributable generation. However, with a
human evaluation study (see Appendix A.1.1), we
demonstrate that the generation quality does not de-
grade in fluency while being more informative. We
additionally justify the use of AutoAIS evaluation
with a small-scale validation study (see Table 11).

4.4 Empirical Results

We first consider a comparison of the approaches
from § 4.2, in terms of the metrics described in
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Dataset Approach AIS Rouge Prec. Length
Strict Macro Micro R1 R2 RL # Tokens

Researcher Plan-based Retrieval (Var.B) 81.76 93.29 93.81 98.12 86.86 97.84 104.62
w/o unanswerable 79.25 92.49 93.01 98.24 86.77 97.88 108.28

News Events Plan-based Retrieval (Var.B) 82.69 95.85 96.01 99.72 93.62 99.55 135.72
w/o unanswerable 76.92 94.59 93.54 99.55 93.02 99.43 147.03

Table 4: Importance of Marking Questions as Unanswerable. We measure the importance of marking questions
that did not have an answer from the QA step as unanswerable (first row) as opposed to dropping the question from
the context in the generation prompt (second row). We report these metrics on the Researcher and News Events
Dataset with the text-unicorn-001 model. Highlighting unaswerable questions leads to increase in the AIS metric.

§ 4.3 (AIS, ROUGE, length) on each of the four
datasets from § 4.1. Table 1 presents the results
in this setting using the text-bison-001 model and
Table 2 presents results using text-unicorn-001. For
each metric, we report the average across three
different runs with nucleus sampling.

Observation 1. Using Parametric Knowledge
Alone Yields Fewer Attributed Sentences. No
Retrieval never generates summaries that are com-
pletely attributed (Strict AIS score is always 0).
However, the non-zero Macro AIS scores sug-
gest that the language models retain knowledge
from large portions of their training corpus. In
particular, we notice that the Macro AIS scores
are higher for entities that had Wikipedia pages
prior to the model knowledge cutoff (Wiki-Ent and
Wiki-Event) than both less public (Researcher) and
newer entities (News Events). Note that the more re-
cently released text-unicorn-001 has higher Macro
AIS score in this purely parametric setting, perhaps
indicating more parametric knowledge.

Observation 2. Adding Retrieved Evidence
Improves Attribution Compared to using Para-
metric Knowledge Alone. In comparison to No
Retrieval, the retrieval-augmented approach, One-
Retrieval, has a much higher attribution rate. The
high ROUGE scores indicate that the model is copy-
ing and stitching together facts from the search
snippets. This is the expected behavior given that
the model is instructed to only use information
present in its context. The text-unicorn-001 appears
to be better at following this instruction than text-
bison-001. We see that there is headroom for re-
ducing hallucinations in the model outputs. One
possibility to improve attribution is to simply dou-
ble the number of search snippets (One-Retrieval
(2x snippets)) provided to the model. However, we
see that the gain from this approach is inconsis-
tent and it only improves attribution in 3 out of
8 settings. Thus, appending more search results
based on the initial query is not enough to improve
attribution.

Observation 3. Using Planning Along with
Retrieval Can Improve Attribution. Plan-based
Retrieval achieves better or comparable Strict AIS
score as compared to One-Retrieval in 6 out of 8
settings. The impact of planning first before writing
can be seen on the generation length; when using
plans, the final outputs are longer and cover more
aspects of the biography. The outputs are around
20 words longer across all settings.

Observation 4. Gathering Information to An-
swer Questions in a Second Round of Search
Improves Attribution. Recall that web search hap-
pens two times in the Plan-based Retrieval model.
First, with the initial entity or event name and then
second, after questions are generated independently
for each paragraph. This second web search is used
to gather more documents to answer the questions
(§3.3, Figure 1). In the experiment presented in
Table 3 we pose the question of whether this addi-
tional, per-question based retrieval leads to perfor-
mance improvements over answering the questions
using only the documents in the first search. Indeed
we see this second search to be beneficial, we find
that it produces improvements of about 5 points
of Macro and Micro AIS and two points of strict
AIS. Furthermore, the approach with the second
search writes longer texts (134 tokens compared to
98 tokens).

Observation 5. Indicating Unanswerable
Questions in the Plan Improves Attribution.
Some of the questions that are generated by the
model will not necessarily be answerable even
when considering the second round of search.
We hypothesize that these unanswerable questions
could lead to hallucinations from the model, es-
pecially if text is generated to provide an answer
to them. In Table 4, we compare two approaches
for handling these unanswerable questions.5 The
first is to label unanswerable questions and provide

5We determine if a question is unanswerable by confidence
threshold on the QA model’s response.
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AIS Rouge P. Len
Strict Macro Micro R2 RL # Tok

Plan-based (Var.A) 87.18 96.86 96.68 94.05 99.62 100.91
w/o plan 68.59 86.38 84.15 85.45 97.51 92.68

One-Retrieval 67.31 90.27 88.21 83.48 94.52 96.42

Table 5: Importance of Using Outline for Question
Generation (on News Events). We compare differ-
ent methods of retrieval of information while using
the same final generation prompt with text-unicorn-001.
We see that using the chain-of-thought style paragraph
outline helps to produce more grounded responses than
an approach that simply generates questions from the
initial search results.

the model with an instruction to not write about
that particular question (precisely, instead of an an-
swer, we follow the question with the response Not
enough information. Skip this question.).
This is the default setting and corresponds to the
results presented in other tables. The second is to
remove the unanswerable questions and to not in-
clude them in the in-context prompt. We see that ex-
plicitly highlighting unanswerable questions leads
to more grounded generation.

Observation 6. Effect of the Final Generation
Prompt (Var.A vs. Var.B). In Tables 1 & 2, we
compare the effect of prompt format given the same
evidence in the model context. In particular, we
compare Plan-based Retrieval (Var.B) (which uses
the blueprint and query plan in the final generation
prompt) with Plan-based Retrieval (Var.A) which
uses the same prompt as One-Retrieval. Both meth-
ods use the same search results obtained by plan-
based retrieval. We see that while Var.A improves
in terms of the attribution metrics, the blueprint
and query plan allow Var.B to generate longer out-
puts with a comparably high per-query Macro AIS
score. Thus, this prompt allows for a trade-off be-
tween generation length and attribution. However,
we note that this trend may depend on the underly-
ing LLM model family (see § 4.5).

Observation 7. Generating an Outline Before
Generating Questions Improves Attribution. In
Table 5, we study how the query-writing method
affects the attribution while holding the genera-
tion prompt constant. In particular, we ablate Plan-
based Retrieval (Var.A) by skipping the outline gen-
eration step. The approach labeled ‘(w/o plan)’ di-
rectly generates search queries based on the initial
search results without first generating a paragraph
outline. All 3 approaches use the same prompt dur-
ing generation. We see that it is not the specific gen-

Evidence AIS Rouge Prec.
Strict Macro Micro R1 R2 RL

One-Retrieval

Normal 67.31 90.27 88.21 95.83 83.48 94.52
Expanded 69.23 91.78 90.45 98.71 88.48 98.22

Plan-based Retrieval (Var.B)

Expanded 82.69 95.85 96.01 99.72 93.62 99.55

Table 6: Effect of Evidence Set on AIS Score (on
News Events). We observe that the set of evidences
used for AIS evaluation does not dramatically change
the evaluation metrics for the One-Retrieval model.
Results reported on the News Events dataset with
text-unicorn-001. Normal evidence refers to the One-
Retrieval models retrieved results. Expanded refers to
the union of the retrieved results of One-Retrieval and
Plan-based Retrieval (Var.B) models.

eration prompt but the outline-based retrieved infor-
mation procured by Plan-Based Retrieval that leads
to improvements in attribution. The significantly
lower attribution rate of the ‘(w/o plan)’ ablation
compared to Plan-Based Retrieval shows that chain-
of-thought style blueprint generation improves the
utility of subsequently generated queries.

Observation 8. Document set used for Au-
toAIS evaluation of the One-Retrieval Mini-
mally Affects Results. One might hypothesize that
the improvement in AutoAIS score seen by Plan-
based Retrieval is due to its having more evidence
documents for attribution. We compare the Au-
toAIS score for the One-Retrieval model with two
different sets of evidence documents. In Table 6, we
see that the AutoAIS increases (from 67.31 strict
AIS to 69.23 strict AIS), but is significantly lower
than the 82.69 strict AIS results from Plan-based
Retrieval.

4.5 Generalization to Open-source Models

To demonstrate that the studied approach of
plan-based generation extends to model fami-
lies not discussed in the main experiments of
the paper, we conduct additional experiments
with Mistral-7B-Instruct-v0.3 (Jiang et al.,
2023a), an open-weight model released by Mis-
tral AI. We replicate the Wiki-Ent setting and
prompt the model to generate biographies for
entities on Wikipedia. We use the instruction-
tuned Mistral-7B-Instruct-v0.3 model with
the same prompts as listed in A.2 with minor
changes (chat-style formatting) suggested in the
model card. Note that the absolute metric values
are not comparable to the results in the main body
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Approach AIS Rouge Prec. Length
Strict Macro Micro R1 R2 RL # Tokens

One-Retrieval 11.7 70.5 71.1 80.7 47.8 77.6 168.0
One-Retrieval (2x snippets) 20.3 76.6 76.6 87.9 57.3 84.9 169.6
Plan-based Retrieval (Var.A) 16.0 73.5 74.0 91.9 61.1 89.6 177.6
Plan-based Retrieval (Var.B) 25.0 76.7 77.1 92.8 64.2 90.8 161.8

Table 7: Comparison of Generation Approaches using Mistral-7B-Instruct-v0.3. We see that Plan-based
Retrieval (Var.B) leads to the generation of more attributable text than the One-Retrieval and One-Retrieval (2x
snippets) baselines methods. In this setting, Plan-based Retrieval (Var.A) improves over One-Retrieval but not
One-Retrieval (2x snippets). These results demonstrate that plan-based retrieval with model-specific tuning is a
useful approach for grounded, long-form generation.

of the paper since behaviour of search engines is
non-reproducible (Chen et al., 2023b).

Plan Quality. From the sample plans in Ta-
bles 13,14, we see that the model is capable of gen-
erating outlines for the output and writing search
queries. Thus, this is not a capability of the spe-
cific PALM-2 models studied in the main body of
the paper. Moreover, if models are unable to write
plans, the PALM-2 models studied can be used to
generate synthetic training data to fine-tune plan
generation models.

Attribution Quality. Our results (see Table 7)
demonstrate that Plan-based Retrieval (Var.A) and
Plan-based Retrieval (Var.B) allows the model to
write biographies at a higher attribution rate than
One-Retrieval. Thus, the benefits of planning can
be extended to other language models so long as
they possess sufficient instruction following ca-
pabilities. The One-Retrieval (2x snippets) base-
line however performs better than the Plan-based
Retrieval (Var.A) approach (even when both Plan-
based Retrieval (Var.A) and Plan-based Retrieval
(Var.B) use the same queries and additional re-
trieved documents). This highlights the potential
sensitivity of Mistral-7B-Instruct-v0.3 to the
formatting of the search results. Thus, the same
plan-based variants may not all perform consis-
tently across models. Still, with appropriate model-
specific tuning, plan-based retrieval can improve
over a single search round and is an important
method to include in the system-design toolbox.

5 Conclusion
This paper explores the use of planning to improve
retrieval for grounded long-form generation. We
investigate how planning can guide retrieval allow-
ing LLMs to generate more attributable responses
and provide detailed analysis of the effect of the
granularity of the plans and the content and quan-
tity of retrieved information. We show empirically

how the planning-based approaches outperform,
in terms of automated groundedness metrics, stan-
dard retrieval-augmented generation approaches.
Our empirical investigations span topics in the top-
end and long-tail of the parametric knowledge of
LLMs.

6 Limitations

Understanding the precise causes for hallucinations
in language models is beyond the scope of our work.
Instead, we focus on analyzing the role retrieval has
in improving attribution. While we attempt to cover
both operational ranges (queries within and out-
side of model parametric knowledge), future work
would need further verification of how retrieval
augmented models perform on other domains and
tasks, with other language models, and with other
retrieval systems. Concurrent work by Shao et al.
(2024) demonstrates the utility of outline-based
search and generation for long-form expository
writing of new Wikipedia pages.

Our goal was not to compare models/retrievers,
but rather analyze when and how retrieval can re-
duce hallucinations. Thus, we focus on evaluating
the effect of retrieval scheme on one model class
in different domains. We report a smaller scale
evaluation of Mistral-7B-Instruct-v0.3 (Jiang
et al., 2023a) with Plan-based Retrieval in § 4.5. We
see that the popular open-weight instruction-tuned
model is capable of generating paragraph outlines
and subsequent search queries. We demonstrate
that Plan-based Retrieval effectively improves the
rate of grounded generation.

Plan-based Retrieval makes multiple calls to the
LLM: (1) for outline generation, (2) for question
generation, (3) for final response generation. While
this may slow down the generation process, we
were not proposing a finalized or productionized
system. Our results provide an avenue for future
research on distilling the plan writing capabilities
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into smaller LLMs to improve the scalability of
our analyzed method. Moreover, this may be an ac-
ceptable trade-off if we can achieve more grounded
long-form responses. Several past approaches have
relied on multiple LLM calls for improving out-
put quality along some metric of choice: retrieval
on demand during generation (Jiang et al., 2023b;
Trivedi et al., 2023), post-hoc revision of model
generations (Gao et al., 2023a), multi-sample con-
sistency for reasoning (Yao et al., 2023), inter alia.

Our attribution evaluation tool is a model-based
one, Auto-AIS. These models are not perfect and
themselves a focus of active research. Thus, the re-
ported numbers, while effective for model rankings
should not be taken at absolute face-value. See Min
et al. (2023) and Bohnet et al. (2023) for further
discussion on correlation between automated and
human AIS evaluation. We conduct a small vali-
dation study and find high agreement between the
predicted AutoAIS labels and human AIS judge-
ment (see Table 11).

7 Broader Impact

There are broad and far reaching capabilities of
language models. Hallucinations can lead to a num-
ber of undesirable outcomes when using language
models, from confusing user experiences, misun-
derstandings, to misinformation, and more. Our
work should not be seen as a final solution to the
hallucination problem, and should not be seen to
fully quantify the extent to which any one model
hallucinates or does not hallucinate. Our work is a
research exploration, not a final solution.
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A Appendix

A.1 Qualitative Evaluation of System Output

In order to test whether plan-based retrieval and
generation leads to degradation in other qualita-
tive aspects of the output, we conduct additional
evaluations beyond attribution quality.

A.1.1 Human Evaluation

Dataset One
Retrieval

No
Preference

Plan-based
Retrieval

text-unicorn-001

Researcher 0% 100% 0%
Wiki-Ent 4% 92% 4%
Wiki-Event 4% 92% 4%
News Events 8% 84% 8%

Avg 4 92 4

text-unicorn-001

Researcher 8% 71% 21%
Wiki-Ent 8% 88% 4%
Wiki-Event 4% 92% 4%
News Events 4% 92% 4%

Avg 6 86 8

Table 8: Head-to-head Fluency Comparison. Plan-
based Retrieval and generation does not degrade the flu-
ency of the output as compared to standard retrieval. In
the most common scenario, the outputs are not distin-
guishable in terms of fluency.

Dataset One
Retrieval

No
Preference

Plan-based
Retrieval

text-unicorn-001

Researcher 24% 28% 48%
Wiki-Ent 20% 44% 36%
Wiki-Event 17% 8% 75%
Curr-Event 8% 32% 60%

Avg 17 28 55

text-unicorn-001

Researcher 16% 24% 60%
Wiki-Ent 36% 4% 60%
Wiki-Event 20% 48% 32%
Curr-Event 0% 36% 64%

Avg 18 28 54

Table 9: Head-to-head Informativeness Comparison.
Plan-based Retrieval leads to model generations that
are more informative about 55% more times than stan-
dard retrieval. The improvements are clearer when the
LLM is queried about long-tail entities and recent
events.

We had 3 annotators (2 authors and 1 colleague

OR - PBR

OR 0 8% 0
- 8% 80% 4%

PBR 0 0 0

(a) Fluency

OR - PBR

OR 28% 0 0
- 4% 4% 12%

PBR 4% 0 48%

(b) Informativeness

Table 10: Inter-annotator agreement: We report the
confusion matrix of disagreements of two annotators.
The low percentage of off-diagonal elements (espe-
cially the low percentage of extreme disagreements) is
an indicator of high agreement. ‘OR’ means a prefer-
ence for One-Retrieval, ‘PBR’ means a preference for
Plan-based Retrieval and ‘-’ indicates no preference.

familiar with the scope of the experiments) anno-
tate 25 responses from each dataset to provide a
comparison between the two best-performing meth-
ods: our proposed Plan-based Retrieval approach
and the One-Retrieval baseline. The annotators are
presented a pair of generations for the same en-
tity/event prompt, and asked to compare the gen-
erations on two qualities: fluency and informative-
ness. Note that informativeness is independent of
the truthfulness/correctness of the model response;
we asked them to indicate whichever response pro-
vided more distinct, relevant facts. The source of
each generation is hidden from the annotators.

Instruction for fluency: For every pair of
model generations, label which generation is
more fluent or label “no preference" if the flu-
ency is not noticeably different. Consider the
following when judging fluency:

• Does the generation present information
in a coherent manner?

• Does it switch back and forth between
aspects? As an example, does it present
biographical events in shuffled order?

• Does the generation present appropriate
information to the query?

• Does the generation repeat information?
• Do not base your judgement on the

“ground truth" correctness of stated facts.

Instruction for informativeness: For every
pair of model generations, label which genera-
tion is provides more relevant information or
label “no preference" if the informativeness is
not noticeably different. Consider the follow-
ing when judging informativeness:

• Which generation provides more infor-
mation “nuggets" while remaining rele-
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vant tot he query?
• You may disregard small differences in

the number of list-like facts. For example,
when writing about an actor, if one gener-
ation lists 3 movies while the other lists 5
movies, do not consider this a significant
difference.

• Do give importance to facts that pro-
vide a more comprehensive description
of the query topic. For example, if system
A generates: “X was taught by Y." and
model B generates: “X was taught by Y
but would surpass Y in 1991.", then we
would consider system B as more infor-
mative.

• Do not base your judgement on the
“ground truth" correctness of stated facts.

Regarding fluency (Table 8), we find that Plan-
based Retrieval with text-unicorn-001 yields
generations that are as or more fluent than the base-
line One-Retrieval response 92-100% of times. It
does so while producing 10-20% more factual re-
sponses. In terms of informativeness (Table 9), re-
sponses from our Plan-based Retrieval were more
informative 55% of the time compared to 18% win-
rate for the baseline One-Retrieval. One-Retrieval
performs well on queries in the head of the dis-
tribution (Wiki-Ent and Wiki-Event); Plan-based
Retrieval shows its effectiveness on the long-tail
query sets. We observe similar trends in responses
from the text-bison-001 model.

In order to report inter-annotator agreement, we
collect additional judgements on generations by
ext-unicorn-001 on queries from the Wiki-Ent
set. We report the judgements of the two annotators
as confusion matrices in Tables 10a and 10b. 80%
of the examples are on the diagonal indicating that
the annotators agree very frequently. Strong dis-
agreements (i.e. annotators preferring different sys-
tems) occurs only 4% of the time (see Table 10b).
The most common disagreement is ‘no preference’
over any one system; this is expected given the
subjectivity in evaluation.

We conduct a pilot validation study to support
the use of the AutoAIS metric for evaluation. We
randomly sampled set of 50 sentence-document
pairs from real generations by the systems. The
authors debate and annotate whether the generated
sentence is supported by the paired document. We
ensure that the validation set contains balanced
number of claim-document pairs from each of the
predicted labels from the AutoAIS model (sup-

AutoAIS Prediction

Not Supp. Supp.

Human Label Not Supp. 41% 0%
Supp. 6% 53%

Table 11: Validating AutoAIS metric. On the ran-
domly sampled set of claim-document pairs, we note
high agreement with the predicted AutoAIS label. We
observe some instances of supported claims that are la-
beled as unattributable by the metric.

ported / not supported). We hide the predicted la-
bel during annotation. The results of the study are
presented in Table 11. We find few instances of
disagreement with the predicted AutoAIS label.
Most supported claim-document pairs are highly
extractive snippets from the document. Similarly,
unsupported sentences often contain entities that do
not appear in the paired document. When the anno-
tators and the metric disagree, these are instances
that require reasoning and table data manipulation.
We point to the high agreement as evidence that the
AutoAIS metric (while imperfect) provides reliable
signal of model improvement.

A.1.2 N-gram Repetitiveness
Plan-based Retrieval uses the paragraph plan to
generate search queries. Since queries for each
paragraph are generated independently, there may
be repeated queries in the final plan. To demon-
strate that the final generations from Plan-based
Retrieval are not repetitive, we compute the frac-
tion of unique N-grams (based on word boundaries)
out of all N-grams in the generation. If the gener-
ation was repetitive (increasing length by reiter-
ating the same facts), then this metric would be
low. From Table 12, we see that the {1,2,3}-gram
uniqueness of texts from Plan-based Retrieval is
comparable to the same metrics with the No Re-
trieval and One-Retrieval baselines. In fact, we see
that the fraction of unique trigrams in the genera-
tion with Plan-based Retrieval is not distinguish-
able from the One-Retrieval setting and is generally
higher than the fraction of unique N-grams in the
No Retrieval settings (i.e., the generation incorpo-
rates newly retrieved information).

A.2 Prompt Formats
1. Direct Generation Prompt

Write a fluent, clear paragraph about

{entity}.

2. Search-Based Generation Prompt
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Dataset Approach 1-gram
Unique.

2-gram
Unique.

3-gram
Unique.

text-unicorn-001

Researcher
No Retrieval 71.90 95.13 98.81
One-Retrieval 73.26 95.63 98.74
Plan-based
Retrieval(Var.A) 75.23 96.13 98.89

Wiki-
Ent

No Retrieval 72.79 95.25 98.95
One-Retrieval 75.57 96.35 99.18
Plan-based
Retrieval(Var.A) 77.93 96.74 99.29

Wiki-
Event

No Retrieval 60.75 87.72 94.65
One-Retrieval 69.33 93.78 98.12
Plan-based
Retrieval(Var.A) 67.89 93.57 98.19

News
Events

No Retrieval 60.95 87.54 94.62
One-Retrieval 73.30 95.14 98.29
Plan-based
Retrieval(Var.A) 66.53 92.13 97.37

text-bison-001

Researcher
No Retrieval 73.34 95.70 99.02
One-Retrieval 76.02 96.57 99.17
Plan-based
Retrieval(Var.A) 73.11 95.76 98.69

Wiki-
Ent

No Retrieval 71.18 94.54 98.70
One-Retrieval 78.91 97.28 99.39
Plan-based
Retrieval(Var.A) 74.20 95.97 99.03

Wiki-
Event

No Retrieval 68.82 93.79 98.46
One-Retrieval 73.65 95.41 98.67
Plan-based
Retrieval(Var.A) 71.08 94.25 98.04

News
Events

No Retrieval 66.80 92.08 97.43
One-Retrieval 75.25 95.96 98.90
Plan-based
Retrieval(Var.A) 70.87 94.86 98.74

Table 12: Comparison of percentage of unique n-
grams in model output. We see no noticeable indica-
tion of repetition in the outputs of Plan-based Retrieval.
Further human evaluation (Tab. 8) confirms that the out-
put of Plan-based Retrieval is fluent.

Search Results:

Snippet Title: {result 1 title}

Snippet Text: {result 1 text}

Snippet Title: {result 2 title}

Snippet Text: {result 2 text}

...

Snippet Title: {result K title}

Snippet Text: {result K text}

Write a fluent, clear paragraph about

{entity} using only facts in the given

text.

3. Outline Prompt
Given the above search results, write
a list of instructions for how to
provide an answer to write a bio about
{entity} in the format:
Paragraph 1: Instructions for
paragraph 1
Paragraph 2: Instructions for
paragraph 2
...

Paragraph 1

• Begin by introducing Ramesses IV, the third Pharaoh of
the Twentieth Dynasty of the New Kingdom of Ancient
Egypt, with a mention of his original name, Heqamaatre-
Setepenamun.

• Provide the dates of his reign, which were from 1155
BCE to 1149 BCE.

• Mention that he was the second son of Ramesses III,
and likely named after Ramesses, the second son of
Ramesses II.

• Emphasize that he was appointed crown prince by the
22nd year of his father’s reign, following the deaths of
his four older brothers.

Paragraph 2

• Describe the events leading to his ascension to the
throne, such as the assassination of his father, Ramesses
III, in 1156 BC, which made Ramesses IV the king at a
middle-aged age.

• Mention that his reign was relatively short, lasting only
six years.

Paragraph 3

• Discuss Ramesses IV’s burial details, noting that he
was originally buried in tomb KV2 in the Valley of the
Kings, West Thebes, but was later reburied in the tomb
of Amenhotep II (KV35).

• Highlight that his mummy was clumsily rewrapped and
labeled by later priests.

...

Table 13: Partial plan generated zero-shot by Mistral-
7B-Instruct-v0.3 for query: Ramesses IV

Paragraph N: Instructions for
paragraph N

The outline should allow for each

paragraph to be written independently

in parallel. The collection of

paragraphs should form a bio for

{entity}. For each paragraph, write

a descriptive set of instructions

for the content that should be

included and summarize the things

that should not be included because

they are written in other paragraphs.

All facts, dates, and years must

be supported in the given search

results.

4. Question Prompt

Search Results:

Snippet Title: {result 1 title}

Snippet Text: {result 1 text}

Snippet Title: {result 2 title}
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Paragraph 1

• Instructions: Begin by introducing Ronaldo, focusing on
his full name, nationality, and the sport he is famous for.
Mention his nickname, if it is not already clear from his
name. Provide a brief background on his hometown and
birth year.

• Do not include information about Cristiano Ronaldo, an-
other famous athlete with a similar name.

Paragraph 2

• Instructions: Highlight Ronaldo’s achievements and acco-
lades early in his career, such as winning the FIFA World
Cup with Brazil in 2002 and being named the tournament’s
top scorer (Golden Shoe award). Mention any individual
awards he received during this period, such as the FIFA
Player of the Year awards in 1996–97 and 2002.

• Do not repeat information about specific teams he played
for at this stage, as it will be covered in a separate paragraph.

Paragraph 3

• Instructions: Describe Ronaldo’s successful stint with Eu-
ropean soccer teams, focusing on key clubs and the impact
he made during his time there. Mention any notable accom-
plishments or awards he received during this period.

• Do not include personal details about his life outside of
soccer at this stage.

...

Table 14: Partial plan generated zero-shot by Mistral-
7B-Instruct-v0.3 for query: Ronaldo (Brazilian foot-
baller)

Snippet Text: {result 2 text}

...

Snippet Title: {result K title}

Snippet Text: {result K text}

Given the above search results,

what are the questions you would

want answered to write the following

paragraph {paragraph description}

about {entity}? Write just the

questions separated by a new

line. Each question should be

understandable independently.

5. Outline-based Generation Prompt

Consider the following

question-answer pairs:

{Question 1} {Answer 1}

...

{Question N} {Answer N}

Write a fluent, clear paragraph

about {entity} using only facts in

the above.

A.3 Extended Related Work
Responsiveness to Context. When provided with
factual knowledge in-context, we hope that LLMs
use the facts and do not hallucinate. Previous stud-
ies have considered this for small models in the
presence of producing LM facts (Petroni et al.,
2019). Neeman et al. (2023) study how predictions
change when facts in context contradict parametric
knowledge. Longpre et al. (2021); Li et al. (2023a)
performs similar analysis in the adversarial setting.
Yoran et al. (2024) show that retrieving irrelevant
information can hurt LLM performance. Concur-
rent with our work, Vu et al. (2024) demonstrate
that including auxiliary data from the search engine
and ordering the search results such that the most
relevant results are presented at the end improves
LLM grounding. We conduct a similar analysis of
what and how to present search results to LLMs for
long-form generation.
Understanding Hallucinations. The manner in
which language models hallucinate is investigated
both in dataset construction and empirical compar-
isons (Cao et al., 2022; Das et al., 2022; Li et al.,
2023b; Rawte et al., 2023; Zheng et al., 2023). For
instance, Li et al. (2023b) investigates hallucinate
rates as a function of model as well as task and
breaks down hallucination types into error cate-
gories (e.g., “comprehension”, “factual”, “speci-
ficity”, and “inference”). Similarly, Sadat et al.
(2023) presents analyze hallucinations in specific
domains, in particular, car manuals.
Grounded Generation. Prior work has demon-
strated that generating text that is grounded in given
sources (be it tabular data, or natural language) can
be challenging (Wiseman et al., 2017; Cao et al.,
2018, inter alia). Methods have used constrained
decoding (Lu et al., 2021, 2022) to produce text that
is copied from given sources. Other methods have
used architectural changes, which use attention-
based re-weighting to make grounding more likely
(Choi et al., 2021). AIS evaluation models have also
been used during training (Zablotskaia et al., 2023)
and decoding (Roit et al., 2023; Wan et al., 2023)
to increase faithfulness of model generations.
Attribution by Self-Verification. As discussed be-
fore, it is well known that language models store
a large amount of knowledge in their parameters
(Petroni et al., 2019). Additionally, instruction-
tuned LLMs have demonstrated the ability to per-
form natural language inference with zero-shot
prompting (Wei et al., 2022). Dhuliawala et al.
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(2024) use this ability for muilt-answer QA to ver-
ify generated responses with the same LLM. Ji
et al. (2023b) apply a similar strategy for medi-
cal domain generative-QA and show that iterative
verification and patching (fixing factually incor-
rect statements) leads to more factually correct re-
sponses.
In-Context Learning. The method of providing
task-specific examples in the context of language
models to solve a tasks, i.e., in-context learning
(Brown et al., 2020), is similar to our work in that it
requires being responsive to the context provided to
the language model. There exists parallels between
our work and prior methods that retrieve in-context
examples (Liu et al., 2022).
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