
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 1143–1166
November 12-16, 2024 ©2024 Association for Computational Linguistics

AMR-Evol: Adaptive Modular Response Evolution Elicits Better
Knowledge Distillation for Large Language Models in Code Generation

♠Ziyang Luo, ♡Xin Li*, ♠Hongzhan Lin, ♠Jing Ma*, ♡Lidong Bing
♠Hong Kong Baptist University, ♡Alibaba DAMO Academy

{cszyluo,majing}@comp.hkbu.edu.hk xinting.lx@alibaba-inc.com

Abstract

The impressive performance of proprietary
LLMs like GPT4 in code generation has led
to a trend to replicate these capabilities in
open-source models through knowledge dis-
tillation (e.g. Code Evol-Instruct). How-
ever, these efforts often neglect the crucial as-
pect of response quality, relying heavily on
teacher models for direct response distilla-
tion. This paradigm, especially for complex
instructions, can degrade the quality of syn-
thesized data, compromising the knowledge
distillation process. To this end, our study
introduces the Adaptive Modular Response
Evolution (AMR-Evol) framework, which em-
ploys a two-stage process to refine response
distillation. The first stage, modular decom-
position, breaks down the direct response
into more manageable sub-modules. The sec-
ond stage, adaptive response evolution, au-
tomatically evolves the response with the re-
lated function modules. Our experiments with
three popular code benchmarks—HumanEval,
MBPP, and EvalPlus—attests to the superior-
ity of the AMR-Evol framework over base-
line response distillation methods. By compar-
ing with the open-source Code LLMs trained
on a similar scale of data, we observed per-
formance enhancements: more than +3.0
points on HumanEval-Plus and +1.0 points on
MBPP-Plus, which underscores the effective-
ness of our framework. Our codes are avail-
able at https://github.com/ChiYeungLaw/
AMR-Evol.

1 Introduction

Recently, the powerful proprietary large language
models (LLMs), like GPT3 (Brown et al., 2020),
GPT4 (OpenAI, 2023), Gemini (Anil et al., 2023a)
and Claude (Anthropic, 2023), have showcased
impressive code generation ability. Especially,
GPT4, the most performant model, has recorded

*Corresponding Authors.

 Coding Tasks Design a function that implements the
Laplace expansion theorem to calculate the determinant of a
3x3 matrix, but now with the added condition of utilizing
nested for loops and ensuring that the matrix elements are
limited to integers only.

 Teacher Model

 Response
def calculate_determinant(matrix):
 if len(matrix) != 3 or len(matrix[0]) != 3:
 raise ValueError('Matrix must be a 3x3 matrix')
 determinant = 0
 for i in range(3):
 submatrix = [[matrix[j][k] for k in range(3) if k != i] for j in
range(1, 3)]
 sub_determinant = calculate_determinant(submatrix)
 sign = (-1) ** i
 determinant += sign * matrix[0][i] * sub_determinant
 return determinant if len(matrix) == 2 else round(determinant) Direct Distillation

 Student Model

Low Quality Response

Figure 1: Direct distillation from the teacher model
possibly yields low quality responses for complex tasks,
thereby causing confusion within the student model.

pass rates exceeding 85% on the well-known Hu-
manEval benchmark (Chen et al., 2021). Despite
their strengths, the closed-source nature sparks ac-
cessibility and privacy concerns (Wu et al., 2023).
In response, there is a trend of adopting knowl-
edge distillation (Xu et al., 2024) to transfer the
advanced code generation ability from the propri-
etary LLMs to open-source counterparts, thereby
enhancing their capabilities while ensuring broader
availability and owner autonomy.

Given that accessing the model weights of pro-
prietary LLMs is infeasible, the knowledge distilla-
tion pipeline is considered as a process where the
teacher models synthesize supervised data, primar-
ily consisting of instruction-response pairs (Liu
et al., 2024). Student models are subsequently
trained on this data, enabling the transfer of ca-
pabilities from the teacher models. For exam-
ple, Chaudhary (2023) employs the self-instruct
method (Wang et al., 2022) to prompt the teacher
model to generate new coding instructions based on
predefined seed tasks. Similarly, OSS-Instruct (Wei

1143

https://github.com/ChiYeungLaw/AMR-Evol
https://github.com/ChiYeungLaw/AMR-Evol

et al., 2023) utilizes a variety of code snippets
sourced from GitHub to inspire GPT-3.5 to pro-
duce novel coding instructions. Likewise, Code
Evol-Instruct (Luo et al., 2024) employs iterative
prompting to progressively elevate the complexity
of code instructions provided by teacher models.
Each of these methods has proven effective in dis-
tilling coding knowledge from teacher models.

Despite these advancements, there remains an
unresolved challenge in enhancing the quality of
code response distillation within the data synthe-
sis process. In this setting, code responses serve
as labels that teach the student models. Previous
works have shown that higher-quality responses
can lead to more effective distillation (Zhou et al.,
2023; Mukherjee et al., 2023). However, current
methods (Chaudhary, 2023; Wei et al., 2023; Luo
et al., 2024) tend to rely solely on teacher models
for direct response distillation. As shown in Fig-
ure 1, this approach is limited by the capabilities of
the teacher models, making it difficult to produce
accurate responses for complex tasks. The issue
becomes even more challenging with methods like
Code Evol-Instruct, which deliberately amplify the
complexity of instructions. Consequently, relying
on direct distillation can result in lower-quality re-
sponses, ultimately affecting the performance of
the student models (Wang et al., 2024).

A straightforward yet costly solution to guaran-
tee response quality is to hire human annotators to
craft the unit tests for each response. These tests
could then be used in an execution-based strategy
to validate answers. However, this method is fi-
nancially prohibitive because it requires the recruit-
ment of annotators with extensive programming
expertise. Alternatively, depending on the teacher
model to automatically generate unit tests for self-
repair (Chen et al., 2023a; Olausson et al., 2023;
Chen et al., 2023c) introduces the same concern of
response quality, providing no certainty regarding
the correctness of the code repair.

To address the challenge of distilling high-
quality code responses from teacher models, we
introduce a novel framework named Adaptive
Modular Response Evolution (AMR-Evol). In
Figure 1, the example reveals that the direct re-
sponse distillation can somewhat capture the es-
sential concepts required for solving coding tasks;
however, it often deviates from the specific require-
ments and incorporates logical errors. Motivated
by this observation, AMR-Evol leverages the out-
puts of direct distillation as seed data and employs

a two-stage process—namely, modular decomposi-
tion and adaptive response evolution—to gradually
refine the distilled code responses. By intricately
refining the process of response distillation, our
framework elicits better knowledge distillation of
the student models.

In the first stage of our AMR-Evol, we adopt the
idea from modular programming (Dijkstra, 1967)
to manage the complexity of distilling code re-
sponses. By utilizing direct responses as the seeds,
this method breaks down the coding task into
smaller, more manageable sub-modules. This strat-
egy shifts the focus of the teacher models towards
solving these sub-modules step-by-step rather than
generates a complete solution in a single attempt,
whose effectiveness has been verified in recent
Chain-of-X works (Wei et al., 2022; Le et al., 2023;
Xia et al., 2024).

Additionally, while coding tasks may vary signif-
icantly in objectives, the modular components need
to construct their solutions frequently exhibit com-
monalities, or can even be identical (Parnas, 1972).
Hence, our adaptive response evolution stage lever-
ages an auxiliary functional module database to
store all validated modules for reuse. During re-
sponse generation, this process utilizes the modules
formulated in the decomposition stage to retrieve
suitable, pre-validated modules from the database.
These related modules serve as in-context exam-
ples, aiding the adaptive refinement of responses,
thus reducing our sole reliance on teacher models.
As evolution progresses, any newly created mod-
ules that differ from those in the database are added
after a verification process by the teacher model.

We apply our AMR-Evol framework to different
student models and select the most representative
coding benchmarks, including HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), and
EvalPlus (Liu et al., 2023), for evaluation. The
results reveal that our AMR-Evol framework con-
sistently surpasses other response distillation meth-
ods, namely direct response distillation, chain-of-
thought distillation, and response repairing. These
results affirm the superiority of our approach in im-
proving knowledge distillation for LLMs in code
generation. Moreover, by integrating our AMR-
Evol with Code Evol-Instruct, one of the SOTA in-
struction construction methods, our models achieve
better performance than the open-source alterna-
tives trained on a comparable data scale. Specifi-
cally, we observed an improvement of more than
+3.0 on HumanEval-Plus and +1.0 on MBPP-Plus.

1144

2 Related Work

LLMs and Code Generation. Recently, LLMs
have showcased significant achievements across
a vast array of tasks. Leading tech firms have
made substantial progress in developing highly ad-
vanced close-source LLMs, including OpenAI’s
GPT4 (OpenAI, 2023), Google’s PaLM (Chowd-
hery et al., 2022; Anil et al., 2023b) and Gem-
ini (Anil et al., 2023a), as well as Anthropic’s
Claude (Anthropic, 2023). On the other side, the
AI community has also seen the launch of sev-
eral open-source LLMs, with model weights be-
coming publicly available. MistralAI has con-
tributed the Mistral-Series (Jiang et al., 2023).
Google has released UL2-20B (Tay et al., 2022)
and Gemma (Mesnard et al., 2024). Tsinghua
University introduced GLM-130B (Zeng et al.,
2022) and MiniCPM (Hu et al., 2024), while Meta
has made available OPT (Zhang et al., 2022) and
LLaMA1&2&3 (Touvron et al., 2023a,b; Meta,
2024). Furthermore, Allen AI has introduced
the wholly open-sourced LLM, OLMo (Groen-
eveld et al., 2024), and Microsoft has released Phi-
series (Gunasekar et al., 2023; Li et al., 2023b).
Although a gap remains between the open-source
models and their closed-source counterparts, this
gap is gradually narrowing.

In parallel, recent research efforts have been
directed towards leveraging LLMs for code-
related tasks to address the understanding and
generation of code. OpenAI has unveiled
Codex (Chen et al., 2021), Google has pro-
posed CodeGemma (Google, 2024), and Salesforce
has introduced CodeGen-Series (Nijkamp et al.,
2023b,a), and CodeT5&Plus (Wang et al., 2021,
2023). Contributions from Tsinghua University
include CodeGeeX (Zheng et al., 2023), and the
BigCode Project has developed StarCoder1&2 (Li
et al., 2023a; Lozhkov et al., 2024). Meta has
also made its mark with the CodeLlama (Rozière
et al., 2023), while DeepSeek has open-sourced
the DeepSeekCoder (Guo et al., 2024). These
initiatives underscore the growing interest in em-
ploying powerful base LLMs for code generation.
Our work introduces a novel method for more ef-
fectively distilling code knowledge from closed-
source models to these open-source base models,
thereby enhancing the coding performance.

Knowledge Distillation for Code Generation.
To enhance the capabilities of open-source LLMs
for code generation, recent works have adopted the

knowledge distillation paradigm, utilizing closed-
source LLMs as teachers for supervised data syn-
thesis (Chen et al., 2023b; Zheng et al., 2024;
Li et al., 2024; Yuan et al., 2024). For exam-
ple, Chaudhary (2023) employs the self-instruct
method (Wang et al., 2022) to generate training
data, while Magicoder (Wei et al., 2023) generates
training content using code snippets from GitHub.
WizardCoder (Luo et al., 2024), on another hand,
introduces the Code Evol-Instruct approach to pro-
gressively increase the complexity of coding tasks.
Despite these advancements, a common limitation
among these efforts is their primary focus on the
creation of code instructions, often overlooking
the criticality of enhancing code response distil-
lation. Our research takes an orthogonal path by
concentrating on the refinement of code response
distillation, offering a novel perspective compared
to previous works.

3 Method

As depicted in Figure 2, we introduce our novel
framework, AMR-Evol, aimed at improving code
response distillation to elicit better performance of
the student models. In this section, we will provide
a detailed discussion of our framework’s pipeline.

3.1 Direct Response Distillation

In the knowledge distillation framework, the fore-
most goal is enabling the student model Ms to
assimilate the strategies deployed by the teacher
modelMt in tackling code generation tasks. Utiliz-
ing approaches like Code Evol-Instruct facilitates
the generation of an extensive dataset of code in-
structions {I} by the teacher model. Subsequently,
the direct response distillation method employs the
teacher model to process these task instructions to
produce the corresponding code responses Rd, re-
sulting in a paired dataset, Ddirect = {(I,Rd)}.
Then, the student model Ms learns from this
dataset through supervised fine-tuning.

3.2 Adaptive Modular Response Evolution

As discussed in Section 1, direct responses Ddirect

to complex instructions can result in suboptimal
quality, which in turn impacts the performance of
the student modelMs. While these responses often
include logical errors or may not fully align with
the precise requirements of the tasks, they generally
remain close to correct and capture the essential
concepts needed for task solution. To address this,

1145

 Module 3
def validate_matrix(matrix: list) -> None:
 """
 Description:
 Validates if the input matrix is a 3x3 matrix.
 Parameters:
 - matrix (list): The input matrix to be validated.

Raises:
 - ValueError: If the matrix is not a 3x3 matrix.
 """

 Coding Tasks Design a function that implements the Laplace expansion theorem
to calculate the determinant of a 3x3 matrix, but now with the added condition of
utilizing nested for loops and ensuring that the matrix elements are limited to
integers only.

 Teacher Model

 Response
def calculate_determinant(matrix):
 if len(matrix) != 3 or len(matrix[0]) != 3:
 raise ValueError('Matrix must be a 3x3 matrix')
 determinant = 0
 for i in range(3):
 submatrix = [[matrix[j][k] for k in range(3) if k != i] for j in
range(1, 3)]
 sub_determinant = calculate_determinant(submatrix)
 sign = (-1) ** i
 determinant += sign * matrix[0][i] * sub_determinant
 return determinant if len(matrix) == 2 else round(determinant)

 Direct Distillation

 Module 2
def calculate_minor_matrix(matrix: list, row: int, col: int) -> list:
 """
 Description:
 Calculates the minor matrix by removing the specified row
 Parameters:
 - matrix (list): The input matrix.
 - row (int): The row index to be removed.
 - col (int): The column index to be removed.
 Returns:
 - list: The minor matrix after removing the specified row
 """

 Module 1
def calculate_determinant(matrix: list) -> int:
 """
 Description:
 Calculates the determinant of a 3x3 matrix using Laplace

expansion theorem.
 Parameters:
 - matrix (list): The 3x3 matrix for which determinant needs to

be calculated.
 Returns:
 - int: The determinant of the input matrix.
 """

 Modular
 Decomposition

 Retrieved Module 3
def search_element(matrix, x):
 """
 Search for a given element in a sorted matrix.
 Args:

 Retrieved Module 2
def Determinant(A: list) -> float:
 """
 Calculate the determinant of the provided matrix A.
 Args:
 A (list): The input matrix to calculate the determinant.

 Returns:
 float: The determinant of the matrix.
 """
 def Submatrix(A, i, j):

 Retrieved Module 1
def Submatrix(A: list, i: int, j: int) -> list:
 """
 Get the submatrix of A by removing the ith row and jth column.
 Args:
 A (list): The input matrix to extract the submatrix from.
 i (int): The index of the row to remove.
 j (int): The index of the column to remove.
 Returns:
 list: The submatrix of A.
 """
 return [row[:j] + row[j+1:] for row in (A[:i] + A[i+1:])]

 Refined Response
def determinant_3x3(matrix: list) -> int:
 det = 0
 for i in range(3):
 det += (-1) ** i * matrix[0][i] * determinant_2x2(

submatrix_2x2(matrix, 0, i))
 return det

def determinant_2x2(matrix: list) -> int:
 return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]

def submatrix_2x2(matrix: list, i: int, j: int) -> list:
 submatrix = [row[:j] + row[j + 1:] for row in matrix[:i] + matrix[i + 1:]]
 return submatrix

 Adaptive Response
 Evolution

 Functional Module
 Database

 Teacher Model Decomposed, Verification, and Cached

 Retrieval

 Student Model

 Teacher Model

 Modules Update Learning

Figure 2: Our Adaptive Modular Response Evolution (AMR-Evol) framework with modular decomposition and
adaptive response evolution elicits better response distillation for LLMs in code generation.

our AMR-Evol framework capitalizes on these di-
rect response distillations as a starting point. It
incorporates a two-stage method—modular decom-
position and adaptive response evolution—for an
automated refinement process that improves the
quality of responses, thereby enhancing the effi-
cacy of distillation.

Modular Decomposition (MD). In the first stage
of our framework, we employ the principle of mod-
ular programming (Dijkstra, 1967) to tackle the
complexity inherent in distilling code responses.
Our method utilizes direct responses Rd as a start-
ing point, guiding the teacher modelMt in break-
ing down the given code instructions into a series of
smaller, well-defined sub-modular functions. We
represent this process mathematically as follows:

{Fm
1 , Fm

2 , . . . , Fm
n } ←Mt (I,Rd) , (1)

where each function module Fm
i is conceptualized

to fulfill a distinct subset of requirements stipu-
lated by the code instruction I . This decomposition
breaks down complex instructions into a series of
easier and more manageable sub-modules, enabling
the teacher model to tackle each one with less dif-
ficulty. This results in a more effective response
distillation process.

Adaptive Response Evolution (ARE). In the
second stage, we observe that while coding instruc-
tions may greatly differ, the sub-modules needed
for assembling the final solution often share similar-
ities or can even be identical (Parnas, 1972). Lever-
aging this insight, we establish an auxiliary func-
tional module database {F v

i }, which archives all
validated modules for future reuse. This database
acts as a repository, enabling the retrieval of previ-
ously validated sub-modules to foster the creation
of new code responses.

Building upon the modular decomposition
achieved in the first stage, {Fm

1 , Fm
2 , . . . , Fm

n }, we
initially convert both the newly decomposed and
previously archived functional modules into dense
vector representations through a sentence embed-
dings modelMr:

V
f
(·)
i

←Mr

(
F

(·)
i

)
, (2)

where V
f
(·)
i

denotes the dense representation of any

given functional module F
(·)
i . Then, to facilitate

the retrieval of the most suitable archived module
for each new sub-module, we apply:

Sim
(
Fm
i , F v

j

)
← CosineSimilarity

(
Vfm

i
, Vfv

j

)
,

(3)

1146

where Sim
(
Fm
i , F v

j

)
calculates the similarity be-

tween the dense representations of two modules
using cosine similarity. The archived modules that
exhibit the highest similarity are then used as ad-
ditional in-context contents, assisting the teacher
model in refining the final code responses:

Ramr ←Mt (I, {Fm
i }, {F v

i }) , (4)

where Ramr represents the refined code responses.
These responses, alongside the original instruction
I , compile an evolved dataset aimed at optimizing
the knowledge distillation process.

As the process evolves, our framework iden-
tifies new modules within Ramr that exhibit no-
table differences from those currently in the
database—judged by the cosine similarity between
the new modules and existing ones. Modules that
are distinct undergo a rigorous verification stage
prior to their integration into the database. This crit-
ical stage harnesses the capabilities of the teacher
model for generating unit tests tailored to the func-
tionalities of the specific modules. This procedure
not only assesses the functional correctness of the
new modules but also ensures that they meet the
predefined quality standards, thereby streamlining
the process of enriching the module database with
reliable and effective components.

Functional Module Database. The functional
module database is pivotal within our AMR-Evol
framework. We begin by compiling a collection
of seed functions that have been validated. Lever-
aging the self-instruct method (Wang et al., 2022),
we prompt our teacher models to generate a di-
verse range of function modules. Following this,
we adopt a strategy similar to CodeT (Chen et al.,
2023a), instructing the teacher models to produce
unit tests that verify the functionality of these mod-
ules. Only the functions that pass these unit tests
are included in our dataset. Through this stringent
process, we construct a seed functional module
database that becomes a fundamental component
of our framework.

3.3 Knowledge Distillation

Upon completing the data synthesis process with
the help of teacher models, we acquire a dataset
that consists of paired instructions and responses,
Damr = {(I,Ramr)}. This dataset equips the stu-
dent modelMs for the task of knowledge distilla-
tion, where it is trained to use I as input with the

goal of generating responses Ramr that closely re-
semble those produced by the teacher model. The
training follows an auto-regressive learning objec-
tive, formalized as follows:

L(θ) = −
∑

(I,Ramr)∈Damr

logP (Ramr|I; θ), (5)

where L(θ) denotes the loss function minimized
during training, and θ signifies the parameters of
the student modelMs. This objective encourages
the student model to accurately predict the next to-
ken in the response sequence, given the instruction
I and the current state of the generated response.

4 Experiment

4.1 Setup
Baselines. Within our evaluation framework, we
compare the performance of our framework against
several baselines in code response distillation. The
first of these, referred to as direct, utilizes teacher
models to distill code responses in a straightfor-
ward manner, as detailed in Section 3.1. The sec-
ond baseline employs the Chain-of-Thought (CoT)
prompting method for distilling responses (Hsieh
et al., 2023). This approach is analogous to the
few-shot CoT method (Wei et al., 2022), in which
the teacher model first provides a step-by-step ex-
planation leading up to the formulated response.
Our third baseline, AnsRepair, draws inspiration
from previous works (Chen et al., 2023a; Olausson
et al., 2023; Chen et al., 2023d), where the teacher
models are utilized to generate unit tests. These
tests serve to evaluate the correctness of the gen-
erated responses. If the responses fail these tests,
the teacher models are subsequently invoked to
make the necessary corrections. More details about
baseline methods are included in the Appendix A.

Datasets and Benchmarks. Our framework fo-
cuses on distilling responses and necessitates a
dataset of instructions. To this end, we utilize a
subset of the training set from the MBPP as our
seed data. This is then expanded using the self-
instruct method with the teacher model to generate
around 10k instructions. With these newly derived
instructions, we employ a process akin to the Code
Evol-Instruct to iteratively synthesize a spectrum
of complex coding instructions across three distinct
levels of complexity. This variety allows us to as-
sess our framework’s efficacy in handling complex
instructions. More data construction and decontam-
ination details can be found in the Appendix B.

1147

Method HE HE-Plus MBPP MBPP-Plus

Complexity Level 1
Direct 54.9 46.3 65.9 54.1
CoT 52.4 45.7 65.7 53.4
AnsRepair 53.7 45.1 63.2 52.1

AMR-Evol 58.5 49.4 68.7 58.1
∆ +3.6 +3.1 +2.8 +4.0

Complexity Level 2
Direct 53.7 46.3 64.4 52.6
CoT 54.9 46.3 65.7 53.9
AnsRepair 56.1 47.6 63.4 52.9

AMR-Evol 56.1 47.6 68.7 56.6
∆ +0.0 +0.0 +3.0 +2.7

Complexity Level 3
Direct 52.4 45.7 65.2 53.9
CoT 52.4 43.9 65.7 53.9
AnsRepair 55.5 47.6 65.4 53.1

AMR-Evol 56.1 49.4 67.7 56.4
∆ +0.6 +1.8 +2.0 +2.5

Table 1: Comparison of various response dis-
tillation methods for code generation, utilizing
deepseek-coder-6.7b-base as the student model.

Method HE HE-Plus MBPP MBPP-Plus

Complexity Level 1
Direct 36.6 31.1 54.4 44.1
CoT 36.0 31.1 55.1 45.6
AnsRepair 35.4 29.3 56.4 45.4

AMR-Evol 37.8 32.3 57.4 45.6
∆ +1.2 +1.2 +1.0 +0.0

Complexity Level 2
Direct 37.2 31.1 55.4 44.6
CoT 36.0 31.1 54.6 45.6
AnsRepair 35.4 29.3 56.6 45.9

AMR-Evol 39.6 32.3 59.4 47.6
∆ +2.4 +1.2 +2.8 +1.7

Complexity Level 3
Direct 36.0 30.5 56.4 45.6
CoT 37.2 30.5 55.6 46.4
AnsRepair 37.2 29.3 55.6 44.9

AMR-Evol 39.0 32.9 59.1 46.9
∆ +1.8 +2.4 +2.7 +0.5

Table 2: Comparison of various response dis-
tillation methods for code generation, utilizing
CodeLlama-7b-hf as the student model.

For performance evaluation, we utilize the
well-known coding benchmark, namely Hu-
manEval (Chen et al., 2021), MBPP (Austin et al.,
2021), and EvalPlus (Liu et al., 2023). HumanEval
contains 164 coding problems with an average of
9.6 test cases per problem. MBPP includes 399
coding problems, each with three automated test
cases. EvalPlus extends the number of test cases for

both HumanEval and MBPP, resulting in enhanced
versions named HumanEval-Plus and MBPP-Plus.
Following EvalPlus, we report our method’s effec-
tiveness in terms of pass rates using greedy decod-
ing, which helps minimize the impact of any ran-
domness in the results. More details are included
in the Appendix C.

Implementation Details. For all experiments,
we employ OpenAI’s close-sourced LLM,
gpt-3.5-turbo-1106 as our teacher model and
choose two popular open-sourced code LLMs,
deepseek-ai/deepseek-coder-6.7b-base
(Guo et al., 2024) and
meta-llama/CodeLlama-7b-hf (Rozière et al.,
2023) as our student models. For the dense em-
beddings, we adopt one of the SOTA embeddings
models, Alibaba-NLP/gte-large-en-v1.5 (Li
et al., 2023c) as our representation model. The
supervised knowledge distillation phases of all
experiments are conducted with 200 training steps,
3 epochs, a sequence length of 2048 and the
AdamW optimizer (Loshchilov and Hutter, 2019).
For further training details and prompting designes,
please refer to the Appendix D.

4.2 Main Results

In Table 1, our AMR-Evol consistently out-
performs various response distillation meth-
ods for code generation, when adopt the
deepseek-coder-6.7b-base as the student
model. Specifically, at Complexity Level 1,
AMR-Evol exhibited superior results, with
improvements ranging between +2.8 to +4.0 across
all tasks. Our method maintained this lead in
Complexity Level 2, with the most substantial
gains in MBPP and MBPP-Plus, at +3.0 and
+2.7, respectively. Notably, even at the highest
complexity (Level 3), the method continued to
show incremental enhancements, most prominently
a +2.5 increase in MBPP-Plus. The performance
exhibits AMR-Evol’s consistent proficiency in
eliciting better code knowledge distillation across
varying degrees of complexity.

When utilizing CodeLlama-7b-hf as the student
model, Table 2 reveals that the performance pat-
terns of AMR-Evol closely paralleled its efficacy
with the previous model. Albeit with modest im-
provements at Complexity Level 1, AMR-Evol
showed more enhancement in higher complexity
scenarios. At Complexity Level 2, our method
achieves increases of +2.4 on HE and +2.8 on

1148

(a) Complex 1. (b) Complex 2. (c) Complex 3.

Figure 3: Manual evaluation of the accuracy of various code response distillation methods across 120 randomly
selected samples from each complexity level.

MBPP. The upward trend persisted through Com-
plexity Level 3, as the method underscored its ro-
bustness with increases such as +2.4 on HE-Plus
and +2.7 on MBPP. These results solidify AMR-
Evol as an effective method for code knowledge
distillation, adaptable to various instruction com-
plexity levels.

4.3 Analysis

Quality Comparison. Our experimental findings
illustrate the effectiveness of our AMR-Evol in
enhancing the knowledge distillation. To further
validate the efficacy of AMR-Evol in producing
better instruction fine-tuning data, we conducted
a manual evaluation. We randomly selected the
sample sets of 120 coding problems for each lev-
els of complexity. Given that all samples are cod-
ing challenges, their responses can be definitively
classified as either correct or incorrect. Two ex-
perienced programmers were engaged to review
and label the code responses generated by various
methods as suitable or not. The manual assessment
results, depicted in Figure 3, reveal that although
no method attained complete perfect, AMR-Evol
demonstrated consistently superior performance
compared to all other baseline methods across all
complexity levels. In Appendix E, we also include
some examples of responses generated by different
methods to qualitatively compare their quality.

Ablation. In Table 3, we present an ablation
study meticulously designed to identify the individ-
ual contributions of modular decomposition (MD)
and adaptive response evolution (ARE) to the effi-
cacy of our framework. First, we remove the MD
stage in our framework by adopting direct response
to retrieve the related function modules for ARE.
This led to a performance drop, underscoring its
crucial role in our framework. Specifically, the

Method HE HE-Plus MBPP MBPP-Plus

Complexity Level 1
AMR-Evol 58.5 49.4 68.7 58.1

w/o MD 57.9 49.4 67.4 55.9
w/o ARE 56.1 48.8 69.4 57.1

Complexity Level 2
AMR-Evol 56.1 47.6 68.7 56.6

w/o MD 54.9 46.3 67.7 54.4
w/o ARE 54.9 47.0 67.4 55.9

Complexity Level 3
AMR-Evol 56.1 49.4 67.7 56.4

w/o MD 54.3 47.6 66.4 53.6
w/o ARE 53.0 47.0 67.4 54.6

Table 3: Ablation studies by removing modular decom-
position (MD) or adaptive response evolution (ARE) in
our framework.

omission of MD typically results in the recall of
only one function module based on the direct re-
sponse. However, while direct responses address
more complex or larger coding tasks, function mod-
ules target tasks with finer granularity. This differ-
ence creates a gap, making it challenging for the
retrieved function modules to effectively contribute
to refining the direct responses.

Subsequently, we exclude the ARE stage, which
also resulted in a performance decline, highlighting
its vital role in the framework. Without ARE, the
generation of responses is solely reliant on the mod-
ular decomposition output, lacking the improve-
ments that come from in-context learning with
related function modules. This places the entire
responsibility for refining responses on the inher-
ent capabilities of the teacher model. This anal-
ysis strongly reinforces the indispensable nature
of both MD and ARE within our framework. In
Appendix F, we also present examples to showcase
the output of the MD stage and the top-1 function
modules retrieved from the database.

1149

Model Size #SFT Ins HE HE-Plus MBPP MBPP-Plus

Proprietary models
GPT4 - - 85.4 81.7 83.0 70.7
GPT3.5 - - 72.6 65.9 81.7 69.4
Gemini Pro - - 63.4 55.5 72.9 57.9

Base model: deepseek-ai/deepseek-coder-6.7b-base
†DeepSeekCoder-Instruct 6.7B >1M 73.8 70.1 72.7 63.4
MagiCoder-DS 6.7B 75k 63.4 57.3 75.2 61.9
‡WaveCoder-DS 6.7B 20k 66.5 57.9 73.7 60.4

DeepSeekCoder-AMR-Evol 6.7B 50k 68.9 61.0 74.4 62.9

Base model: meta-llama/CodeLlama-7b-Python-hf
†CodeLlama-Instruct 7B 80k 32.9 26.8 59.1 45.6
WizardCoder-CL 7B 78k 55.5 48.2 64.9 53.9
MagiCoder-CL 7B 75k 54.3 48.8 63.7 51.9

CodeLlama-AMR-Evol 7B 50k 59.1 51.8 64.7 55.4
†: Official instruction models. Responses are distilled from unknown, humans or themselves.
‡: Responses are distilled from GPT4.

Table 4: Comparison of our fine-tuned models against both publicly available academic Code LLMs, similarly
scaled in terms of SFT data and based on the same student models as ours, and the official instruction-based LLMs.
We either download the model weights or utilize the APIs for performance reproduction.

4.4 Comparing with Open Code LLMs

To delve deeper into the efficacy of our frame-
work, we have incorporated AMR-Evol with one of
the SOTA instruction construction methods, Code
Evol-Instruct, to expand our SFT data set. We have
generated around 50k instructions using this ap-
proach and employed AMR-Evol to distill code
responses from the teacher models (GPT3.5). Sub-
sequently, we used deepseek-coder-6.7b-base
and CodeLlama-7b-Python-hf as our two student
models for training. For a relative fair comparison,
we compare our fine-tuned student models against
publicly available academic Code LLMs, which
are trained with a similar scale of SFT data and em-
ploy the same base models as ours. This includes
MagiCoder-DS/CL (Wei et al., 2023), WaveCoder-
DS (Yu et al., 2023), and WizardCoder-CL (Luo
et al., 2024). We also compare against official in-
struction models, namely DeepSeek-Coder-Instruct
and CodeLlama-Instruct, to showcase performance
gaps. For more discussions about baseline selection
and SFT details, please refer to the Appendix G.

Table 4 showcases the exceptional performance
of DeepSeekCoder-AMR-Evol across all tasks.
When compared to MagiCoder-DS, trained with
75k SFT data, and WaveCoder-DS, distilled from
GPT4, the AMR-Evol version notably stands out

Model CC Val CC Test APPS

DS-Instruct 7.69 6.67 11.67
MagiCoder-DS 8.55 12.73 13.00
DS-AMR-Evol 10.26 12.73 14.22

Table 5: Comparing different models on the harder code
generation tasks, CodeContest (CC) (Li et al., 2022)
and APPS (Hendrycks et al., 2021). DS-Instruct =
DeepSeekCoder-Instruct. DS-AMR-Evol is our model.

by demonstrating substantial performance gains:
+2.4 on HE, +3.2 on HE-Plus, and +1.0 on MBPP-
Plus. Even when compared to the official instruc-
tion model, which is trained with more than 20
times as much data, our model achieves comparable
performance on MBPP and MBPP-Plus. Similarly,
the CodeLlama-AMR-Evol variant exhibits supe-
rior performance in most tasks, with performance
improvements of +3.6 on HE, +3.0 on HE-Plus,
and +1.5 on MBPP-Plus, respectively. Moreover,
our model significantly outperforms CodeLlama-
Instruct, which is an official model from Meta. In
addition, the Pass@k sampling results, presented
in Appendix G, Table 8, also evident the better
performance of our models.

Since HumanEval and MBPP cover basic cod-
ing tasks, we’ve gone further to evaluate dif-

1150

ferent models on advanced coding challenges,
specifically CodeContest (Li et al., 2022) and
APPS (Hendrycks et al., 2021). All models gener-
ate the answers with greedy decoding. As seen in
Table 5, our model not only performs better overall
but also beats the official instruction model, despite
it being trained on much more data than ours.

5 Conclusion

In this study, we present a novel framework, AMR-
Evol, that leverages a two-stage approach—namely,
modular decomposition and adaptive response evo-
lution—to enhance code response distillation from
teacher models, thereby improving knowledge dis-
tillation in code generation. Our experiments
across three well-known coding benchmarks, Hu-
manEval, MBPP, and EvalPlus, demonstrate the
effectiveness of our method.

Acknowledgement

This work is partially supported by National Natu-
ral Science Foundation of China Young Scientists
Fund(No. 62206233) and Hong Kong RGC ECS
(No. 22200722).

Limitation

Our framework has room for enhancement in sev-
eral aspects:

• First, despite Figure 3 showcasing our
method’s capacity to improve the accuracy
of code response distillation, achieving 100%
accuracy remains unattainable. While our ap-
proach does alleviate this concern to some
extent, the risk of delivering low-quality re-
sponses that could potentially mislead the stu-
dent models cannot be entirely eliminated. Fu-
ture endeavors could explore the integration
of tools, such as compilers, to further refine
the quality of the responses.

• Second, our framework’s enhanced capability
for code knowledge distillation is accompa-
nied by a requirement for multi-stage genera-
tion, leading to increased costs in leveraging
the teacher models. This cost-performance
trade-off has been discussed in Appendix H,
where we conclude that the benefits in per-
formance outweigh the incremental costs in-
curred.

• Third, the design of our method is narrowly
focused on code knowledge distillation, lim-
iting its broader application across general
domains. The foundation of our framework
in modular programming principles presents
considerable obstacles in adapting its method
for use in non-coding areas.

References
Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-

Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-
lican, David Silver, Slav Petrov, Melvin Johnson,
Ioannis Antonoglou, Julian Schrittwieser, Amelia
Glaese, Jilin Chen, Emily Pitler, Timothy P. Lilli-
crap, Angeliki Lazaridou, Orhan Firat, James Molloy,
Michael Isard, Paul Ronald Barham, Tom Henni-
gan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens
Meyer, Eliza Rutherford, Erica Moreira, Kareem
Ayoub, Megha Goel, George Tucker, Enrique Pi-
queras, Maxim Krikun, Iain Barr, Nikolay Savinov,
Ivo Danihelka, Becca Roelofs, Anaïs White, Anders
Andreassen, Tamara von Glehn, Lakshman Yagati,
Mehran Kazemi, Lucas Gonzalez, Misha Khalman,
Jakub Sygnowski, and et al. 2023a. Gemini: A fam-
ily of highly capable multimodal models. CoRR,
abs/2312.11805.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernández
Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan A. Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxi-
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier
Garcia, Sebastian Gehrmann, Lucas Gonzalez, and
et al. 2023b. Palm 2 technical report. CoRR,
abs/2305.10403.

Anthropic. 2023. Claude: A family of large language
models. https://www.anthropic.com/claude.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei

1151

https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/arXiv.2305.10403
https://www.anthropic.com/claude
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732

Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023a.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Hailin Chen, Amrita Saha, Steven C. H. Hoi, and Shafiq
Joty. 2023b. Personalised distillation: Empowering
open-sourced llms with adaptive learning for code
generation. CoRR, abs/2310.18628.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-

ing large language models trained on code. CoRR,
abs/2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023c. Teaching large language models
to self-debug. CoRR, abs/2304.05128.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023d. Teaching large language mod-
els to self-debug. CoRR, abs/2304.05128.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Edsger W. Dijkstra. 1967. The structure of the "the"-
multiprogramming system. In Proceedings of the
First Symposium on Operating Systems Principles,
SOSP 1967, Gatlinburg, Tennesse, USA, 1967. ACM.

Google. 2024. Codegemma: Open code models based
on gemma. https://storage.googleapis.com/
deepmind-media/gemma/codegemma_report.pdf.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur, Khy-
athi Raghavi Chandu, Arman Cohan, Jennifer Du-
mas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar
Khot, William Merrill, Jacob Morrison, Niklas Muen-
nighoff, Aakanksha Naik, Crystal Nam, Matthew E.
Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, Will Smith, Emma
Strubell, Nishant Subramani, Mitchell Wortsman,
Pradeep Dasigi, Nathan Lambert, Kyle Richardson,
Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Sol-
daini, Noah A. Smith, and Hannaneh Hajishirzi. 2024.
Olmo: Accelerating the science of language models.
CoRR, abs/2402.00838.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,

1152

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://openreview.net/pdf?id=ktrw68Cmu9c
https://doi.org/10.48550/ARXIV.2310.18628
https://doi.org/10.48550/ARXIV.2310.18628
https://doi.org/10.48550/ARXIV.2310.18628
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/ARXIV.2304.05128
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.1145/800001.811672
https://doi.org/10.1145/800001.811672
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://doi.org/10.48550/ARXIV.2402.00838

Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. 2023. Textbooks are all you need. CoRR,
abs/2306.11644.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Bench-
marks 2021, December 2021, virtual.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alex Ratner, Ranjay
Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Dis-
tilling step-by-step! outperforming larger language
models with less training data and smaller model
sizes. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 8003–8017. Association for
Computational Linguistics.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He,
Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, Xinrong Zhang,
Zhen Leng Thai, Kai Zhang, Chongyi Wang, Yuan
Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu
Zhai, Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2024. Minicpm: Un-
veiling the potential of small language models with
scalable training strategies. CoRR, abs/2404.06395.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul,
Doyen Sahoo, and Shafiq Joty. 2023. Codechain: To-
wards modular code generation through chain of self-
revisions with representative sub-modules. CoRR,
abs/2310.08992.

Kaixin Li, Qisheng Hu, Xu Zhao, Hui Chen, Yuxi Xie,
Tiedong Liu, Qizhe Xie, and Junxian He. 2024. In-
structcoder: Instruction tuning large language models
for code editing. Preprint, arXiv:2310.20329.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023a. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del
Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023b.
Textbooks are all you need II: phi-1.5 technical report.
CoRR, abs/2309.05463.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code. CoRR, abs/2203.07814.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023c. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. CoRR, abs/2305.01210.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe
Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi
Yang, Denny Zhou, and Andrew M. Dai. 2024. Best
practices and lessons learned on synthetic data for
language models. CoRR, abs/2404.07503.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Pa-
try, Canwen Xu, Julian J. McAuley, Han Hu, Torsten
Scholak, Sébastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, and et al.
2024. Starcoder 2 and the stack v2: The next genera-
tion. CoRR, abs/2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference on
Learning Representations.

1153

https://doi.org/10.48550/ARXIV.2306.11644
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.507
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.507
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.507
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.507
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.08992
https://doi.org/10.48550/ARXIV.2310.08992
https://doi.org/10.48550/ARXIV.2310.08992
https://arxiv.org/abs/2310.20329
https://arxiv.org/abs/2310.20329
https://arxiv.org/abs/2310.20329
https://doi.org/10.48550/ARXIV.2309.05463
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/ARXIV.2404.07503
https://doi.org/10.48550/ARXIV.2404.07503
https://doi.org/10.48550/ARXIV.2404.07503
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love,
Pouya Tafti, Léonard Hussenot, Aakanksha Chowdh-
ery, Adam Roberts, Aditya Barua, Alex Botev, Alex
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea
Tacchetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Cristian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan,
Jeremy Chen, Johan Ferret, Justin Chiu, and et al.
2024. Gemma: Open models based on gemini re-
search and technology. CoRR, abs/2403.08295.

Meta. 2024. Introducing meta llama 3: The most capa-
ble openly available llm to date. https://ai.meta.
com/blog/meta-llama-3/.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of GPT-4. CoRR,
abs/2306.02707.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023a. Codegen2:
Lessons for training llms on programming and natu-
ral languages. CoRR, abs/2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023b. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

Theo X. Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2023. Demystifying GPT self-repair for code genera-
tion. CoRR, abs/2306.09896.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

David Lorge Parnas. 1972. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. In KDD ’20: The 26th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, CA, USA, August
23-27, 2020, pages 3505–3506. ACM.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,

Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia,
Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil
Houlsby, and Donald Metzler. 2022. Unifying lan-
guage learning paradigms. CoRR, abs/2205.05131.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang,
and Dianhui Chu. 2024. A survey on data selection
for LLM instruction tuning. CoRR, abs/2402.05123.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi
D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
2023. Codet5+: Open code large language mod-
els for code understanding and generation. CoRR,
abs/2305.07922.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /

1154

https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.48550/ARXIV.2306.02707
https://doi.org/10.48550/ARXIV.2306.02707
https://doi.org/10.48550/arXiv.2305.02309
https://doi.org/10.48550/arXiv.2305.02309
https://doi.org/10.48550/arXiv.2305.02309
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://doi.org/10.48550/ARXIV.2306.09896
https://doi.org/10.48550/ARXIV.2306.09896
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2205.05131
https://doi.org/10.48550/arXiv.2205.05131
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/ARXIV.2402.05123
https://doi.org/10.48550/ARXIV.2402.05123
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685

Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696–8708. Association for Computa-
tional Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. CoRR, abs/2312.02120.

Xiaodong Wu, Ran Duan, and Jianbing Ni. 2023. Un-
veiling security, privacy, and ethical concerns of chat-
gpt. CoRR, abs/2307.14192.

Yu Xia, Rui Wang, Xu Liu, Mingyan Li, Tong Yu, Xiang
Chen, Julian McAuley, and Shuai Li. 2024. Beyond
chain-of-thought: A survey of chain-of-x paradigms
for llms.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. 2024. A survey on knowl-
edge distillation of large language models. CoRR,
abs/2402.13116.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2023. Wavecoder: Widespread and versatile
enhanced instruction tuning with refined data genera-
tion. CoRR, abs/2312.14187.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen
Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
2024. Advancing llm reasoning generalists with pref-
erence trees. Preprint, arXiv:2404.02078.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan
Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, Peng
Zhang, Yuxiao Dong, and Jie Tang. 2022. GLM-
130B: an open bilingual pre-trained model. CoRR,
abs/2210.02414.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
Codegeex: A pre-trained model for code generation

with multilingual evaluations on humaneval-x. CoRR,
abs/2303.17568.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024. Opencodeinterpreter: Integrating code
generation with execution and refinement. CoRR,
abs/2402.14658.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:
less is more for alignment. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

1155

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2307.14192
https://doi.org/10.48550/ARXIV.2307.14192
https://doi.org/10.48550/ARXIV.2307.14192
https://api.semanticscholar.org/CorpusID:269330085
https://api.semanticscholar.org/CorpusID:269330085
https://api.semanticscholar.org/CorpusID:269330085
https://doi.org/10.48550/ARXIV.2402.13116
https://doi.org/10.48550/ARXIV.2402.13116
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://arxiv.org/abs/2404.02078
https://arxiv.org/abs/2404.02078
https://doi.org/10.48550/arXiv.2210.02414
https://doi.org/10.48550/arXiv.2210.02414
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/ARXIV.2402.14658
https://doi.org/10.48550/ARXIV.2402.14658
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html

A Baselines

To ensure a fair comparison, we incorporate
three distinct response distillation methods as our
baselines. The first method is direct distillation.
As outlined in Section 3.1, this approach involves
using the teacher model to directly produce re-
sponses based on the provided code instructions.
The prompt used is as follows:

Prompt for Direct Distillation

System: You are a professional coder.
Your answer must include Python code in
Markdown format.

User: {instruction}

The second method involves response distillation
utilizing the Chain-of-Thought (CoT) approach.
We adopt the method from the few-shot CoT (Wei
et al., 2022), prompting the teacher model to pro-
duce the responses. To minimize costs, we opt to
include a single example in our prompt:

Prompt for CoT Distillation

System: You are a professional coder. You
will be given a Python Question. Your ob-
jective is to develop an accurate solution to
the Python Question. Begin by step-by-step
think about your approach to solve this
question, then proceed to generate your
final code response in Markdown format.

One-Shot Example
Python Question:
{one-shot-example-question}

Correct Solution:
{one-shot-example-solution}

User: ## New Task
Python Question:
{question}

Correct Solution:

The third baseline, AnsRepair, incorporates self-
repair techniques (Chen et al., 2023a; Olausson
et al., 2023). This method employs the teacher
model to generate unit test functions for each sam-

Data Source Number

Seed MBPP-Train 332
Self-Instruct Seed 10k
Complex 1 Self-Instruct 9.8k
Complex 2 Complex 1 9.7k
Complex 3 Complex 2 9.7k

Table 6: Statistics of Our Instruction Dataset.

Data #Question #Avg. Tests

HumanEval 164 9.6
HumanEval-Plus 164 x80
MBPP 399 3
MBPP-Plus 399 x35

Table 7: Statistics of Our Benchmarks.

ple, enabling the model to verify the correctness
of its own answers. The employed prompt is as
follows:

Prompt for Test Function Generation

System: You are a professional coder. You
will be given a Python Question and its
possible code solution. Your objective is
to provide a test function to test whether
the code solution is correct or not. Your
response should be in Markdown format.

One-Shot Example
Python Question:
{one-shot-example-question}

Possible Code Solution:
{one-shot-example-solution}

Tests Function:
{one-shot-example-tests}

User: ## New Task
Python Question:
{question}

Possible Code Solution:
{answer}

Tests Function:

Upon obtaining the test functions for each sam-
ple, we execute these tests to assess the output’s
correctness. Should the output fail to meet the crite-
ria set by the test functions, we prompt the teacher

1156

model to regenerate the output. The prompt used
for this process is as follows:

Prompt for AnsRepair Distillation

System: You are a professional coder. You
will be given a Python Question and its
wrong solution. You need to provide the
correct solution for the Python Question in
Markdown format.

One-Shot Example
Python Question:
{one-shot-example-question}

Wrong Solution:
{one-shot-example-wrong-answer}

Correct Solution:
{one-shot-example-correct-answer}

User: ## New Task
Python Question:
{question}

Wrong Solution:
{answer}

Correct Solution:

B Datasets

Our framework concentrates on distilling re-
sponses and requires a dataset of instructions for
this purpose. As indicated in Table 6, we enumerate
the quantity of instructions used in our experiments.
We initiate our process with the MBPP training
set (task-ids 601-974) as a seed dataset, which en-
hances our ability to generate Python code effec-
tively. To prevent any overlap with the EvalPlus
test data, we are diligent in omitting any samples
that coincide with the test set, thereby narrowing
our training set to 332 unique MBPP tasks. We
then utilize this filtered seed data and apply the
self-instruction method to construct instructions.
Subsequently, we employ the Code Evol-Instruct
method to iteratively generate instructions of vary-
ing complexity across three distinct levels.

To ensure decontamination of our datasets, we
invoke a method akin to the work of Code Evol-
Instruct (Luo et al., 2024) for data filtering. This in-
volves employing the gte-large-en-v1.5 model

to treat each test set sample as a query, which re-
trieves the top five most similar samples from the
training data. Subsequently, these pairs are eval-
uated by GPT4 in a binary classification task to
decide whether a match exists. Detected matches
lead to the exclusion of those specific training sam-
ples to eliminate potential data leakage.

Prompt for Modular Decomposition

System: You will be presented with a
Python coding question along with a poten-
tial solution. Your task is to deconstruct
the given solution into smaller, manageable
modules. Each module should be clearly
defined with specific function names,
detailed input/output specifications, and
concise function descriptions. Do NOT re-
peat the functions in the One-Shot Example.

One-Shot Example
Python Question:
{one-shot-example-question}

Potential Solution:
{one-shot-example-solution}

RESPONSE:
{one-shot-example-modules}

User: ## New Task
Python Question:
{question}

Potential Solution:
{answer}

RESPONSE:

C Benchmark

Table 7 details the quantity of questions along
with the average number of unit tests per ques-
tion across all the benchmarks utilized in our study.
The license of HumanEval is MIT.1 The license of
MBPP is cc-by-4.0.2 The license of EvalPlus is
Apache-2.0.3

1https://huggingface.co/datasets/openai/
openai_humaneval

2https://huggingface.co/datasets/
google-research-datasets/mbpp

3https://github.com/evalplus/evalplus

1157

https://huggingface.co/datasets/openai/openai_humaneval
https://huggingface.co/datasets/openai/openai_humaneval
https://huggingface.co/datasets/google-research-datasets/mbpp
https://huggingface.co/datasets/google-research-datasets/mbpp
https://github.com/evalplus/evalplus

D Implementation Details

Our AMR-Evol framework encompasses a two-
stage process. In the first stage, Modular Decom-
position is applied to break down the code instruc-
tions into multiple sub-modules, using the direct
responses as the initial seed data. The prompt uti-
lized for this stage is demonstrated above. During
the second stage, Adaptive Response Evolution re-
fines these decomposed sub-modules, utilizing the
retrieved modules to develop the final answer. The
corresponding prompt for this stage is as follows:

Prompt for Adaptive Response Evolution

System: You are a professional coder. You
will be given a Python Question and a
selection of relevant, modularized functions
intended to inspire your approach. Your
objective is to develop a more refined
and accurate solution to the Python Ques-
tion. Your response should pretend that
you have never seen the Relevant Functions.

One-Shot Example
Python Question:
{one-shot-example-question}

Relevant Functions:
{one-shot-example-similar-functions}

Correct Solution:
{one-shot-example-solution}

User: ## New Task
Python Question:
{question}

Relevant Functions:
{similar-functions}

Correct Solution:

For all instruction construction processes, we set
the temperature to 0.7 and the sequence length to
2048. For all response distillation processes, the
temperature is fixed at 0.0, and the sequence length
is set to 3000. We train the models for 200 steps
across 3 epochs with a sequence length of 2048,
employing the AdamW optimizer, BF16 precision,
and DeepSpeed Zero-2 (Rasley et al., 2020). The
training is conducted on 4 A800 GPUs.

E Qualitative Comparison

Table 10 11 12 display distilled responses ob-
tained through various methods. It is evident from
the comparison that our framework facilitates the
generation of better responses for code knowledge
distillation.

F Modular Decomposed and Retrieval
Examples

Table 13 14 15 showcase the modular decom-
posed (MD) and retrieved top-1 (Recall) examples.

G Comparing with Open Code LLMs

To compare with other Open Code LLMs, we in-
tegrate our AMR-Evol framework with Code Evol-
Instruct to continually expand our SFT dataset. We
also employ the same data decontamination method
to prevent data leakage. We have generated ap-
proximately 50k training samples. Subsequently,
we fine-tuned our models using settings similar to
those detailed in Appendix D. Given the larger vol-
ume of data, we opted to increase the number of
training steps to 400.

To obtain a relative fair comparison, we only in-
clude the open code LLMs which are trained with
a similar scale of SFT data and employ the same
base models as ours, including MagiCoder-DS/CL,
WaveCoder-DS, and WizardCoder-CL. We also
compare against official instruction-based models,
namely DeepSeekCoder-Instruct and CodeLlama-
Instrut. However, these official models are trained
with more than 20 times data than ours, which lead
to unfair comparison. We only want to showcase
the performance gaps.

Models with a higher parameter count have
been excluded from our comparison, such as
DeepSeekCoder-Instruct-33B, WizardCoder-33B-
v1.1, Codestral-22B-v0.1,4, CodeLlama-Instruct-
34B, and Starcoder2-15b-Instruct.5 These models
considerably exceed the size of our own, rendering
a direct comparison unfair. Additionally, models
that primarily derive their learning from GPT4 are
excluded, including MagiCoder-S-DS, WaveCoder-
DS-Ultra, and OpenCodeInterpreter (Zheng et al.,

4https://huggingface.co/mistralai/
Codestral-22B-v0.1

5https://huggingface.co/bigcode/
starcoder2-15b-instruct-v0.1

1158

https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1
https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1

Model HE-Plus (Pass@1) HE-Plus (Pass@10) MBPP-Plus (Pass@1) MBPP-Plus (Pass@10)

MagiCoder-DS 56.0 72.5 61.7 68.5
WaveCoder-DS 56.6 63.2 57.6 63.0
DS-AMR-Evol 59.1 75.2 61.3 70.7

Table 8: Results of pass@k(%) on HE-Plus, MBPP-Plus. We follow the previous works (Chen et al., 2021)
to generate n=200 samples to estimate the pass@k scores our models with the same set of hyper-parameters:
temperate=0.2, and top_p=0.95. DS-AMR-Evol is our model.

Teacher HE-Plus MBPP-Plus

GPT3.5-Turbo 61.0 62.9
Llama-3-70B 62.2 63.2

Table 9: Adopting open-source model, Llama-3-70B-
Instruct, as our teacher model.

2024). As our teacher model is based on GPT-3.5,
a direct comparison with these GPT4-based mod-
els would not be equitable. Non-academic models,
such as CodeQwen (Bai et al., 2023), are also ex-
cluded since the methods behind their construction
are not disclosed.

In Table 4, all models employ greedy decoding
to generate answers for each question. To present
additional results and align with some previous
studies (Chen et al., 2021; Luo et al., 2024), we
also display results obtained through sampling in
Table 8. The temperature is set to 0.2, and the
number of samples is fixed at 200. Following the
method of prior work (Chen et al., 2021), we cal-
culate the pass@1 and pass@10 scores. It is also
evident that our models outperform the baseline
models.

H Data Synthesis Cost Trade-off

Differing from direct distillation, our frame-
work necessitates multi-stage response distillation,
which increases the cost of using the API of the
teacher model (around 4 times). However, Ta-
ble 1 and 2 showcase that our method can out-
performance the direct distillation over all tasks
and different student models. In addition, we adopt
the gpt-3.5-turbo-1106 as our teacher model,
whose API price is low. Therefore, we conclude
that the benefits in performance outweigh the incre-
mental costs incurred.

I Adopting Open-Source LLMs as
Teachers

While our work primarily focuses on distilling the
code generation ability from closed-source models,

we also include an additional experiment using the
open-source model, Llama-3-70B-Instruct, as our
teacher model. Table 9 shows that our method is
also effective when using the open-source model
as the teacher.

J Broader Impact

Our research presents a novel framework for trans-
ferring code knowledge from closed-source LLMs
to open-source LLMs. This framework is designed
to generate code responses for various coding in-
structions during the data synthesis process. While
our approach has been shown to improve response
quality, as illustrated in Figure 3, it does not guar-
antee absolute correctness. Consequently, data gen-
erated through our method may still contain errors.
It is essential to filter out these erroneous samples
before deploying our approach in real-world appli-
cations to mitigate the risk of misuse.

K Manual Evaluation

In Figure 4, we present the interface used by human
annotators to determine whether a given response
is an appropriate answer for the coding tasks under
evaluation, as shown in Figure 3. The annotators
are the authors of this paper, possessing expertise
in programming.

L Use Of AI Assistants

The AI assistant, GPT4-Turbo, is used solely for
refining the writing of our paper.

1159

Ins. Design a function that implements the Laplace expansion theorem to calculate the determinant of a 3x3 matrix,
but now with the added condition of utilizing nested for loops and ensuring that the matrix elements are limited to
integers only.

Direct

def calculate_determinant(matrix):
if len(matrix) != 3 or len(matrix [0]) != 3:

raise ValueError('Matrix must be a 3x3 matrix ')
determinant = 0
for i in range (3):

submatrix = [[matrix[j][k] for k in range (3) if k != i] for j in
range(1, 3)]

sub_determinant = calculate_determinant(submatrix)
sign = (-1) ** i
determinant += sign * matrix [0][i] * sub_determinant

return determinant if len(matrix) == 2 else round(determinant)

(Wrong)

CoT

def determinant_3x3(matrix):
if len(matrix) != 3 or not all((len(row) == 3 for row in matrix)):

raise ValueError('Input matrix must be a 3x3 matrix ')
determinant = 0
for i in range (3):

determinant += matrix [0][i] * matrix [1][(i + 1) % 3] * matrix [2][(i
+ 2) % 3]

determinant -= matrix [0][i] * matrix [1][(i + 2) % 3] * matrix [2][(i
+ 1) % 3]
return determinant

(Correct)

Ans-
Repair

def calculate_determinant(matrix):
if len(matrix) != 3 or len(matrix [0]) != 3:

raise ValueError('Matrix must be a 3x3 matrix ')
determinant = 0
for i in range (3):

submatrix = [[matrix[j][k] for k in range (3) if k != 0] for j in
range (3) if j != i]

sub_determinant = calculate_determinant(submatrix)
sign = (-1) ** i
determinant += sign * matrix [0][i] * sub_determinant

return determinant if len(matrix) == 2 else round(determinant)

(Wrong)

AMR-
Evol

def determinant_3x3(matrix: list) -> int:
det = 0
for i in range (3):

det += (-1) ** i * matrix [0][i] * determinant_2x2(submatrix_2x2(
matrix , 0, i))
return det

def determinant_2x2(matrix: list) -> int:
return matrix [0][0] * matrix [1][1] - matrix [0][1] * matrix [1][0]

def submatrix_2x2(matrix: list , i: int , j: int) -> list:
submatrix = [row[:j] + row[j + 1:] for row in matrix [:i] + matrix[i +
1:]]
return submatrix

(Correct)

Table 10: Examples of different response distillation methods.

1160

Ins. Develop a algorithm to simulate multiple rounds of a custom coin flip game with distinct scoring mechanisms for
each outcome. The algorithm should efficiently manage a substantial number of players and monitor their scores in
real-time, while prioritizing minimal memory usage and computational complexity.

Direct

import random
def simulate_round ():

return random.choice (['heads ', 'tails '])
def simulate_game(num_players , num_rounds):

players = {i: 0 for i in range(1, num_players + 1)}
for _ in range(num_rounds):

outcome = simulate_round ()
for player in players:

players[player] = scoring_mechanisms[outcome](players[player])
print('Scores after round ', _ + 1, ':', players)

return players

CoT

import random
def coin_flip_game(players):

scores = {}
for player in players:

scores[player] = 0
rounds = 10
for _ in range(rounds):

for player in players:
outcome = random.choice (['heads ', 'tails '])
if outcome == 'heads ':

scores[player] += heads_score
else:

scores[player] += tails_score
return scores

Ans-
Repair

import random
def simulate_round ():

return random.choice (['heads ', 'tails '])

def simulate_game(num_players , num_rounds):
players = {i: 0 for i in range(1, num_players + 1)}
scoring_mechanisms = {'heads ': lambda x: x + 1, 'tails ': lambda x: max
(0, x - 1)}
for _ in range(num_rounds):

outcome = simulate_round ()
for player in players:

players[player] = scoring_mechanisms[outcome](players[player])
print('Scores after round ', _ + 1, ':', players)

return players

AMR-
Evol

import random
class CoinFlipGame:

def __init__(self):
self.scores = {}

def coin_flip(self , num_flips =10):
heads_count = sum((random.randint(0, 1) for _ in range(num_flips)))
if heads_count < num_flips / 2:

return 'You lost the game!'
else:

return 'You won the game!'

def update_scores(self , player , amount):
if player not in self.scores:

self.scores[player] = 0
self.scores[player] += amount

def get_scores(self):
return self.scores

Table 11: Examples of different response distillation methods. Our AMR-Evol leads more suitable response.
1161

Ins. Craft a program tasked with computing the Fibonacci sequence up to a user-defined boundary, ensuring that every
generated number is not only part of the Fibonacci sequence but also a prime number.

Direct

def is_prime(n):
...

def fibonacci_prime_sequence(boundary):
fib_sequence = [0, 1]
while fib_sequence [-1] <= boundary:

next_fib = fib_sequence [-1] + fib_sequence [-2]
if is_prime(next_fib):

fib_sequence.append(next_fib)
else:

fib_sequence.append(next_fib + 1)
return fib_sequence [:-1] # Wrong

CoT

def is_prime(num):
...

def fibonacci_prime_sequence(boundary):
fib_sequence = [1, 1]
while fib_sequence [-1] + fib_sequence [-2] <= boundary:

next_fib = fib_sequence [-1] + fib_sequence [-2]
if is_prime(next_fib):

fib_sequence.append(next_fib)
else:

fib_sequence.append(next_fib)
return fib_sequence # Wrong

Ans-
Repair

def is_prime(num):
...

def fibonacci_prime_sequence(boundary):
def fibonacci(n):

if n <= 0: return 0
elif n == 1: return 1
else: return fibonacci(n - 1) + fibonacci(n - 2)

fib_sequence , i = [], 0
while fibonacci(i) <= boundary:

next_fib = fibonacci(i)
if is_prime(next_fib):

fib_sequence.append(next_fib)
i += 1

return fib_sequence # Correct

AMR-
Evol

from typing import List
def is_prime(num: int) -> bool:

...

def generate_fibonacci_sequence(boundary: int) -> List[int]:
fibonacci_sequence = [0, 1]
while True:

next_num = fibonacci_sequence [-1] + fibonacci_sequence [-2]
if next_num <= boundary:

fibonacci_sequence.append(next_num)
else:

break
return fibonacci_sequence

def find_fibonacci_primes(boundary: int) -> List[int]:
fibonacci_sequence = generate_fibonacci_sequence(boundary)
prime_fibonacci_numbers = [num for num in fibonacci_sequence if
is_prime(num)]
return prime_fibonacci_numbers # Correct

Table 12: Examples of different response distillation methods. The is_prime has been omitted to save space.

1162

Ins. Craft a program tasked with computing the Fibonacci sequence up to a user-defined boundary, ensuring that every
generated number is not only part of the Fibonacci sequence but also a prime number.

Direct See Table 10

MD

def validate_matrix(matrix: list) -> None:
"""
Description:

Validates if the input matrix is a 3x3 matrix.
...
"""

def calculate_minor_matrix(matrix: list , row: int , col: int) -> list:
"""
Description:

Calculates the minor matrix by removing the specified row and
column from the input matrix.
...
"""

def calculate_determinant(matrix: list) -> int:
"""
Description:

Calculates the determinant of a 3x3 matrix using Laplace expansion
theorem.
...
"""

Recall

def search_element(matrix , x):
"""
Search for a given element in a sorted matrix.
...
"""
Start from the top right corner
i = 0
j = len(matrix [0]) - 1
while (i < len(matrix) and j >= 0):

if (matrix[i][j] == x):
return True

if (matrix[i][j] > x):
j -= 1

else:
i += 1

return False

def Submatrix(A: list , i: int , j: int) -> list:
"""
Get the submatrix of A by removing the i-th row and j-th column.
...
"""
return [row[:j] + row[j+1:] for row in (A[:i] + A[i+1:])]

def Determinant(A: list) -> int:
"""
Calculate the determinant of the provided matrix A.
...
"""
if len(A) == 1:

return A[0][0]
if len(A) == 2:

return A[0][0]*A[1][1] - A[0][1]*A[1][0]
det = 0
for j in range(len(A)):

det += (-1) ** j * A[0][j] * Determinant(Submatrix(A, 0, j))
return det

Table 13: Examples of the modular decomposed (MD) functions and the retrieved top-1 (Recall) functions. We omit
some function descriptions to save space.

1163

Ins. Develop a algorithm to simulate multiple rounds of a custom coin flip game with distinct scoring mechanisms for
each outcome. The algorithm should efficiently manage a substantial number of players and monitor their scores in
real-time, while prioritizing minimal memory usage and computational complexity.

Direct See Table 11

MD

def simulate_coin_flip () -> str:
"""
Description:

Simulates a single coin flip and returns the outcome.
...
"""

def update_player_scores(players: dict , outcome: str , scoring_mechanisms:
dict) -> None:
"""
Description:

Updates the scores of all players based on the outcome of the coin
flip.
...
"""

def simulate_multiple_rounds(num_players: int , num_rounds: int) -> dict:
"""
Description:

Simulates multiple rounds of the game for a given number of players
.
...
"""

Recall

import random
def coin_flip ():

""" Simulate a game of coin flip by flipping a coin 10 times and
determining the outcome based on the number of heads. ..."""
result = 0
for x in range (10):

n = random.randint(0, 1)
if n == 0:

result += 1
if result < 5:

return "You lost the game!"
else:

return "You won the game!"

def score_transactions(transactions):
""" Calculate the total amount of transactions for each sender and store
the scores in a dictionary. ..."""
scores = {}
for transaction in transactions:

if transaction['sender '] not in scores:
scores[transaction['sender ']] = 0

scores[transaction['sender ']] += transaction['amount ']
return scores

def determine_winner(scores: list) -> str:
""" Determine the winner of a match based on the scores provided. ... """
team_names = [item [0] for item in scores]
point_diffs = [abs(item [1] - item [2]) for item in scores]
max_point_diff_idx = point_diffs.index(max(point_diffs))
if scores[max_point_diff_idx][1] > scores[max_point_diff_idx][2]:

return team_names[max_point_diff_idx]
else: return 'Draw'

Table 14: Examples of the modular decomposed (MD) functions and the retrieved top-1 (Recall) functions. We omit
some function descriptions to save space.

1164

Ins. Craft a program tasked with computing the Fibonacci sequence up to a user-defined boundary, ensuring that every
generated number is not only part of the Fibonacci sequence but also a prime number.

Direct See Table 12

MD

def is_prime(n: int) -> bool:
"""
Description:

Checks if a number is a prime number.
Parameters:

- n (int): The number to be checked for primality.
Returns:

- bool: True if the number is prime , False otherwise.
"""

def fibonacci_prime_sequence(boundary: int) -> List[int]:
"""
Description:

Generates a Fibonacci sequence of prime numbers up to a user -
defined boundary.
Parameters:

- boundary (int): The upper limit for the Fibonacci sequence.
Returns:

- List[int]: A list of prime numbers within the Fibonacci sequence
up to the boundary.
"""

Recall

def is_prime(num: int) -> bool:
"""
Check if the provided number is a prime number.
Args:

num (int): The number to check for primality.
Returns:

bool: True if the number is prime , False otherwise.
"""
if num <= 1:

return False

for i in range(2, num):
if (num % i) == 0:

return False
return True

def prime_sequence(start: int , end: int) -> List[int]:
"""
Generate a list of prime numbers within the specified range from start
to end (inclusive).
Args:

start (int): The starting value of the range.
end (int): The ending value of the range.

Returns:
List[int]: A list of prime numbers within the specified range.

"""
prime_list = []
for num in range(start , end + 1):

if num > 1:
for i in range(2, num):

if (num % i) == 0:
break

else:
prime_list.append(num)

return prime_list

Table 15: Examples of the modular decomposed (MD) functions and the retrieved top-1 (Recall) functions.

1165

Figure 4: Screenshot of the interface for the human annotators to annotate whether the responses are suitable or not.

1166

